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Te Kura Mātai Tatauranga

MATH 301 Partial Differential equations 2024

Week 4 Tutorial: Separation of variables

Reminder: In-term test on Tuesday 26 March at 12:00 noon...

1. Attempt to (partially) solve the following PDEs using separation of variables.

If possible, determine the resulting ODEs.

(Do not attempt to solve the ODEs, just find the variable-separated ODEs, if possible.)

• (a) xuxx + ut = 0;

Solution:

Set u(x, t) = X(x)T (t) so that uxx = X ′′T and ut = XT ′ giving

xX ′′T +XT ′ = 0, =⇒ xX ′′

X
= −T

′

T
= k.

Here k is the separation constant, since each side is a function of a different variable.

So we obtain the separated ODEs:

xX ′′ − kX = 0, T ′ + kT = 0.

Extra:

The ODE for T (t) has an easy solution T (t) = A exp(−kt).
The ODE for X(x) leads to Bessel functions...

• (b) tuxx + xut = 0;

Solution:

Set u(x, t) = X(x)T (t) so that uxx = X ′′T and ut = XT ′ giving

tX ′′T + xXT ′ = 0, =⇒ X ′′

xX
= −T

′

tT
= k.

Here k is the separation constant, since each side is a function of a different variable.

So we obtain the separated ODEs:

X ′′ − kxX = 0, T ′ + ktT = 0.

Extra:

These ODEs lead to Airy functions in both space and time directions...
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• (c) uxx + (x+ t)utt = 0.

Solution:

This one gives
X ′′T + xXT ′′ + tXT ′′ = 0.

Since it is not possible to reduce this to two terms, each of which factor into a function of
x times a function of t, separation is impossible.

The best you could do would be to divide by u = XT to get

X ′′

X
+ x

T ′′

T
+ t

T ′′

T
= 0.

But note the middle term still mixes x and t.

Separation of variables simply does not work for this specific PDE...

• (d) uxx + utt + xu = 0;

Solution:

Substituting U(x, t) = X(x)T (t) this one gives

X ′′T +XT ′′ + xXT = 0.

Divide by u = XT to get
X ′′

X
+
T ′′

T
+ x = 0.

Thence
X ′′

X
+ x = k = −T

′′

T
.

and
X ′′ = (k − x)X; T ′′ = −kT.

Extra:

The ODE for T (t) leads to T (t) = A exp(i
√
kt) +B exp(−i

√
kt).

The ODE for X(x) leads to shifted Airy functions... Use x̃ = x− k.

2. The heat equation for u(x, y, t) in two spatial dimensions has the form

σ2(uxx + uyy) = ut

If u(x, y, t) = X(x)Y (y)T (t) find ODEs for X(x), Y (y), and T (t).

(Do not attempt to solve the ODEs, just find the variable-separated ODEs.)

Solution:

We have uxx = X ′′Y T , uyy = XY ′′T , ut = XY T ′.

So
σ2(X ′′Y T +XY ′′T ) = XY T ′ =⇒ σ2(X ′′Y +XY ′′)T = XY T ′.
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By dividing by XY T we can first separate T to get

σ2(X ′′Y +XY ′′)

XY
=
T ′

T
= k.

Here the left-hand side is a function of x, y and the right-hand side of t hence they both must
be constant.

Now we have
σ2(X ′′Y +XY ′′)

XY
= k =⇒ σ2X ′′

X
+
σ2Y ′′

Y
= k.

But this means
σ2X ′′

X
= q1;

σ2Y ′′

Y
= q2; q1 + q2 = k.

Thence we have the 3 equations

σ2X ′′ − q1X = 0;

σ2Y ′′ − q2Y = 0;

T ′ − (q1 + q2)T = 0.

Extra:

The ODE for T (t) leads to T (t) = A exp([q1 + q2]t).

The ODE for X(x) leads to X(x) = B exp(
√
q1x) + C exp(−√q1x).

The ODE for Y (y) leads to Y (y) = D exp(
√
q2x) + E exp(−√q2x).

Consequently [before applying any boundary conditions]

u(x, y, t) =

∫ ∫
[B(q1, q2) exp(

√
q1x) + C(q1, q2) exp(−√q1x)]

[D(q1, q2) exp(
√
q2x) + E(q1, q2) exp(−√q2x)] exp([q1 + q2]t) dq1dq2.

3. Using separation of variables, find a solution to Laplace’s equation uxx+uyy = 0 on the rectangle
0 < x < a, 0 < y < b with Dirichlet boundary conditions:

u(0, y) = 0, u(a, y) = f(y), 0 < y < b;

u(x, 0) = g(x), u(x, b) = 0, 0 ≤ x ≤ a.

Note two edges are non-zero.
Hint: Consider adding the solutions to 2 simpler problems.

3



Solution:

Consider these two simpler problems

u1(0, y) = 0, u1(a, y) = 0, 0 < y < b;

u1(x, 0) = g(x), u1(x, b) = 0, 0 ≤ x ≤ a;

and

u2(0, y) = 0, u2(a, y) = f(y), 0 < y < b;

u2(x, 0) = 0, u2(x, b) = 0, 0 ≤ x ≤ a;

and then consider
u(x, y) = u1(x, y) + u2(x, y).

Each of the 2 sub problems is “simple”.

Extra:

Using separation of variables, find a solution to Laplace’s equation uxx+uyy = 0 on the rectangle
0 < x < a, 0 < y < b with Dirichlet boundary conditions:

u(0, y) = j(y), u(a, y) = f(y), 0 < y < b;

u(x, 0) = g(x), u(x, b) = k(x), 0 ≤ x ≤ a.

Note all four edges are non-zero.

4. Using separation of variables, find the solution to Laplace’s equation in the semi-infinite strip
0 < x < a, y > 0 with boundary conditions

u(0, y) = 0, y > 0;

u(a, y) = 0, y > 0;

u(x, 0) = f(x), 0 ≤ x ≤ a;

lim
y→∞

u(x, y) = 0 0 < x < a.

Solution:

First try to separate variables:
U(x, y) = X(x)Y (y).

Then Laplace’s equation becomes

X ′′(x)Y (y) +X(x)Y ′′(y) = 0

Thence, dividing by X(x)Y (y) we have

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
= 0

Thence we have a separation constant

X ′′(x)

X(x)
= −k;

Y ′′(y)

Y (y)
= +k.

We have 3 possibilities: k < 0, k = 0, k > 0.
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• k < 0:

Then k = −b2 and X ′′(x) = b2X(x) so X(x) = A cosh(bx) +B sinh(bx);
but then the boundary conditions in x imply X(0) = 0 = X(b),
which in turn implies X(x) ≡ 0,
which is uninteresting.

• k = 0:

Then X ′′(x) = 0 so X(x) = A+Bx;
but then the boundary conditions in x imply X(0) = 0 = X(b),
which in turn implies X(x) ≡ 0,
which is uninteresting.

• k > 0:

Then k = +b2 and X ′′(x) = −b2X(x) so X(x) = A cos(bx) +B sin(bx);
but then the boundary conditions in x imply X(0) = 0 = X(b),
which in turn implies A = 0 and sin(ba) = 0,
so b = nπ/a and X(x) = B sin(nπx/a).

But now Y ′′(y) = +b2Y (y) with b > 0, so Y (y) = C exp(by) +D exp(−by);
but then the asymptotic boundary condition in y implies Y (∞) = 0,
which in turn implies C = 0.

At this stage we have

U(x, y) = X(x)Y (y) = B sin(nπx/a) D exp(−nπy/a).

Invoking linear superposition

U(x, y) =
∞∑
n=1

En sin(nπx/a) exp(−nπy/a).

This satisfies Laplace’s equation and the three homogeneous boundary conditions.

The only remaining condition is U(x, 0) = f(x) which implies

f(x) =
∞∑
n=1

En sin(nπx/a).

This in principle determines the En and we are done.
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