Victoria University of Wellington
School of Mathematics and Statistics
Te Kura Mātai Tatauranga

Assignment 1: Partial Differential Equations - PDEs

Set: Monday 4 March 2024
Due: Friday 15 March 2024 at 23:59 (End of week 3)

1. Classification questions (easy):

Determine the order of the following PDEs for a function $U(x, y), u(x, y), \psi(x, t)$, or $\Psi(x, y, z)$.
Decide if they are linear or not, and if linear, whether or not they are homogeneous. If nonlinear, decide whether or not they are quasi-linear.
(a) $a U_{x x}+b U_{y y}=0$, where $a, b \in \mathbb{R}$ are non-zero.
(b) $x U_{x}+y U_{y}=0$, where $x, y \in \mathbb{R}$ are non-zero.
(c) $a U U_{x x}+b U_{x} U_{y y}=0$, where $a, b \in \mathbb{R}$ non-zero.
(d) $\frac{\partial^{3} U}{\partial^{2} x \partial y}-\frac{\partial U}{\partial y}=x^{2}+y^{2}$
(e) $x^{2} U_{y y}-y U_{x}=U$.
(f) $x^{2} U_{y y y y}-y U_{x}=U^{2}$.
(g) $-i \partial_{t} \psi=\frac{1}{2 m} \nabla^{2} \psi+V(x) \psi$.
(h) $u_{x x} u_{y y}-u_{x y}^{2}=f\left(x, y, u, u_{x}, u_{y}\right)$.
(i) $U_{x x}+y U_{y y}=0$.
(j) $\left(\nabla^{2}\right)^{2} \Psi:=\left[\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}\right]^{2} \Psi=0$.
2. Find general solutions $U(x, y)$ to the following PDEs (straightforward):
(a) $\frac{\partial U}{\partial x}=x^{2}-y^{2}$.
(b) $\frac{\partial U}{\partial x}-\frac{\partial U}{\partial y}=e^{x} e^{-y}$. [Make an appropriate change of variable.]
(c) $U_{x x}=\sin y$.
3. Find general solutions $U(x, y)$ to the following PDEs (some mild thinking required):
(a) $a U_{x}+b U_{y}=0$.
(b) $U_{x} g_{y}(x, y)-U_{y} g_{x}(x, y)=0 . \quad$ (Treat $g(x, y)$ as given.)
(c) $U_{x x y y}=0$.
(d) $U_{x x}=y U_{x}+x y$.
4. Eliminate the arbitrary functions from the following and so obtain partial differential equations of which they are the general solution (very straightforward):
(a) $v=g\left(x^{2}+y^{2}\right)$.
(b) $v=f\left(x^{2}-y^{2}\right)$.
(c) $v=f\left(x^{2}-y^{2}\right)+g\left(x^{2}+y^{2}\right)$.
(d) $v=h(2 x-y)-g(2 x+y)$.
5. Euler equation: Elliptic/Parabolic/Hyperbolic (straightforward)

Determine the Euler type (i.e. elliptic, hyperbolic or parabolic) of each of the following PDEs; and obtain the general solution in each case:
a. $3 U_{x x}+4 U_{x y}-U_{y y}=0$.
b. $U_{x x}-2 U_{x y}+U_{y y}=0$.
c. $4 U_{x x}+U_{y y}=0$.
d. $U_{x x}+4 U_{x y}+4 U_{y y}=0$.
e. $U_{y y}+2 U_{x x}=0$.
6. Euler PDE (some mild thinking required)

Starting with the constant-coefficient Euler PDE

$$
a U_{x x}+2 h U_{x y}+b U_{y y}=0
$$

show that there is a change of independent variables $(x, y) \rightarrow(X, Y)$, somewhat different from the change of variables considered in class, such that in terms of the new independent variables

$$
U_{X X}+\epsilon U_{Y Y}=0
$$

where $\epsilon \in\{-1,0,+1\}$.

Tutorial exercises - Week 2

1. Determine the order of the following PDEs for a function U, Y, u, or v in terms of x, y or x, t. Decide if they are linear or not, and if so, whether they are homogeneous. If nonlinear, decide whether or not they are quasi-linear.
(a) $U_{t}-U U_{x x}+12 x U_{x}=U$.
(b) $Y_{x x x}-\cos Y=Y_{t}$.
(c) $Y_{x x}+\cos (x y) Y_{y x y}=Y+\ln \left(x^{2}+y^{3}\right)$.
(d) $u_{t t}-\alpha^{2} u_{x x}=\beta^{2} u_{x x t t}$.
(e) $u_{x y}+\frac{\alpha u_{x}-\beta u_{y}}{x-y}=0$.
(f) $2 u_{t x}+u_{x} u_{x x}-u_{y y}=0$.
(g) $u_{x x}+\frac{c^{2} y^{2}}{c^{2}-y^{2}} u_{y y}+y u_{y}=0$.
(h) $u_{t}+u_{x}+u u_{x}-u_{x x t}=0$.
(i) $\partial_{t} \vec{v}+(\vec{v} \cdot \vec{\nabla}) \vec{v}=\nu \nabla^{2} \vec{v}$.
(j) $\vec{\nabla} \cdot \vec{v}=0$.
2. Find general solutions $U(x, y)$ to the following PDEs:
(a) $\frac{\partial U}{\partial y}=\sin x y$.
(b) $\frac{\partial U}{\partial x}+2 \frac{\partial U}{\partial y}=0 . \quad$ [Make an appropriate change of variable.]
(c) $U_{x y}=1 . \quad$ [Does it matter which order you integrate?]
3. Find general solutions $U(x, y)$ to the following PDEs:
(a) $U_{x y}=y U_{x}^{3}$.
(b) $U_{x y}=x y U_{y}$.
(c) $U_{x y}=y U_{y}+x^{3} y^{2}$.
(d) $U_{x}=U_{y}$.
4. Eliminate the arbitrary functions from the following and so obtain partial differential equations of which they are the general solution:
(a) $u=f(x+y)$.
(b) $u=g(x y)$.
(c) $u=f(x+y)+g(x-y)$.
(d) $u=x^{n} h(y / x)$.

Tutorial exercises - Week 3

1. Euler Equation: Elliptic/Parbolic/Hyperbolic

Determine the Euler type (i.e. elliptic, hyperbolic or parabolic) of each of the following PDEs, and obtain the general solution in each case:
a. $U_{x x}+4 U_{x y}+4 U_{y y}=0$
b. $U_{x x}+2 U_{x y}+U_{y y}=0$.
c. $U_{x x}+4 U_{y y}=0$.
d. $4 U_{x x}+4 U_{x y}+4 U_{y y}=0$.
e. $U_{y y}+4 U_{x y}+U_{x x}=0$.
2. Check that if u_{1}, \ldots, u_{m} are solutions of the heat equation $\sigma^{2} u_{x x}=u_{t}$ for $0<x<L$ and $t>0$, with boundary conditions $u(0, t)=u(L, t)=0$ for all $t>0$, and c_{1}, \ldots, c_{m} are constants, then $u=c_{1} u_{1}+\cdots+c_{m} u_{m}$ also satisfies the equation and the BCs.

