Victoria University of Wellington
School of Mathematics and Statistics
Te Kura Mātai Tatauranga

MATH 301
PDEs
2024

Tutorial for week 2 - Euler PDEs

Set: Monday 4 March 2024
Due: Thursday 14 March 2024

1. Euler Equation: Elliptic/Parbolic/Hyperbolic

Determine the Euler type (i.e. elliptic, hyperbolic or parabolic) of each of the following PDEs, and obtain the general solution in each case:
a. $U_{x x}+4 U_{x y}+4 U_{y y}=0$

Solution:

$\operatorname{det}\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]=0$. Therefore parabolic.
Find roots of $1+4 z+4 z^{2}=0$, that is $(1+2 z)^{2}=0$.
Repeated root $z=-\frac{1}{2}$.
General solution is $U=F\left(x-\frac{1}{2} y\right)+(x+c) G\left(x-\frac{1}{2} y\right)$ for any $c \neq-\frac{1}{2}$.
Might as well take $c=0$ so that $U=F(2 x-y)+x G(2 x-y)$.
Can always check by differentiating.
b. $U_{x x}+2 U_{x y}+U_{y y}=0$.

Solution:

$\operatorname{det}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=0$. Therefore parabolic.
Find roots of $1+2 z+z^{2}=0$, that is $(1+z)^{2}=0$.
Repeated root $z=-1$.
General solution is $U=F(x-y)+(x+c) G(x-y)$ for any $c \neq-1$.
Might as well take $c=0$ so that $U=F(x-y)+x G(x-y)$.
Can always check by differentiating.
c. $U_{x x}+4 U_{y y}=0$.

Solution:

$\operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]=4>0$. Therefore elliptic.
Find roots of $1+0 z+4 z^{2}=0$, that is $4 z^{2}=-1$.
Distinct complex roots $z= \pm \frac{i}{2}$.
General solution is $U=F\left(x+\frac{i}{2} y\right)+G\left(x-\frac{i}{2} y\right)$.
Might as well rescale and take $U=F(2 x+i y)+G(2 x-i y)$.
Can always check by differentiating.
d. $4 U_{x x}+4 U_{x y}+4 U_{y y}=0$.

Solution:

$\operatorname{det}\left[\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right]=12>0$. Therefore elliptic.
Find roots of $4+4 z+4 z^{2}=0$, that is $1+z+z^{2}=0$.
Distinct complex roots $z=-\frac{1}{2} \pm \frac{i \sqrt{3}}{2}$.
General solution is $U=F\left(x+\left[-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right] y\right)+G\left(x+\left[-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right] y\right)$.
Might as well rescale and take $U=F(2 x+[-1+i \sqrt{3}] y)+G(2 x+[-1-i \sqrt{3}] y)$.
Can always check by differentiating.
e. $U_{y y}+4 U_{x y}+U_{x x}=0$.

Solution:

$\operatorname{det}\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]=-3<0$. Therefore hyperbolic.
Find roots of $1+4 z+z^{2}=0$.
Distinct real roots $z=-2 \pm \sqrt{3}$.
General solution is $U=F(x+[-2+\sqrt{3}] y)+G(x+[-2-\sqrt{3}] y)$.
Can always check by differentiating.
2. Check that if u_{1}, \ldots, u_{m} are solutions of the heat equation $\sigma^{2} u_{x x}=u_{t}$ for $0<x<L$ and $t>0$, with boundary conditions $u(0, t)=u(L, t)=0$ for all $t>0$, and c_{1}, \ldots, c_{m} are constants, then $u=c_{1} u_{1}+\cdots+c_{m} u_{m}$ also satisfies the equation and the BCs.

Solution:

Pretty much obvious.
The heat equation is $2^{\text {nd }}$ order linear and homogeneous.
Therefore, if the individual functions u_{i} satisfy the heat equation, then so does the arbitrary linear combination $u=c_{1} u_{1}+\cdots+c_{m} u_{m}$.

Furthermore, note that the quoted boundary conditions are also linear and homogeneous.
QED.

