Tutorial week 6: Partial Differential Equations - PDEs Separation of Variables and Fourier series

Read the notes and slides -

all this material will be discussed by the end of week 6 .

Tutorial exercises - Week 6

1. Attempt to solve the following PDEs using separation of variables.

If it is possible, determine the resulting ODEs.
(a) $t u_{x x}+x u_{t}=0$
(b) $u_{x x}+u_{t t}+x u=0$

Solution:
(a): Write $u(x, t)=X(x) T(t)$ then

$$
t X^{\prime \prime} T+x X T^{\prime}=0
$$

Divide by $x t X T$ then

$$
\frac{X^{\prime \prime}}{x X}=-\frac{T^{\prime}}{t T}=K
$$

So

$$
X^{\prime \prime}=K x X ; \quad T^{\prime}=-K t T .
$$

(b): Write $u(x, t)=X(x) T(t)$ then

$$
X^{\prime \prime} T+X T^{\prime \prime}+x X T=0
$$

Divide by $X T$ then

$$
\frac{X^{\prime \prime}}{X}+\frac{T^{\prime \prime}}{T}+x=0
$$

So

$$
\frac{X^{\prime \prime}}{X}+x=-\frac{T^{\prime \prime}}{T}=K
$$

That is

$$
X^{\prime \prime}+x X=K X ; \quad T^{\prime \prime}=-K T
$$

2. Using separation of variables, find a solution to Laplace's equation $u_{x x}+u_{y y}=0$ on the rectangle $0<x<a, 0<y<b$ with Dirichlet boundary conditions:

$$
\begin{array}{lll}
u(0, y)=f(y), & u(a, y)=g(y), & 0<y<b \\
u(x, 0)=h(x), & u(x, b)=j(x), & 0 \leq x \leq a
\end{array}
$$

Note all four edges are non-zero.
Hint: Consider adding the solutions to 4 simpler problems.

Solution:

Consider these four simpler problems $\left(u_{i}\right)_{x x}+\left(u_{i}\right)_{y y}=0$ with boundary conditions:
(a)

$$
\begin{array}{lll}
u_{1}(0, y)=f(y), & u_{1}(a, y)=0, & 0<y<b ; \\
u_{1}(x, 0)=0, & u_{1}(x, b)=0, & 0 \leq x \leq a
\end{array}
$$

(b)

$$
\begin{array}{llc}
u_{2}(0, y)=0, & u_{2}(a, y)=g(y), & 0<y<b ; \\
u_{2}(x, 0)=0, & u_{2}(x, b)=0, & 0 \leq x \leq a .
\end{array}
$$

(c)

$$
\begin{array}{lll}
u_{3}(0, y)=0, & u_{3}(a, y)=0, & 0<y<b \\
u_{3}(x, 0)=h(x), & u_{3}(x, b)=0, & 0 \leq x \leq a
\end{array}
$$

(d)

$$
\begin{array}{llr}
u_{4}(0, y)=0, & u_{4}(a, y)=0, & 0<y<b \\
u_{4}(x, 0)=0, & u_{4}(x, b)=j(x), & 0 \leq x \leq a
\end{array}
$$

Each of these 4 sub-problems has only one non-zero edge, and is of the form we explicitly discussed before the break...
Then consider

$$
u(x, y)=u_{1}(x, y)+u_{2}(x, y)+u_{3}(x, y)+u_{4}(x, y)
$$

It satisfies the right PDE, and the appropriate boundary conditions...
3. Using separation of variables, find the solution to Laplace's equation in the semi-infinite strip $0<x<a, y>0$ with boundary conditions

$$
\begin{array}{ll}
u(0, y)=0, & y>0 \\
u(a, y)=0, & y>0 \\
u(x, 0)=f(x), & 0 \leq x \leq a \\
\lim _{y \rightarrow \infty} u(x, y)=0 & 0<x<a
\end{array}
$$

Solution:

First try to separate variables:

$$
U(x, y)=X(x) Y(y)
$$

Then Laplace's equation becomes

$$
X^{\prime \prime}(x) Y(y)+X(x) Y^{\prime \prime}(y)=0
$$

Thence, dividing by $X(x) Y(y)$ we have

$$
\frac{X^{\prime \prime}(x)}{X(x)}+\frac{Y^{\prime \prime}(y)}{Y(y)}=0
$$

Thence we have a separation constant

$$
\frac{X^{\prime \prime}(x)}{X(x)}=-k ; \quad \frac{Y^{\prime \prime}(y)}{Y(y)}=+k
$$

We have 3 possibilities:

- $k<0$:

Then $k=-b^{2}$ and $X^{\prime \prime}(x)=b^{2} X(x)$ so $X(x)=A \cosh (b x)+B \sinh (b x)$;
but then the boundary conditions in x imply $X(0)=0=X(b)$,
which in turn implies $X(x) \equiv 0$,
which is uninteresting.

- $k=0$:

Then $X^{\prime \prime}(x)=0$ so $X(x)=A+B x$;
but then the boundary conditions in x imply $X(0)=0=X(b)$, which in turn implies $X(x) \equiv 0$, which is uninteresting.

- $k>0$:

Then $k=+b^{2}$ and $X^{\prime \prime}(x)=-b^{2} X(x)$ so $X(x)=A \cos (b x)+B \sin (b x)$; but then the boundary conditions in x imply $X(0)=0=X(b)$,
which in turn implies $A=0$ and $\sin (b a)=0$,
so $b=n \pi / a$ and $X(x)=B \sin (n \pi x / a)$.
But now $Y^{\prime \prime}(y)=+b^{2} Y(y)$ with $b>0$, so $Y(y)=C \exp (b y)+D \exp (-b y)$; but then the asymptotic boundary condition in y implies $Y(\infty)=0$, which in turn implies $C=0$.

At this stage we have

$$
U(x, y)=X(x) Y(y)=B \sin (n \pi x / a) D \exp (-n \pi y / a)
$$

Invoking linear superposition

$$
U(x, y)=\sum_{n=1}^{\infty} E_{n} \sin (n \pi x / a) \exp (-n \pi y / a)
$$

This satisfies Laplace's equation and the three homogeneous boundary conditions. The only remaining condition is $U(x, 0)=f(x)$ which implies

$$
f(x)=\sum_{n=1}^{\infty} E_{n} \sin (n \pi x / a)
$$

This in principle determines the E_{n} and we are done.
4. Prove that the Fourier coefficients satisfy:

$$
\begin{aligned}
\left|A_{0}\right| & \leq \frac{1}{2 L} \int_{-L}^{+L}|f(x)| d x ; & & \left|A_{n>0}\right|
\end{aligned} \leq \frac{1}{L} \int_{-L}^{+L}|f(x)| d x ;
$$

(Much stronger results are actually known.)
Hint: Remember:

$$
\begin{array}{ll}
A_{0}=\frac{1}{2 L} \int_{-L}^{+L} f(x) d x ; & A_{n>0}=\frac{1}{L} \int_{-L}^{+L} f(x) \cos (n \pi x / L) d x \\
B_{0}=0 ; & B_{n>0}=\frac{1}{L} \int_{-L}^{+L} f(x) \sin (n \pi x / L) d x
\end{array}
$$

Solution:

This is merely an application of the standard inequality

$$
\left|\int_{a}^{b} h(x) d x\right| \leq \int_{a}^{b}|h(x)| d x
$$

combined with

$$
|f(x) \cos (n \pi x / L)| \leq|f(x)||\cos (n \pi x / L)| \leq|f(x)|
$$

and

$$
|f(x) \sin (n \pi x / L)| \leq|f(x)||\sin (n \pi x / L)| \leq|f(x)|
$$

5. Consider the finite sum:

$$
S_{M}(x)=\frac{4}{\pi}\left\{\sin (\pi x)+\frac{\sin (3 \pi x)}{3}+\frac{\sin (5 \pi x)}{5}+\cdots+\frac{\sin ([2 M+1] \pi x)}{2 M+1}\right\}
$$

which we saw is of interest in analyzing the Gibbs phenomenon for step functions.
(a) Show that:

$$
S_{M}(x)=4 \int_{0}^{x}\{\cos (\pi u)+\cos (3 \pi u)+\cos (5 \pi u)+\cdots+\cos ([2 M+1] \pi u)\} d u
$$

Solution:

Note that

$$
\int_{0}^{x} \cos (n \pi u) d u=\left.\frac{\sin (n \pi u)}{n \pi}\right|_{0} ^{x}=\frac{\sin (n \pi x)}{n \pi}
$$

and sum from $n=1$ to $n=2 M+1$.
(b) Show that:

$$
\cos (\pi u)+\cos (3 \pi u)+\cos (5 \pi u)+\cdots+\cos ([2 M+1] \pi u)=\frac{\sin ([2 M+2] \pi u)}{2 \sin (\pi u)}
$$

Hint: This is "merely" a trig identity.
Hint: Use $e^{i \theta}=\cos \theta+i \sin \theta$, and the well-known series

$$
1+x+x^{2}+\cdots+x^{m}=\left(1-x^{m+1}\right) /(1-x)
$$

Solution:

Note

$$
\cos (n \pi x)=\frac{e^{i n \pi x}+e^{-i n \pi x}}{2}=\frac{1}{2}\left\{\left(e^{i \pi x}\right)^{n}+\left(e^{-i \pi x}\right)^{n}\right\}
$$

Then

$$
\begin{gathered}
\cos (\pi u)+\cos (3 \pi u)+\cos (5 \pi u)+\cdots+\cos ([2 M+1] \pi u) \\
=\frac{1}{2}\left\{\sum_{n=1,3,5, \ldots 2 M+1}\left(e^{i \pi u}\right)^{n}+\sum_{n=1,3,5, \ldots 2 M+1}\left(e^{-i \pi u}\right)^{n}\right\} \\
=\frac{1}{2}\left\{e^{i \pi u} \sum_{m=0}^{M}\left(e^{i \pi 2 u}\right)^{m}+e^{-i \pi u} \sum_{m=0}^{M}\left(e^{-i \pi 2 u}\right)^{m}\right\} \\
=\frac{1}{2}\left\{e^{i \pi u} \frac{1-e^{i \pi[M+1] 2 u}}{1-e^{i \pi 2 u}}+e^{-i \pi u} \frac{1-e^{-i \pi[M+1] 2 u}}{1-e^{-i \pi 2 u}}\right\} \\
=\frac{1}{2}\left\{\frac{1-e^{i \pi[M+1] 2 u}}{e^{-i \pi u}-e^{i \pi u}}+\frac{1-e^{-i \pi[M+1] 2 u}}{e^{i \pi u}-e^{-i \pi u}}\right\} \\
=\frac{1}{2}\left\{\frac{e^{i \pi[M+1] 2 u}-e^{-i \pi[M+1] 2 u}}{e^{i \pi u}-e^{-i \pi u}}\right\} \\
=\frac{\sin ([2 M+2] \pi u)}{2 \sin (\pi u)} .
\end{gathered}
$$

(c) Show that:

$$
S_{M}(x)=2 \int_{0}^{x} \frac{\sin ([2 M+2] \pi u)}{\sin (\pi u)} d u
$$

Solution:

Given the above, this step is now trivial.
(d) Show that:

$$
S_{M}\left(\frac{x}{2 M+2}\right)=2 \int_{0}^{x} \frac{\sin (\pi u)}{\sin (\pi u /[2 M+2])} \frac{d u}{2 M+2}
$$

Solution:

Given the above, this step is now almost trivial.
Note from part (c)

$$
S_{M}\left(\frac{x}{2 M+2}\right)=2 \int_{0}^{\frac{x}{2 M+2}} \frac{\sin ([2 M+2] \pi u)}{\sin (\pi u)} d u
$$

Then simply change variables: $u_{\text {new }}=(2 M+2) u_{\text {old }}$.
(e) Show that:

$$
\lim _{M \rightarrow \infty} S_{M}\left(\frac{x}{2 M+2}\right)=\frac{2}{\pi} \int_{0}^{x} \frac{\sin (\pi u)}{u} d u=\frac{2}{\pi} \int_{0}^{\pi x} \frac{\sin (u)}{u} d u=\frac{2}{\pi} \operatorname{Si}(\pi x) .
$$

Solution:

Almost trivial.
From the above

$$
\lim _{M \rightarrow \infty} S_{M}\left(\frac{x}{2 M+2}\right)=2 \lim _{M \rightarrow \infty} \int_{0}^{x} \frac{\sin (\pi u)}{\sin (\pi u /[2 M+2])} \frac{d u}{2 M+2} .
$$

But $\lim _{a \rightarrow 0} \sin (a x) / a=x$, so

$$
\lim _{M \rightarrow \infty} S_{M}\left(\frac{x}{2 M+2}\right)=\frac{2}{\pi} \int_{0}^{x} \frac{\sin (\pi u)}{u} d u=\frac{2}{\pi} \int_{0}^{\pi x} \frac{\sin (u)}{u} d u=\frac{2}{\pi} \operatorname{Si}(\pi x)
$$

as asserted.
This is another way of getting to the key result for the (step-function) Gibbs phenomenon. (It is very closely related, but not identical to, question 5 of the assignment.)

