MATH301: Differential Equations Partial Differential Equations

Dimitrios Mitsotakis
dimitrios.mitsotakis@vuw.ac.nz
School of Mathematics and Statistics
Victoria University of Wellington

Nonlinear diffusion

Consider the Burger's equation

$$
u_{t}+u u_{x}=\gamma u_{x x}
$$

$\gamma>0$ is the diffusion coefficient.

- This equations does not have shock waves
- It has regularised shock waves as traveling waves
- dissipates the energy

Multiply Burger's equation with u and integrate to obtain

$$
E^{\prime}(u)=\frac{d}{d t} \frac{1}{2} \int_{-\infty}^{+\infty} u^{2} d x=-\gamma \int_{-\infty}^{+\infty} u_{x}^{2} d x<0
$$

This means that the energy $E(u)$ is decreasing.

traveling waves

Take

$$
u(t, x)=v(x-c t)
$$

Introduce new independent variable

$$
\xi=x-c t
$$

Then

$$
u_{t}=\frac{d}{d t} u(t, x)=\frac{d \xi}{d t} \frac{d}{d \xi} v(\xi)=-c v^{\prime}
$$

similarly

$$
u_{x}=\frac{d}{d x} u(t, x)=\frac{d \xi}{d x} \frac{d}{d \xi} v(\xi)=v^{\prime}
$$

and

$$
u_{x x}=v^{\prime \prime}
$$

traveling waves

Substitution into the Burger's equation implies

$$
-c v^{\prime}+v v^{\prime}=\gamma v^{\prime \prime}
$$

Integration with respect to ξ gives

$$
-c v+\frac{1}{2} v^{2}+k=\gamma v^{\prime}
$$

where k is the integration constant.
Physical solutions have $v^{\prime}(\xi) \rightarrow 0$ as $|\xi| \rightarrow \infty$ otherwise the solutions will have infinite energy! Thus taking $\xi \rightarrow \pi \infty$ to the first order ODE we get that

$$
\frac{1}{2} v_{ \pm \infty}^{2}-c v_{ \pm \infty}+k=0
$$

where

$$
\lim _{\xi \rightarrow \pm \infty} v(\xi)=v_{ \pm \infty}
$$

traveling waves

Solving the quadratic equation

$$
\frac{1}{2} v^{2}-c v+k=0
$$

we obtain that for $k<\frac{c^{2}}{2}$ we have two real roots

$$
v_{ \pm \infty}=c^{2} \pm \sqrt{c^{2}-2 k}
$$

Following the book of Olver we call $v_{+\infty}=a$ and $v_{-\infty}=b$. Then $c=\frac{1}{2}(a+b)$ and $k=\frac{1}{2} a b$. Then we write the 1st order ODE as

$$
2 \gamma \frac{d v}{d \xi}=(v-a)(v-b)
$$

traveling waves

$$
2 \gamma \frac{d v}{d \xi}=(v-a)(v-b)
$$

For bounded solutions we must require $a<v<b$ (we will see it in the next lines but also we want $v^{\prime}<0$)
We write the ODE as a separable ODE

$$
\int \frac{2 \gamma d v}{(v-a)(v-b)}=\int d \xi
$$

The first integral gives

$$
\int \frac{2 \gamma d v}{(v-a)(v-b)}=\frac{2 \gamma}{b-a} \log \left(\frac{b-v}{v-a}\right)
$$

and thus

$$
\frac{2 \gamma}{b-a} \log \left(\frac{b-v}{v-a}\right)=\xi+\delta
$$

where δ new integration constant.

traveling waves

Keeping δ arbitrary we solve for

$$
v(\xi)=\frac{a e^{(b-a)(\xi-\delta) /(2 \gamma)}+b}{e^{(b-a)(\xi-\delta) /(2 \gamma)}+1}
$$

and thus

$$
u(t, x)=\frac{a e^{(b-a)(x-c t-\delta) /(2 \gamma)}+b}{e^{(b-a)(x-c t-\delta) /(2 \gamma)}+1}
$$

Uniqueness

The traveling wave is unique (except for horizontal translations) meaning that for each $c>0$ there is only one traveling wave (perhaps translated horizontally due to $-\delta$).

traveling waves

For smaller values of γ the traveling wave becomes steeper but it will always remain smooth (differentiable)

Dispersive waves

For waves ω is the frequency, k the wave number then the phase (actual) speed is

$$
c=\frac{\omega}{k}
$$

This means that if

$$
\frac{d^{2} \omega}{d k^{2}} \neq 0
$$

then waves with different wavelength $(\lambda=2 \pi / k)$ travel with different speed.

Dispersive waves

Dispersive waves are waves that their speed depends on the wavelength (wavenumber or amplitude).

Dispersive waves

Consider the linearised KDV equation

$$
u_{t}+u_{x x x}=0
$$

and search for solutions of the form

$$
u(t, x)=A e^{i(k x-\omega t)}
$$

These are periodic, traveling waves (for example take the real part to get a sinus function).
Substitution into the LKDV we obtain

$$
-i \omega+(i k)^{3}=0
$$

or better

$$
\omega(k)=k^{3}
$$

The relationship between ω and k is called (linear) dispersion relationship. We can only estimate for linear waves.

Solitary waves - Solitons

Consider the KdV equation

$$
u_{t}+u u_{x}+u_{x x x}=0
$$

We will search for traveling waves of the form

$$
u(t, x)=v(\xi)=v(x-c t)
$$

where $\xi=x-$ ct for any $c>0$. By chain rule we have

$$
u_{t}=-c v^{\prime}, \quad u_{x}=v^{\prime}, \quad u_{x x x}=v^{\prime \prime \prime}
$$

and thus we get

$$
v^{\prime \prime \prime}+v v^{\prime}-c v^{\prime}=0
$$

Solitary waves - Solitons

Because solitary waves as described by J-S Russel have $u \rightarrow 0$ along with their derivatives as $|\xi| \rightarrow \pm \infty$, we get after integration

$$
v^{\prime \prime}+\frac{1}{2} v^{2}-c v=0
$$

We multiply with v^{\prime} and integrate again to obtain

$$
\frac{1}{2}\left(v^{\prime}\right)^{2}+\frac{1}{6} v^{3}-\frac{1}{2} c v^{2}=0
$$

Solving for v^{\prime} we get

$$
\frac{d v}{d \xi}=v \sqrt{c-\frac{1}{3} v}
$$

Solitary waves - Solitons

$$
\frac{d v}{d \xi}=v \sqrt{c-\frac{1}{3} v}
$$

Set

$$
w^{2}=c-\frac{1}{3} v
$$

we get $v^{\prime}=-6 w w^{\prime}$ and thus

$$
-6 w w^{\prime}=3\left(c-w^{2}\right) w
$$

or better

$$
\frac{w^{\prime}}{w^{2}-c}=\frac{1}{2}
$$

for $\xi<0$

Solitary waves - Solitons

$$
\frac{w^{\prime}}{w^{2}-c}=\frac{1}{2}
$$

Integration (simple fractions) gives

$$
\log \left(\frac{\sqrt{c}+w}{\sqrt{c}-w}\right)=\frac{1}{2}[\sqrt{c} \xi+\delta]
$$

Solving for w we obtain

$$
w=\sqrt{c} \frac{e^{\frac{1}{2}[\sqrt{c} \xi+\delta]}-1}{e^{\frac{1}{2}[\sqrt{c} \xi+\delta]}+1}=\sqrt{c} \tanh \left(\frac{1}{2}[\sqrt{c} \xi+\delta]\right)
$$

Since $v=3\left(c-w^{2}\right)$ and $\operatorname{sech}^{2}=1-\tanh ^{2}$ we have

$$
u(t, x)=v(x-c t)=3 c \operatorname{sech}^{2}\left[\frac{1}{2} \sqrt{c}(x-c t)+\delta\right]
$$

