VICTORIA UNIVERSITY OF WELLINGTON SCHOOL OF MATHEMATICS AND STATISTICS Te Kura Mātai Tatauranga

MATH 301	PDEs	2024

Tutorial for week 2 — Euler PDEs

Set: Monday 4 March 2024

Due: Thursday 14 March 2024

1. Euler Equation: Elliptic/Parbolic/Hyperbolic

Determine the Euler type (i.e. elliptic, hyperbolic or parabolic) of each of the following PDEs, and obtain the general solution in each case:

a.
$$U_{xx} + 4U_{xy} + 4U_{yy} = 0$$

$$\underbrace{Solution:}_{det} \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} = 0. \text{ Therefore parabolic.}$$
Find roots of $1 + 4z + 4z^2 = 0$, that is $(1 + 2z)^2 = 0$.
Repeated root $z = -\frac{1}{2}$.
General solution is $U = F(x - \frac{1}{2}y) + (x + c) G(x - \frac{1}{2}y)$ for any $c \neq -\frac{1}{2}$.
Might as well take $c = 0$ so that $U = F(2x - y) + x G(2x - y)$.
Can always check by differentiating.
b. $U_{xx} + 2U_{xy} + U_{yy} = 0.$

$$\underbrace{Solution:}_{det} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 0. \text{ Therefore parabolic.}$$
Find roots of $1 + 2z + z^2 = 0$, that is $(1 + z)^2 = 0.$
Repeated root $z = -1.$
General solution is $U = F(x - y) + (x + c) G(x - y)$ for any $c \neq -1.$
Might as well take $c = 0$ so that $U = F(x - y) + x G(x - y).$
Can always check by differentiating.
c. $U_{xx} + 4U_{yy} = 0.$

$$\underbrace{Solution:}_{det} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} = 4 > 0. \text{ Therefore elliptic.}$$
Find roots of $1 + 0z + 4z^2 = 0$, that is $4z^2 = -1.$
Distinct complex roots $z = \pm \frac{i}{2}.$
General solution is $U = F(x + \frac{i}{2}y) + G(x - \frac{i}{2}y).$
Might as well rescale and take $U = F(2x + iy) + G(2x - iy).$

d. $4U_{xx} + 4U_{xy} + 4U_{yy} = 0.$ <u>Solution:</u> $det \begin{bmatrix} 4 & 2\\ 2 & 4 \end{bmatrix} = 12 > 0.$ Therefore elliptic. Find roots of $4 + 4z + 4z^2 = 0$, that is $1 + z + z^2 = 0.$ Distinct complex roots $z = -\frac{1}{2} \pm \frac{i\sqrt{3}}{2}.$ General solution is $U = F(x + [-\frac{1}{2} + \frac{i\sqrt{3}}{2}]y) + G(x + [-\frac{1}{2} - \frac{i\sqrt{3}}{2}]y).$ Might as well rescale and take $U = F(2x + [-1 + i\sqrt{3}]y) + G(2x + [-1 - i\sqrt{3}]y).$ Can always check by differentiating. e. $U_{yy} + 4U_{xy} + U_{xx} = 0.$ <u>Solution:</u> $det \begin{bmatrix} 1 & 2\\ 2 & 1 \end{bmatrix} = -3 < 0.$ Therefore hyperbolic. Find roots of $1 + 4z + z^2 = 0.$

Distinct real roots $z = -2 \pm \sqrt{3}$. General solution is $U = F(x + [-2 + \sqrt{3}]y) + G(x + [-2 - \sqrt{3}]y)$.

Can always check by differentiating.

2. Check that if u_1, \ldots, u_m are solutions of the heat equation $\sigma^2 u_{xx} = u_t$ for 0 < x < L and t > 0, with boundary conditions u(0,t) = u(L,t) = 0 for all t > 0, and c_1, \ldots, c_m are constants, then $u = c_1 u_1 + \cdots + c_m u_m$ also satisfies the equation and the BCs.

Solution:

Pretty much obvious.

The heat equation is 2^{nd} order *linear* and *homogeneous*.

Therefore, if the individual functions u_i satisfy the heat equation, then so does the arbitrary linear combination $u = c_1u_1 + \cdots + c_mu_m$.

Furthermore, note that the quoted boundary conditions are also *linear* and *homogeneous*. QED.