VICTORIA UNIVERSITY OF WELLINGTON SCHOOL OF MATHEMATICS AND STATISTICS Te Kura Mātai Tatauranga

MATH 301	PARTIAL DIFFERENTIAL	EQUATIONS	2024
MATH 501	I ANTIAL DIFFERENTIAL	EQUATIONS	2024

In-term test # 1:

Tuesday 26 March 2024; 12:00-12:50; Murphy 220

FAMILY NAME	PERSONAL NAME(S)	STUDENT NUMBER

Most questions should be very easy; some questions might require a little thinking.

1. Classification of PDEs:

For the following list of PDEs:

- State the order.
- State whether or not the PDE is linear. (Yes/No.)
- State whether or not the PDE is quasi-linear. (Yes/No/Automatic.)
- State whether or not it is homogeneous. (Yes/No/Meaningless.)

(a) det
$$\left[\partial_i \partial_j U(x^k)\right] = 0.$$

2 nd -order nonlinear	not quasi-linear	meaningless
----------------------------------	------------------	-------------

(b)
$$U_{xxxx} + 2U_{xyxy} + U_{yyyy} = 0.$$

4 th -order linear	automatic	homogeneous
-------------------------------	-----------	-------------

(c) det
$$\left[\delta_{ij} + U(x^k) \ \partial_i U(u^k) \ \partial_j U(x^k)\right] = S(x^k)$$

1 st -order nonlinea	r not quasi-linear m	neaningless
---------------------------------	----------------------	-------------

(d)
$$\exp(a \partial_x + b \partial_y) U(x, y) = U(x, y)$$

	infinite order	linear	automatic	homogeneous
--	----------------	--------	-----------	-------------

(e) $f(U)U_x + g(U)U_y = 0.$

1 st -order nonlinear	quasilinear	meaningless	
----------------------------------	-------------	-------------	--

[10 marks out of 100]

2. General solutions:

[10 marks out of 100]

Find the general solution (you may need to think just a little bit) to the following PDEs:

(a)
$$U_{xyz} = 0.$$
 (Straightforward.)

By inspection:

$$U(x, y, z) = f(x, y) + g(y, z) + h(z, x).$$
Systematic:

$$U_{xyz} = 0 \implies U_{xy} = f_1(x, y) \implies U_x = \int f_1(x, y) dy + f_2(x, z) = f_3(x, y) + f_2(x, z)$$
But then

$$U = \int [f_3(x, y) + f_2(x, z)] dx + f_4(y, z) = f_5(x, y) + f_6(x, z) + f_4(y, z)$$
Re-name the arbitrary functions

$$U(x, y, z) = f(x, y) + g(y, z) + h(z, x).$$

(b) $\exp(a \partial_x + b \partial_y) U(x, y) = U(x, y).$ (This one is tricky). **Hint:** Evaluate $\exp\left(a \frac{d}{dx}\right) W(x)$ using Taylor series; draw the obvious conclusion.

Use the hint:

$$\exp\left(a\frac{\mathrm{d}}{\mathrm{d}x}\right)W(x) = \sum_{n=0}^{\infty}\frac{1}{n!}\left(a\frac{\mathrm{d}}{\mathrm{d}x}\right)^n W(x) = \sum_{n=0}^{\infty}\frac{1}{n!}a^n\left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^n W(x) = \sum_{n=0}^{\infty}\frac{1}{n!}a^n W^{(n)}(x)$$

But that last expression is just the Taylor theorem expansion for W(x + a). That is

$$\exp\left(a\frac{\mathrm{d}}{\mathrm{d}x}\right)W(x) = W(x+a).$$

Thence the PDE of interest

$$\exp\left(a\,\partial_x + b\,\partial_y\right) \ U(x,y) = U(x,y)$$

has the general solution

$$U(x+a, y+b) = U(x, y).$$

(That is, the field U(x, y) is periodic in both x and y.)

3. From general solution to PDE:

Suppose the functions presented below are the general solution to *some* PDE. Write down the relevant PDE:

(a) U(x, y) = f(ax + by).

By the chain rule $U_x = af'(ax+by); \qquad U_y = bf'(ax+by)$ Thence $bU_x = aU_y.$ (Or any equivalent form.)

(b) $U(x,t) = f(x^a t^b).$

By the chain rule

$$U_x = ax^{a-1}t^b f'(x^a t^b);$$
 $U_t = bx^a t^{b-1} f'(x^a t^b)$

Thence

$$bxU_x = atU_t.$$

(Or any equivalent form.)

4. Frobenius–Mayer systems:

[10 marks out of 100]

Consider, in 3 space dimensions, the special Frobenius–Mayer system:

$$\vec{\nabla}\Phi = \vec{v}(\vec{x}, \Phi).$$

(a) Write down the corresponding Frobenius integrability conditions.(Try to make them look as simple as possible.)

To match the notation of the lectures write this Frobenius–Mayer system as

$$\partial_i \Phi(x^m) = v_i(x^m, \Phi(x^m))$$

Evaluate the 2nd partial derivative:

$$\partial_j \partial_i \Phi(x^m) = \partial_j v_i(x^m, \Phi(x^m)) + \frac{\partial v_i(x^m, \Phi(x^m))}{\partial \Phi(x^m)} \partial_j \Phi(x^m)$$

Use the PDE:

$$\partial_j \partial_i \Phi(x^m) = \partial_j v_i(x^m, \Phi(x^m)) + \frac{\partial v_i(x^m, \Phi(x^m))}{\partial \Phi(x^m)} v_j(x^m, \Phi(x^m))$$

But partial derivatives commute, so (supressing arguments for clarity)

$$\partial_i v_j - \partial_j v_i + \frac{\partial v_i}{\partial \Phi} v_j - \frac{\partial v_j}{\partial \Phi} v_i = 0$$

Recaognize that these are just the curl and a vector cross product:

$$(\nabla \times \vec{v}) + \left(\frac{\partial \vec{v}}{\partial \Phi} \times \vec{v}\right) = 0.$$

(b) How many integrability conditions are there? (Careful!)

Three.

5. Very simple Euler equations:

[10 marks out of 100]

(a) Write down the general solution for the PDE $U_{xx} + U_{yy} = 0.$

By inspection U(x,y) = f(x+iy) + g(x-iy).(I told you to memorize this.)

(b) Write down the general solution for the PDE $c^2 U_{xx} - U_{tt} = 0.$

By inspection

$$U(x,t) = f(x+ct) + g(x-ct).$$

(I told you to memorize this.)

6. Euler type:

[10 marks out of 100]

Write down the Euler type (elliptic, parabolic, hyperbolic) for each of the following PDEs.

(a) $U_{xx} + 2U_{xy} + U_{yy} = 0.$

$$\det \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 0 \implies \text{Parabolic.}$$

(b) $U_{xx} + 4U_{xy} + U_{yy} = 0.$

$$\det \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = -3 < 0 \implies \text{Hyperbolic.}$$

(c) $U_{xx} + U_{xy} + U_{yy} = 0.$

$$\det \left[\begin{array}{cc} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{array} \right] = \frac{3}{4} > 0. \quad \Longrightarrow \quad \text{Elliptic.}$$

7. D'Alambert's solution:

Consider the function:

$$U(x,t) = \frac{1}{2}[f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) \, \mathrm{d}s.$$

(a) Evaluate U(x, 0):

$$U(x,0) = \frac{1}{2}[f(x+0) + f(x-0)] + \frac{1}{2c} \int_{x-0}^{x+0} g(s) \, \mathrm{d}s = f(x).$$

(b) Evaluate $U_t(x, 0)$:

$$U_t(x,t) = \partial_t \left[\frac{1}{2} [f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) \, \mathrm{d}s \right]$$

Chain rule
$$U_t(x,t) = \left[\frac{1}{2} c [f'(x+ct) - f'(x-ct)] + \frac{1}{2c} c [g(x+ct) + g(x-ct)] \right]$$
$$U_t(x,0) = \left[\frac{1}{2} c [f'(x+0) - f'(x-0)] + \frac{1}{2c} c [g(x+0) + g(x-0)] \right] = g(x)$$

That is
$$U_t(x,0) = g(x).$$

(c) Find (with a sketch proof) a differential equation that U(x,t) satisfies:

Re-write

$$U(x,t) = \frac{1}{2}[f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) \, \mathrm{d}s$$
as

$$U(x,t) = \left(\frac{1}{2}f(x+ct) + \frac{1}{2c} \int_{0}^{x+ct} g(s) \, \mathrm{d}s\right) + \left(\frac{1}{2}f(x-ct) + \frac{1}{2c} \int_{x-ct}^{0} g(s) \, \mathrm{d}s\right)$$

That is

$$U(x,t) = F(x+ct) + G(x-ct)$$

This makes it obvious that U(x,t) satisfies the wave equation.

(Or you could just brute force evaluate $U_{xx}(x,t)$ and $U_{tt}(x,t)$.)

8. Euler equation (variable coefficients):

What is special about the generalized variable-coefficient Euler PDE in 2 dimensions?

$$a(x,y) U_{xx} + 2h(x,y) U_{xy} + b(x,y) U_{yy} = F(x,y,U,U_x,U_y).$$

Give a complete list of the four simplified PDEs, (both the equations and the names), that can be obtained from this general form of the PDE by suitable changes of the coordinates.

$$\begin{array}{c} & One \mbox{ option:} & U_{\bar{x}\bar{x}} - U_{\bar{y}\bar{y}} = \tilde{F}(\bar{x}, \bar{y}, U, U_{\bar{x}}, U_{\bar{y}}). \\ & Wave \mbox{ equation with source.} \\ & One \mbox{ option:} & U_{\bar{x}\bar{x}} + U_{\bar{y}\bar{y}} = \tilde{F}(\bar{x}, \bar{y}, U, U_{\bar{x}}, U_{\bar{y}}). \\ & Laplace \mbox{ equation with source.} \\ & One \mbox{ option:} & U_{\bar{x}\bar{x}} = \tilde{F}(\bar{x}, \bar{y}, U, U_{\bar{x}}, U_{\bar{y}}). \\ & Parabolic \mbox{ equation with source.} \\ & One \mbox{ option:} & U_{\bar{x}\bar{x}} - \bar{x}U_{\bar{y}\bar{y}} = \tilde{F}(\bar{x}, \bar{y}, U, U_{\bar{x}}, U_{\bar{y}}). \\ & Tricomi \mbox{ equation with source.} \end{array}$$

9. Separation of variables:

Consider the so-called "telegrapher's equation":

$$u_{tt} = u_{xx} + \sigma u_x.$$

(This is used as a model for a wave equation with damping/friction.)

(The field u(x,t), and the separation constant, are most usefully taken to be complex.)

(a) Separate variables using the ansatz u(x,t) = X(x) T(t). What ODEs do X(x) and T(t) satisfy?

Use K for the separation constant,

(we will want to use the symbol k for other purposes).

Note: $(X(x)T(t))_{tt} = T''(t)X'(x); \quad (X(x)T(t))_{xx} = T(t)X''(x); \quad (X(x)T(t))_x = T(t)X'(x),$ The PDE becomes $T''X = TX'' + \sigma TX$ Divide by XT $\frac{T''}{T} = \frac{X'' + \sigma X'}{X} = K$ Two separated ODEs: $T'' = KT; \qquad X'' + \sigma X' = KX.$

(b) Solve the ODEs for X(x) and T(t). Do not impose any boundary conditions.

Hint: Use exponentials of complex numbers. Try $T(t) = \exp(i\omega t)$ and $X(x) = \exp(-ikx)$. Find $K(\omega)$ and K(k).

That is, evaluate the separation constant K in terms of the parameters ω and k.

$$K(\omega) = \frac{T''}{T} = \frac{(e^{i\omega t})''}{e^{i\omega t}} = -\omega^2.$$
$$K(k) = \frac{X'' + \sigma X'}{X} = \frac{(e^{-ikx})'' + \sigma(e^{-ikx})'}{e^{-ikx}} = -k^2 - ik\sigma = -k(k+i\sigma).$$

###