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MATH 301 Differential equations 2024

Assignment 2: Partial Differential Equations — PDEs

Separation of Variables and Fourier series

Set: Thursday 28 March 2024 Due: Friday 19 April 2024 at 23:59 (End of week 6)

Read the notes and slides —

all this material will be discussed by the end of week 6.

1. Separation of Variables:
Attempt to (partially) solve the following PDEs using separation of variables.

If possible, determine the resulting ODEs.

(Do not attempt to actually solve the ODEs,
just find the variable-separated ODEs, if possible.)

• (a) xuxx + ut = 0;

• (b) uxx + (x+ t)utt = 0.

2. Separation of Variables:
The heat equation for u(x, y, t) in two spatial dimensions has the form

σ2(uxx + uyy) = ut

If u(x, y, t) = X(x)Y (y)T (t) find ODEs for X(x), Y (y), and T (t).

(Do not attempt to actually solve the ODEs,
just find the variable-separated ODEs.)

3. Fourier series:
Consider a function f(x) defined on the domain [−L,+L].

Show that if f(x) ∈ Cp, then there exists some constant K such that the Fourier coefficients
satisfy

An ≤ K/np and Bn ≤ K/np.

Hint #1: Recall the definition of Cp; the function is differentiable at least p times,
and the p’th derivative is continuous.

Hint #2: Adapt salient parts of the convergence proof, (Kreyszig’s proof for C2 functions),
as presented in lectures.
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Remember: (Euler formulae)

A0 =
1

2L

∫ +L

−L
f(x) dx; An>0 =

1

L

∫ +L

−L
f(x) cos(nπx/L) dx;

B0 = 0; Bn>0 =
1

L

∫ +L

−L
f(x) sin(nπx/L) dx.

4. Fourier series:
Let P (x) be any arbitrary polynomial of degree m over the interval [−1, 1].

For n > 0 set

An(P ) =

∫ +1

−1
P (x) cos(nπx) dx; Bn(P ) =

∫ +1

−1
P (x) sin(nπx) dx.

Prove that for n > 0 the coefficients An(P ) and Bn(P ) are themselves polynomials,
but now in the variable 1/n, of degree at most m.

Hint #1: Integrate by parts, as many times as needed...

Hint #2: Why does the process of repeated integration by parts eventually stop?

5. Fourier series for sawtooth function:
Setup: Consider the (simplified) sawtooth function:

(sawtooth function) = sign(x)− x for x ∈ [−1,+1].

This is an odd function which is discontinuous at x = 0, and zero at x = ±1,
and which can then be extended to a periodic function on the entire real line with period 2.

The Fourier cosine and sine coefficients are then easily determined to be:

An = 0.

Bn =
2

nπ
.

Consider the finite-sum Fourier approximation to the sawtooth function

ŜN(x) =
N∑
n=1

2

nπ
sin(nπx).

See questions overleaf...
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Questions:

(a) Sketch the simplified sawtooth function defined above.

(b) Show that:

ŜN(x) = 2

∫ x

0

N∑
n=1

cos(nπu)du.

(c) Show that:
N∑
n=1

cos(nπu) =
1

2

[
sin([N + 1

2
]πu)

sin(πu/2)
− 1

]
.

Hint: Use eiθ = cos θ + i sin θ, and the well-known series

1 + x+ x2 + · · ·+ xm = (1− xm+1)/(1− x).

(d) Show that:

ŜN(x) =

∫ x

0

sin([N + 1
2
]πu)

sin(πu/2)
du− x.

(e) Now suppose |x| � 1. Then, since |u| ≤ |x| � 1, we can approximate sin(πu/2) ≈ πu/2.

Show that for |x| � 1 we now have:

ŜN(x) ≈ 2

π

∫ x

0

sin([N + 1
2
]πu)

u
du− x.

(f) By a suitable change of variables rewrite this as:

ŜN(x) ≈ 2

π

∫ [N+ 1
2
]πx

0

sin(u)

u
du− x.

(g) Show that this implies

ŜN(x) ≈ 2

π
Si

([
N +

1

2

]
πx

)
− x.

(h) Explain the relation between this result for the sawtooth function, and the result for the
sign function that was derived in class:

SM(x) ≈ 2

π
Si(2πx[M + 1]).
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Tutorial exercises — Week 6

1. Attempt to solve the following PDEs using separation of variables.

If it is possible, determine the resulting ODEs.

(a) tuxx + xut = 0 (b) uxx + utt + xu = 0

2. Using separation of variables, find a solution to Laplace’s equation uxx+uyy = 0 on the rectangle
0 < x < a, 0 < y < b with Dirichlet boundary conditions:

u(0, y) = f(y), u(a, y) = g(y), 0 < y < b;

u(x, 0) = h(x), u(x, b) = j(x), 0 ≤ x ≤ a.

Note all four edges are non-zero.
Hint: Consider adding the solutions to 4 simpler problems.

3. Using separation of variables, find the solution to Laplace’s equation in the semi-infinite strip
0 < x < a, y > 0 with boundary conditions

u(0, y) = 0, y > 0;

u(a, y) = 0, y > 0;

u(x, 0) = f(x), 0 ≤ x ≤ a;

lim
y→∞

u(x, y) = 0 0 < x < a.

4. Prove that the Fourier coefficients satisfy:

|A0| ≤
1

2L

∫ +L

−L
|f(x)| dx; |An>0| ≤

1

L

∫ +L

−L
|f(x)| dx;

B0 = 0; |Bn>0| ≤
1

L

∫ +L

−L
|f(x)| dx.

(Much stronger results are actually known.)

Hint: Remember:

A0 =
1

2L

∫ +L

−L
f(x) dx; An>0 =

1

L

∫ +L

−L
f(x) cos(nπx/L) dx;

B0 = 0; Bn>0 =
1

L

∫ +L

−L
f(x) sin(nπx/L) dx.

5. Consider the finite sum:

SM(x) =
4

π

{
sin(πx) +

sin(3πx)

3
+

sin(5πx)

5
+ · · ·+ sin([2M + 1]πx)

2M + 1

}
,

which we saw is of interest in analyzing the Gibbs phenomenon for step functions.
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(a) Show that:

SM(x) = 4

∫ x

0

{cos(πu) + cos(3πu) + cos(5πu) + · · ·+ cos([2M + 1]πu)} du.

(b) Show that:

cos(πu) + cos(3πu) + cos(5πu) + · · ·+ cos([2M + 1]πu) =
sin([2M + 2]πu)

2 sin(πu)

Hint: This is “merely” a trig identity.
Hint: Use eiθ = cos θ + i sin θ, and the well-known series

1 + x+ x2 + · · ·+ xm = (1− xm+1)/(1− x).

(c) Show that:

SM(x) = 2

∫ x

0

sin([2M + 2]πu)

sin(πu)
du.

(d) Show that:

SM

(
x

2M + 2

)
= 2

∫ x

0

sin(πu)

sin(πu/[2M + 2])

du

2M + 2
.

(e) Show that:

lim
M→∞

SM

(
x

2M + 2

)
=

2

π

∫ x

0

sin(πu)

u
du =

2

π

∫ πx

0

sin(u)

u
du =

2

π
Si(πx).

This is another way of getting to the key result for the (step-function) Gibbs phenomenon.

(It is very closely related, but not identical to, question 5 of the assignment.)
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