Victoria University of Wellington
School of Mathematics and Statistics
Te Kura Mātai Tatauranga

MATH 301
DIFFERENTIAL EQUATIONS

Tutorial Week 2: Partial Differential Equations - PDEs

Set: Monday 4 March 2024
Due: Thursday 7 March 2024

1. Determine the order of the following PDEs for a function U, Y, u, or v in terms of x, y or x, t. Decide if they are linear or not, and if so, whether they are homogeneous.
If nonlinear, decide whether or not they are quasi-linear.
(a) $U_{t}-U U_{x x}+12 x U_{x}=U$.

Solution: $2^{\text {nd }}$ order; non-linear; (homogeneity is meaningless); quasi-linear.
(b) $Y_{x x x}-\cos Y=Y_{t}$.

Solution: $3^{\text {rd }}$ order; nonlinear; (homogeneity is meaningless); quasi-linear.
(c) $Y_{x x}+\cos (x y) Y_{y x y}=Y+\ln \left(x^{2}+y^{3}\right)$.

Solution: $3^{\text {rd }}$ order; linear; non-homogeneous; (automatically quasi-linear).
(d) $u_{t t}-\alpha^{2} u_{x x}=\beta^{2} u_{x x t t}$.

Solution: $4^{\text {th }}$ order; linear; homogeneous; (automatically quasi-linear).
(e) $u_{x y}+\frac{\alpha u_{x}-\beta u_{y}}{x-y}=0$.

Solution: $2^{\text {nd }}$ order; linear; homogeneous; (automatically quasi-linear).
(f) $2 u_{t x}+u_{x} u_{x x}-u_{y y}=0$.

Solution: $2^{\text {nd }}$ order; non-linear; (homogeneity is meaningless); quasi-linear.
(g) $u_{x x}+\frac{c^{2} y^{2}}{c^{2}-y^{2}} u_{y y}+y u_{y}=0$.

Solution: $2^{\text {nd }}$ order; linear; homogeneous; (automatically quasi-linear).
(h) $u_{t}+u_{x}+u u_{x}-u_{x x t}=0$.

Solution: $3^{\text {rd }}$ order; non-linear; (homogeneity is meaningless); quasi-linear.
(i) $\partial_{t} \vec{v}+(\vec{v} \cdot \vec{\nabla}) \vec{v}=\nu \nabla^{2} \vec{v}$.

Solution: $2^{\text {nd }}$ order; non-linear; (homogeneity is meaningless); quasi-linear.
(j) $\vec{\nabla} \cdot \vec{v}=0$.

Solution: $1^{\text {st }}$ order; linear; homogeneous; (automatically quasi-linear).
2. Find general solutions $U(x, y)$ to the following PDEs:
(a) $\frac{\partial U}{\partial y}=\sin x y$.

Solution:

$$
U(x, y)=\int \sin (x y) d y+F(x)
$$

More specifically

$$
U(x, y)=\int_{0}^{y} \sin (x \bar{y}) d \bar{y}+F(x)=\frac{1-\cos (x y)}{x}+F(x)=-\frac{\cos (x y)}{x}+\tilde{F}(x)
$$

(b) $\frac{\partial U}{\partial x}+2 \frac{\partial U}{\partial y}=0 . \quad$ [Make an appropriate change of variable.]

Solution:

(Devious): Write this as $\vec{n} \cdot \nabla U=0$ wuth $\vec{n}=(1,2)$.
Note this means $(1,2) \perp\left(U_{x}, U_{y}\right)$.
Thence $(2,-1) \|\left(U_{x}, U_{y}\right)$ and so $U(x, y)=F(2 x-y)$.
(c) $U_{x y}=1$ [Does it matter which order you integrate?]

Solution:

First $U_{x}=\int 1 d y+f(x)=y+f(x)$.
Then $U=\int U_{x} d x=\int(y+f(x)) d x+G(y)=x y+F(x)+G(y)$.
The order in which you integrate does not matter.
3. Find general solutions $U(x, y)$ to the following PDEs:
(a) $U_{x y}=y U_{x}^{3}$.

Solution:

$$
\frac{\partial_{y}\left(U_{x}\right)}{U_{x}^{3}}=y ; \quad-\frac{1}{2 U_{x}^{2}}=\frac{y^{2}}{2}-\frac{f(x)}{2} ; \quad U_{x}^{2}=\frac{1}{f(x)-y^{2}}
$$

Thence

$$
U(x, y)=\int \frac{d x}{\sqrt{f(x)-y^{2}}}+G(y)
$$

(b) $U_{x y}=x y U_{y}$.

Solution:

$$
\begin{gathered}
\frac{\partial_{x}\left(U_{y}\right)}{U_{y}}=x y ; \quad \ln \left(U_{y}\right)=\int y x d x+F(y)=\frac{x^{2} y}{2}+F(y) ; \quad U_{y}=e^{F(y)} e^{x^{2} y / 2} . \\
U(x, y)=\int e^{F(y)} e^{\frac{1}{2} x^{2} y} d y+G(x)=\int \tilde{F}(y) e^{\frac{1}{2} x^{2} y} d y+G(x)
\end{gathered}
$$

Not much more can be done...
(c) $U_{x y}=y U_{y}+x^{3} y^{2}$.

Solution:

First write the PDE as

$$
\partial_{x}\left(U_{y}\right)=y U_{y}+x^{3} y^{2} .
$$

This is 1 st order linear ODE for U_{y}.
So you should try to guess an IF (integrating factor):

$$
\partial_{x}\left(e^{-x y} U_{y}\right)=e^{-x y} x^{3} y^{2} .
$$

Then

$$
\begin{gathered}
\left(e^{-x y} U_{y}\right)=\int e^{-x y} x^{3} y^{2} d x+f(y) \\
U_{y}=e^{x y}\left\{y^{2} \int e^{-x y} x^{3} d x+f(y)\right\} . \\
U=\int y^{2} e^{x y}\left[\int e^{-x y} x^{3} d x\right] d y+\int e^{x y} f(y) d y+G(x)
\end{gathered}
$$

This is (at least formally) the full answer...
To finish the job, integrate by parts (boring):

$$
U=-\frac{x^{3} y^{2}}{2}-3 x^{2} y-6 x \ln y+\frac{6}{y}+\int e^{x y} f(y) d y+G(x)
$$

(d) $U_{x}=U_{y}$.

Solution:

Note $(1,-1) \perp\left(U_{x}, U_{y}\right)$, so $(1,1) \|\left(U_{x}, U_{y}\right)$, so $U(x, y)=f(x+y)$.
4. Eliminate the arbitrary functions from the following and so obtain partial differential equations of which they are the general solution:
(a) $u=f(x+y)$.

Solution: We have

- $u_{x}=f^{\prime}(x+y)$
- $u_{y}=f^{\prime}(x+y)$
- Therefore $u_{x}=u_{y}$, which can also be written as $u_{x}-u_{y}=0$.
(b) $u=g(x y)$.

Solution: We have

- $u_{x}=y g^{\prime}(x y)$
- $u_{y}=x g^{\prime}(x y)$
- Therefore $x u_{x}=y u_{y}$, which can also be written as $x u_{x}-y u_{y}=0$.
(c) $u=f(x+y)+g(x-y)$.

Solution: We have

- $u_{x}=f^{\prime}(x+y)+g^{\prime}(x-y)$
- $u_{y}=f^{\prime}(x+y)-g^{\prime}(x-y)$
- $u_{x x}=f^{\prime \prime}(x+y)+g^{\prime \prime}(x-y)$
- $u_{y y}=f^{\prime \prime}(x+y)+g^{\prime \prime}(x-y)$
- Therefore $u_{x x}=u_{y y}$, which can also be written as $u_{x x}-u_{y y}=0$. (The wave equation.) (It turns out we do not need to know $u_{x y}$, but this is a bit of luck in this specific case...)
(d) $u=x^{n} h(y / x)$.

Solution:

- $u_{x}=n x^{n-1} h(y / x)-y x^{n-2} h^{\prime}(y / x)=n u / x-y x^{n-2} h^{\prime}(y / x)$
- $u_{y}=x^{n-1} h^{\prime}(y / x)$
- Therefore $u_{x}+(y / x) u_{y}=n u / x$, which can also be written as $x u_{x}+y u_{y}=n u$.
- Note that the differential equation is symmetric under the interchange of $x \leftrightarrow y$, but the general solution does not seem to have this symmetry? What is going on here?
- Rewrite $u=x^{n} h(y / x)=(x y)^{n / 2}(x / y)^{n / 2} h(x / y)=(x y)^{n / 2} \tilde{h}(x / y)$.

This makes the symmetry a little more obvious.

