Assignment 2: Partial Differential Equations - PDEs Separation of Variables and Fourier series

Set: Thursday 28 March 2024
Due: Friday 19 April 2024 at 23:59 (End of week 6)

Read the notes and slides -
 all this material will be discussed by the end of week 6 .

1. Separation of Variables:

Attempt to (partially) solve the following PDEs using separation of variables.
If possible, determine the resulting ODEs.
(Do not attempt to actually solve the ODEs,
just find the variable-separated ODEs, if possible.)

- (a) $x u_{x x}+u_{t}=0$;
- (b) $u_{x x}+(x+t) u_{t t}=0$.

2. Separation of Variables:

The heat equation for $u(x, y, t)$ in two spatial dimensions has the form

$$
\sigma^{2}\left(u_{x x}+u_{y y}\right)=u_{t}
$$

If $u(x, y, t)=X(x) Y(y) T(t)$ find ODEs for $X(x), Y(y)$, and $T(t)$.
(Do not attempt to actually solve the ODEs, just find the variable-separated ODEs.)

3. Fourier series:

Consider a function $f(x)$ defined on the domain $[-L,+L]$.
Show that if $f(x) \in C^{p}$, then there exists some constant K such that the Fourier coefficients satisfy

$$
A_{n} \leq K / n^{p} \quad \text { and } \quad B_{n} \leq K / n^{p}
$$

Hint \#1: Recall the definition of C^{p}; the function is differentiable at least p times, and the p 'th derivative is continuous.
Hint \#2: Adapt salient parts of the convergence proof, (Kreyszig's proof for C^{2} functions), as presented in lectures.

Remember: (Euler formulae)

$$
\begin{array}{ll}
A_{0}=\frac{1}{2 L} \int_{-L}^{+L} f(x) d x ; & A_{n>0}=\frac{1}{L} \int_{-L}^{+L} f(x) \cos (n \pi x / L) d x \\
B_{0}=0 ; & B_{n>0}=\frac{1}{L} \int_{-L}^{+L} f(x) \sin (n \pi x / L) d x
\end{array}
$$

4. Fourier series:

Let $P(x)$ be any arbitrary polynomial of degree m over the interval $[-1,1]$.
For $n>0$ set

$$
A_{n}(P)=\int_{-1}^{+1} P(x) \cos (n \pi x) d x ; \quad B_{n}(P)=\int_{-1}^{+1} P(x) \sin (n \pi x) d x
$$

Prove that for $n>0$ the coefficients $A_{n}(P)$ and $B_{n}(P)$ are themselves polynomials, but now in the variable $1 / n$, of degree at most m.
Hint \#1: Integrate by parts, as many times as needed...
Hint \#2: Why does the process of repeated integration by parts eventually stop?

5. Fourier series for sawtooth function:

Setup: Consider the (simplified) sawtooth function:

$$
(\text { sawtooth function })=\operatorname{sign}(x)-x \quad \text { for } \quad x \in[-1,+1] .
$$

This is an odd function which is discontinuous at $x=0$, and zero at $x= \pm 1$, and which can then be extended to a periodic function on the entire real line with period 2 . The Fourier cosine and sine coefficients are then easily determined to be:

$$
\begin{aligned}
A_{n} & =0 \\
B_{n} & =\frac{2}{n \pi}
\end{aligned}
$$

Consider the finite-sum Fourier approximation to the sawtooth function

$$
\hat{S}_{N}(x)=\sum_{n=1}^{N} \frac{2}{n \pi} \sin (n \pi x) .
$$

See questions overleaf...

Questions:

(a) Sketch the simplified sawtooth function defined above.
(b) Show that:

$$
\hat{S}_{N}(x)=2 \int_{0}^{x} \sum_{n=1}^{N} \cos (n \pi u) d u
$$

(c) Show that:

$$
\sum_{n=1}^{N} \cos (n \pi u)=\frac{1}{2}\left[\frac{\sin \left(\left[N+\frac{1}{2}\right] \pi u\right)}{\sin (\pi u / 2)}-1\right] .
$$

Hint: Use $e^{i \theta}=\cos \theta+i \sin \theta$, and the well-known series

$$
1+x+x^{2}+\cdots+x^{m}=\left(1-x^{m+1}\right) /(1-x)
$$

(d) Show that:

$$
\hat{S}_{N}(x)=\int_{0}^{x} \frac{\sin \left(\left[N+\frac{1}{2}\right] \pi u\right)}{\sin (\pi u / 2)} d u-x
$$

(e) Now suppose $|x| \ll 1$. Then, since $|u| \leq|x| \ll 1$, we can approximate $\sin (\pi u / 2) \approx \pi u / 2$. Show that for $|x| \ll 1$ we now have:

$$
\hat{S}_{N}(x) \approx \frac{2}{\pi} \int_{0}^{x} \frac{\sin \left(\left[N+\frac{1}{2}\right] \pi u\right)}{u} d u-x
$$

(f) By a suitable change of variables rewrite this as:

$$
\hat{S}_{N}(x) \approx \frac{2}{\pi} \int_{0}^{\left[N+\frac{1}{2}\right] \pi x} \frac{\sin (u)}{u} d u-x
$$

(g) Show that this implies

$$
\hat{S}_{N}(x) \approx \frac{2}{\pi} \mathrm{Si}\left(\left[N+\frac{1}{2}\right] \pi x\right)-x .
$$

(h) Explain the relation between this result for the sawtooth function, and the result for the sign function that was derived in class:

$$
S_{M}(x) \approx \frac{2}{\pi} \operatorname{Si}(2 \pi x[M+1])
$$

Tutorial exercises - Week 6

1. Attempt to solve the following PDEs using separation of variables.

If it is possible, determine the resulting ODEs.
(a) $t u_{x x}+x u_{t}=0$
(b) $u_{x x}+u_{t t}+x u=0$
2. Using separation of variables, find a solution to Laplace's equation $u_{x x}+u_{y y}=0$ on the rectangle $0<x<a, 0<y<b$ with Dirichlet boundary conditions:

$$
\begin{array}{lll}
u(0, y)=f(y), & u(a, y)=g(y), & 0<y<b ; \\
u(x, 0)=h(x), & u(x, b)=j(x), & 0 \leq x \leq a .
\end{array}
$$

Note all four edges are non-zero.
Hint: Consider adding the solutions to 4 simpler problems.
3. Using separation of variables, find the solution to Laplace's equation in the semi-infinite strip $0<x<a, y>0$ with boundary conditions

$$
\begin{array}{ll}
u(0, y)=0, & y>0 \\
u(a, y)=0, & y>0 \\
u(x, 0)=f(x), & 0 \leq x \leq a \\
\lim _{y \rightarrow \infty} u(x, y)=0 & 0<x<a
\end{array}
$$

4. Prove that the Fourier coefficients satisfy:

$$
\begin{aligned}
\left|A_{0}\right| & \leq \frac{1}{2 L} \int_{-L}^{+L}|f(x)| d x ; & & \left|A_{n>0}\right| \leq \frac{1}{L} \int_{-L}^{+L}|f(x)| d x \\
B_{0} & =0 ; & & \left|B_{n>0}\right| \leq \frac{1}{L} \int_{-L}^{+L}|f(x)| d x
\end{aligned}
$$

(Much stronger results are actually known.)
Hint: Remember:

$$
\begin{array}{ll}
A_{0}=\frac{1}{2 L} \int_{-L}^{+L} f(x) d x ; & A_{n>0}=\frac{1}{L} \int_{-L}^{+L} f(x) \cos (n \pi x / L) d x \\
B_{0}=0 ; & B_{n>0}=\frac{1}{L} \int_{-L}^{+L} f(x) \sin (n \pi x / L) d x
\end{array}
$$

5. Consider the finite sum:

$$
S_{M}(x)=\frac{4}{\pi}\left\{\sin (\pi x)+\frac{\sin (3 \pi x)}{3}+\frac{\sin (5 \pi x)}{5}+\cdots+\frac{\sin ([2 M+1] \pi x)}{2 M+1}\right\}
$$

which we saw is of interest in analyzing the Gibbs phenomenon for step functions.
(a) Show that:

$$
S_{M}(x)=4 \int_{0}^{x}\{\cos (\pi u)+\cos (3 \pi u)+\cos (5 \pi u)+\cdots+\cos ([2 M+1] \pi u)\} d u
$$

(b) Show that:

$$
\cos (\pi u)+\cos (3 \pi u)+\cos (5 \pi u)+\cdots+\cos ([2 M+1] \pi u)=\frac{\sin ([2 M+2] \pi u)}{2 \sin (\pi u)}
$$

Hint: This is "merely" a trig identity.
Hint: Use $e^{i \theta}=\cos \theta+i \sin \theta$, and the well-known series

$$
1+x+x^{2}+\cdots+x^{m}=\left(1-x^{m+1}\right) /(1-x)
$$

(c) Show that:

$$
S_{M}(x)=2 \int_{0}^{x} \frac{\sin ([2 M+2] \pi u)}{\sin (\pi u)} d u .
$$

(d) Show that:

$$
S_{M}\left(\frac{x}{2 M+2}\right)=2 \int_{0}^{x} \frac{\sin (\pi u)}{\sin (\pi u /[2 M+2])} \frac{d u}{2 M+2} .
$$

(e) Show that:

$$
\lim _{M \rightarrow \infty} S_{M}\left(\frac{x}{2 M+2}\right)=\frac{2}{\pi} \int_{0}^{x} \frac{\sin (\pi u)}{u} d u=\frac{2}{\pi} \int_{0}^{\pi x} \frac{\sin (u)}{u} d u=\frac{2}{\pi} \operatorname{Si}(\pi x)
$$

This is another way of getting to the key result for the (step-function) Gibbs phenomenon. (It is very closely related, but not identical to, question 5 of the assignment.)

