VICTORIA UNIVERSITY OF WELLINGTON SCHOOL OF MATHEMATICS AND STATISTICS Te Kura Mātai Tatauranga

MATH 301	DIFFERENTIAL EQUATIONS	2024

Assignment 1: Partial Differential Equations — PDEs

Set: Monday 4 March 2024

Due: Friday 15 March 2024 at 23:59 (End of week 3)

1. Classification questions (easy):

Determine the order of the following PDEs for a function U(x, y), u(x, y), $\psi(x, t)$, or $\Psi(x, y, z)$. Decide if they are linear or not, and if linear, whether or not they are homogeneous. If nonlinear, decide whether or not they are quasi-linear.

- (a) $aU_{xx} + bU_{yy} = 0$, where $a, b \in \mathbb{R}$ are non-zero.
- (b) $xU_x + yU_y = 0$, where $x, y \in \mathbb{R}$ are non-zero.
- (c) $aUU_{xx} + bU_xU_{yy} = 0$, where $a, b \in \mathbb{R}$ non-zero.

(d)
$$\frac{\partial^3 U}{\partial^2 x \, \partial y} - \frac{\partial U}{\partial y} = x^2 + y^2$$

(e)
$$x^2 U_{yy} - y U_x = U$$
.

(f)
$$x^2 U_{yyyy} - y U_x = U^2$$

(g)
$$-i\partial_t \psi = \frac{1}{2m}\nabla^2 \psi + V(x)\psi.$$

(h)
$$u_{xx}u_{yy} - u_{xy}^2 = f(x, y, u, u_x, u_y).$$

(i)
$$U_{xx} + y U_{yy} = 0$$
.

(j)
$$(\nabla^2)^2 \Psi := \left[\partial_x^2 + \partial_y^2 + \partial_z^2\right]^2 \Psi = 0.$$

2. Find general solutions U(x, y) to the following PDEs (straightforward):

3. Find general solutions U(x, y) to the following PDEs (some mild thinking required):

(a) $aU_x + bU_y = 0.$ (b) $U_x g_y(x, y) - U_y g_x(x, y) = 0.$ (Treat g(x, y) as given.) (c) $U_{xxyy} = 0.$ (d) $U_{xx} = y U_x + xy.$ 4. Eliminate the arbitrary functions from the following and so obtain partial differential equations of which they are the general solution (very straightforward):

(a)
$$v = g(x^2 + y^2)$$
.
(b) $v = f(x^2 - y^2)$.
(c) $v = f(x^2 - y^2) + g(x^2 + y^2)$
(d) $v = h(2x - y) - g(2x + y)$.

5. Euler equation: Elliptic/Parabolic/Hyperbolic (straightforward)

Determine the Euler type (i.e. elliptic, hyperbolic or parabolic) of each of the following PDEs; and obtain the general solution in each case:

- a. $3U_{xx} + 4U_{xy} U_{yy} = 0.$ b. $U_{xx} - 2U_{xy} + U_{yy} = 0.$ c. $4U_{xx} + U_{yy} = 0.$ d. $U_{xx} + 4U_{xy} + 4U_{yy} = 0.$ e. $U_{yy} + 2U_{xx} = 0.$
- 6. Euler PDE (some mild thinking required)

Starting with the constant-coefficient Euler PDE

$$a U_{xx} + 2h U_{xy} + b U_{yy} = 0$$

show that there is a change of independent variables $(x, y) \to (X, Y)$, somewhat different from the change of variables considered in class, such that in terms of the new independent variables

$$U_{XX} + \epsilon \ U_{YY} = 0,$$

where $\epsilon \in \{-1, 0, +1\}$.

Tutorial exercises — Week 2

1. Determine the order of the following PDEs for a function U, Y, u, or v in terms of x, y or x, t. Decide if they are linear or not, and if so, whether they are homogeneous. If nonlinear, decide whether or not they are quasi-linear.

(a)
$$U_t - UU_{xx} + 12xU_x = U.$$

(b) $Y_{xxx} - \cos Y = Y_t.$
(c) $Y_{xx} + \cos(xy)Y_{yxy} = Y + \ln(x^2 + y^3).$
(d) $u_{tt} - \alpha^2 u_{xx} = \beta^2 u_{xxtt}.$
(e) $u_{xy} + \frac{\alpha \ u_x - \beta \ u_y}{x - y} = 0.$
(f) $2u_{tx} + u_x \ u_{xx} - u_{yy} = 0.$
(g) $u_{xx} + \frac{c^2 \ y^2}{c^2 - y^2} \ u_{yy} + y \ u_y = 0.$
(h) $u_t + u_x + uu_x - u_{xxt} = 0.$
(i) $\partial_t \vec{v} + (\vec{v} \cdot \vec{\nabla}) \vec{v} = \nu \nabla^2 \vec{v}.$
(j) $\vec{\nabla} \cdot \vec{v} = 0.$

2. Find general solutions U(x, y) to the following PDEs:

- 3. Find general solutions U(x, y) to the following PDEs:
 - (a) $U_{xy} = y \ U_x^3$. (b) $U_{xy} = xy \ U_y$. (c) $U_{xy} = y \ U_y + x^3 y^2$. (d) $U_x = U_y$.
- 4. Eliminate the arbitrary functions from the following and so obtain partial differential equations of which they are the general solution:
 - (a) u = f(x + y). (b) u = g(xy). (c) u = f(x + y) + g(x - y). (d) $u = x^n h(y/x)$.

1. Euler Equation: Elliptic/Parbolic/Hyperbolic

Determine the Euler type (i.e. elliptic, hyperbolic or parabolic) of each of the following PDEs, and obtain the general solution in each case:

- a. $U_{xx} + 4U_{xy} + 4U_{yy} = 0$
- b. $U_{xx} + 2U_{xy} + U_{yy} = 0.$
- c. $U_{xx} + 4U_{yy} = 0.$
- d. $4U_{xx} + 4U_{xy} + 4U_{yy} = 0.$
- e. $U_{yy} + 4U_{xy} + U_{xx} = 0.$
- 2. Check that if u_1, \ldots, u_m are solutions of the heat equation $\sigma^2 u_{xx} = u_t$ for 0 < x < L and t > 0, with boundary conditions u(0,t) = u(L,t) = 0 for all t > 0, and c_1, \ldots, c_m are constants, then $u = c_1 u_1 + \cdots + c_m u_m$ also satisfies the equation and the BCs.