MATH301: Differential Equations
 Lesson 1: The transport equation

Dimitrios Mitsotakis
dimitrios.mitsotakis@vuw.ac.nz
School of Mathematics and Statistics
Victoria University of Wellington

Traveling waves

Definition: Traveling wave

A wave that travels without change in shape and speed. In abundance in nature:

- The light (in vacuum)
- Water waves in a straight channel with flat bottom
- Signals in optical fibers
- Waves in ultra-cold matter, plasma waves and more

Formula

A traveling wave that travels with constant speed c

- Changes location x with time t : Thus $u(t, x)$
- At $t=0$ has shape $f(x)$: Thus $u(0, x)=f(x)$
- Travels with constant speed c thus $u(t, x)=f(x-c t)$

The transport equation: The simplest wave equation

Take $u(t, x)=f(k)$, where $k=x-c t$ The,

$$
\begin{aligned}
u_{t}(t, x) & =\frac{\partial}{\partial t} u(t, x) \\
& =\frac{\partial}{\partial t} f(k) \\
\text { Chain rule } & =\frac{\partial k}{\partial t} \frac{\partial}{\partial k} f(k) \\
& =-c f^{\prime}(k)
\end{aligned}
$$

Because if you see $k=k(t, x)$ then

$$
\frac{\partial k}{\partial t}=-c
$$

The transport equation

Similarly $u(t, x)=f(k)$, where $k=x-c t$ The,

$$
\begin{aligned}
u_{x}(t, x) & =\frac{\partial}{\partial x} u(t, x) \\
& =\frac{\partial}{\partial x} f(k) \\
\text { Chain rule } & =\frac{\partial k}{\partial x} \frac{\partial}{\partial k} f(k) \\
& =f^{\prime}(k)
\end{aligned}
$$

Because if you see $k=k(t, x)$ then

$$
\frac{\partial k}{\partial x}=1
$$

The transport equation

Thus

$$
u_{t}(t, x)=-c f^{\prime}(k)=-c u_{x}(t, x),
$$

which means that any traveling wave satisfies the equation

$$
u_{t}+c u_{x}=0
$$

This is known as the (uniform) transport equation.

The transport equation

Initial value problem

Solve the Initial Value Problem

$$
u_{t}+2 u_{x}=0
$$

when

$$
u(0, x)=e^{-x^{2}}
$$

The solution is $u(t, x)=e^{-(x-2 t)^{2}}$.

The transport equation

- The lines $x=c t+k$ are called characteristic lines and are all parallel
- The $x-t$ diagram is called space-time diagram
- The solution $u(t, x)=f(x-c t)$ is constant along the lines $x-c t=k, k \in \mathbb{R}$
- The line passes starts at the point $(0, k)$ (at $t=0$ we have $x=k$).

General methodology for solving $u_{t}+c u_{x}=0$

- Define the characteristic line to be the line with slope c (whatever is in front of u_{x})
- This means that $x^{\prime}(t)=c$. Let the line also passing from $x(0)=k$ at $t=0$.
- Integrating we find $x(t)=c t+k$ the characteristic line
- We observe that

$$
\frac{d}{d t} u(t, x(t))=u_{t}(t, x(t))+c u_{x}(t, x(t))=0
$$

and thus the solution is constant along the characteristic line $x(t)=c t+k$

$$
u(t, x(t))=\text { constant }
$$

Why we need more wave equations?

- Transport equation is linear while waves in nature are nonlinear with small exceptions
- Waves are dispersive, i.e. waves of different height/wavelength propagate with different speed
- There are other phenomena such as decay and wave breaking we want to describe

Transport with Decay

Let $c>0, a>0$ constants and $u=u(t, x)$. We define the transport equation with decay as

$$
u_{t}+c u_{x}+a u=0
$$

Why? - Multiply with u both sides and integrate from $-\infty$ to $+\infty$ in space:

$$
\int_{-\infty}^{+\infty} u_{t} u d x+c \int_{-\infty}^{+\infty} u_{x} u d x=-a \int_{-\infty}^{+\infty} u^{2} d x<0
$$

The second integral is 0 :
$\int_{-\infty}^{+\infty} u_{x} u d x=\frac{1}{2} \int_{-\infty}^{+\infty}\left(u^{2}\right)_{x} d x=\left[u^{2}\right]_{-\infty}^{+\infty}=u^{2}(+\infty)-u^{2}(-\infty)=0-0$.
Thus, we get

$$
\frac{1}{2} \frac{d}{d t} \int_{-\infty}^{+\infty} u^{2} d x=-a \int_{-\infty}^{+\infty} u^{2} d x<0
$$

Transport with Decay

The function

$$
E(t)=\frac{1}{2} \frac{d}{d t} \int_{-\infty}^{+\infty} u^{2} d x
$$

is the total energy of the wave (here) and is decreasing (decaying). The larger the value of a the larger the decay it is.

Transport with Decay: Solution

Let

$$
u_{t}+c u_{x}+a u=0
$$

- We set $u(t, x)=v(t, k)$ where $k=x-c t$ as usual.
- We get $v_{t}+a v=0$ which is a first-order ODE
- We multiply with the integrating factor $e^{a t}$ and get

$$
\left(e^{a t} v\right)_{t}=0
$$

and thus

$$
v(t, k)=f(k) e^{-a t}
$$

- Back to the physical coordinates

$$
u(t, x)=f(x-c t) e^{-a t}
$$

