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Nonlinear diffusion

Consider the Burger’s equation

ut + uux = γuxx

γ > 0 is the diffusion coefficient.
• This equations does not have shock waves
• It has regularised shock waves as traveling waves
• dissipates the energy

Multiply Burger’s equation with u and integrate to obtain

E′(u) =
d

dt

1

2

∫ +∞

−∞
u2 dx = −γ

∫ +∞

−∞
u2x dx < 0

This means that the energy E(u) is decreasing.

Dimitrios Mitsotakis (VUW) 2



traveling waves

Take
u(t, x) = v(x− ct)

Introduce new independent variable

ξ = x− ct

Then
ut =

d

dt
u(t, x) =

dξ

dt

d

dξ
v(ξ) = −cv′

similarly

ux =
d

dx
u(t, x) =

dξ

dx

d

dξ
v(ξ) = v′

and
uxx = v′′
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traveling waves
Substitution into the Burger’s equation implies

−cv′ + vv′ = γv′′

Integration with respect to ξ gives

−cv +
1

2
v2 + k = γv′

where k is the integration constant.
Physical solutions have v′(ξ) → 0 as |ξ| → ∞ otherwise the solutions will
have infinite energy! Thus taking ξ → π∞ to the first order ODE we get
that

1

2
v2±∞ − cv±∞ + k = 0

where
lim

ξ→±∞
v(ξ) = v±∞
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traveling waves

Solving the quadratic equation

1

2
v2 − cv + k = 0

we obtain that for k < c2

2 we have two real roots

v±∞ = c2 ±
√

c2 − 2k

Following the book of Olver we call v+∞ = a and v−∞ = b. Then
c = 1

2(a+ b) and k = 1
2ab. Then we write the 1st order ODE as

2γ
dv

dξ
= (v − a)(v − b)
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traveling waves

2γ
dv

dξ
= (v − a)(v − b)

For bounded solutions we must require a < v < b (we will see it in the next
lines but also we want v′ < 0)
We write the ODE as a separable ODE∫

2γdv

(v − a)(v − b)
=

∫
dξ

The first integral gives∫
2γdv

(v − a)(v − b)
=

2γ

b− a
log

(
b− v

v − a

)
and thus

2γ

b− a
log

(
b− v

v − a

)
= ξ + δ

where δ new integration constant.
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traveling waves

Keeping δ arbitrary we solve for

v(ξ) =
ae(b−a)(ξ−δ)/(2γ) + b

e(b−a)(ξ−δ)/(2γ) + 1
,

and thus

u(t, x) =
ae(b−a)(x−ct−δ)/(2γ) + b

e(b−a)(x−ct−δ)/(2γ) + 1
.

Uniqueness

The traveling wave is unique (except for horizontal translations) meaning
that for each c > 0 there is only one traveling wave (perhaps translated
horizontally due to −δ).
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traveling waves

8.4 Nonlinear Diffusion 317

γ = .25 γ = .1 γ = .025

Figure 8.5. Traveling-wave solutions to Burgers’ equation.
⊎

and recalling (8.73), we conclude that the bounded traveling-wave solutions to Burgers’
equation all have the explicit form

u(t, x) =
ae(b−a)(x−ct−δ)/(2γ) + b

e(b−a)(x−ct−δ)/(2γ) + 1
, (8.74)

where a < b and δ are arbitrary constants. Observe that our solution is a monotonically
decreasing function of x, with asymptotic values

lim
x→−∞

u(t, x) = b, lim
x→∞

u(t, x) = a,

at large distances. The wave travels to the right, unchanged in form, with speed c = 1
2 (a+b)

equal to the average of its asymptotic values. In particular, if a = −b, the result is a
stationary-wave solution. In Figure 8.5 we graph sample profiles, corresponding to a = .1,
b = 1, for three different values of the diffusion coefficient. Note that the smaller γ is, the
sharper the transition layer between the two asymptotic values of the solution.

In the inviscid limit as the diffusion becomes vanishingly small, γ → 0, the traveling-
wave solutions (8.74) converge to the step shock-wave solutions (2.51) of the nonlinear
transport equation. Indeed, this can be proved to hold in general: as γ → 0, solutions to
Burgers’ equation (8.70) converge to the corresponding solutions to the nonlinear transport
equation (2.31) that are subject to the Rankine–Hugoniot and entropy conditions (2.53, 55).
Thus, the method of vanishing viscosity allows one to monitor solutions to the nonlinear
transport equation as they evolve into regimes where multiple shocks interact and merge.
This approach also reconfirms our physical intuition, in that most physical systems retain
a very small dissipative component that serves to mollify abrupt discontinuities that might
appear in a theoretical model that fails to take friction or viscous effects into account. In
the modern theory of partial differential equations, the resulting viscosity solution method
has been successfully used to characterize the discontinuous solutions to a broad range of
inviscid nonlinear wave equations as limits of classical solutions to a viscously regularized
system. We refer the interested reader to [64, 107, 122] for further details.

The Hopf–Cole Transformation

By a remarkable stroke of good fortune, the nonlinear Burgers’ equation can be con-
verted into the linear heat equation and thereby explicitly solved. The transformation
that linearizes the nonlinear Burgers’ equation first appeared in an obscure exercise in a
nineteenth-century differential equations textbook, [41; vol. 6, p. 102]. Its rediscovery by

For smaller values of γ the traveling wave becomes steeper but it will
always remain smooth (differentiable)
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Dispersive waves

For waves ω is the frequency, k the wave number then the phase (actual)
speed is

c =
ω

k

This means that if
d2ω

dk2
̸= 0

then waves with different wavelength (λ = 2π/k) travel with different
speed.

Dispersive waves
Dispersive waves are waves that their speed depends on the wavelength
(wavenumber or amplitude).
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Dispersive waves
Consider the linearised KDV equation

ut + uxxx = 0

and search for solutions of the form

u(t, x) = Aei(kx−ωt)

These are periodic, traveling waves (for example take the real part to get a
sinus function).
Substitution into the LKDV we obtain

−iω + (ik)3 = 0

or better
ω(k) = k3

The relationship between ω and k is called (linear) dispersion relationship.
We can only estimate for linear waves.
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Solitary waves - Solitons

Consider the KdV equation

ut + uux + uxxx = 0

We will search for traveling waves of the form

u(t, x) = v(ξ) = v(x− ct)

where ξ = x− ct for any c > 0. By chain rule we have

ut = −cv′, ux = v′, uxxx = v′′′

and thus we get
v′′′ + vv′ − cv′ = 0
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Solitary waves - Solitons

Because solitary waves as described by J-S Russel have u → 0 along with
their derivatives as |ξ| → ±∞, we get after integration

v′′ +
1

2
v2 − cv = 0

We multiply with v′ and integrate again to obtain

1

2
(v′)2 +

1

6
v3 − 1

2
cv2 = 0

Solving for v′ we get
dv

dξ
= v

√
c− 1

3
v
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Solitary waves - Solitons

dv

dξ
= v

√
c− 1

3
v

Set
w2 = c− 1

3
v

we get v′ = −6ww′ and thus

−6ww′ = 3(c− w2)w

or better
w′

w2 − c
=

1

2

for ξ < 0
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Solitary waves - Solitons

w′

w2 − c
=

1

2

Integration (simple fractions) gives

log

(√
c+ w√
c− w

)
=

1

2

[√
cξ + δ

]
Solving for w we obtain

w =
√
c
e

1
2 [
√
cξ+δ] − 1

e
1
2 [
√
cξ+δ] + 1

=
√
c tanh

(
1

2

[√
cξ + δ

])
Since v = 3(c− w2) and sech2 = 1− tanh2 we have

u(t, x) = v(x− ct) = 3c sech2
[
1

2

√
c(x− ct) + δ

]
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