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Nonlinear diffusion

Consider the Burger's equation

Ut + UlUy = YUzy

~v > 0 is the diffusion coefficient.
® This equations does not have shock waves
® |t has regularised shock waves as traveling waves
e dissipates the energy

Multiply Burger's equation with u and integrate to obtain

E'(u) = dl/Jrooude—— /+oou2dx<0
T a2 -7 .

—00 —00

This means that the energy E(u) is decreasing.
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traveling waves

Take
u(t,x) = v(x — ct)

Introduce new independent variable

E=xz—ct
Then p it d
—_ - 2 — — !
up = dtu(t,x) 0t dgv(f) cv
similarly
_d d¢ d oy
Uz = —u(t, z) %d—gv(f) v
and
Uy = V"
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traveling waves

Substitution into the Burger's equation implies
—cv + v = 'yv"

Integration with respect to & gives

1
—cv + 51)2 +k=

where k is the integration constant.

Physical solutions have v/(§) — 0 as || — oo otherwise the solutions will
have infinite energy! Thus taking & — moo to the first order ODE we get
that )

5”:2too — U0+ k=0

where

li =
Hp, V() = v
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traveling waves

Solving the quadratic equation

1
§v2—cv+k‘:O

. 2
we obtain that for k& < T we have two real roots

Voo = 2 /2 — 2k

Following the book of Olver we call v, = a and v_o, =b. Then
¢ = 3(a+b) and k = Jab. Then we write the st order ODE as

273—2 — (v—a)(vw—b)
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traveling waves

dv

Dy —

7d§

For bounded solutions we must require a < v < b (we will see it in the next

lines but also we want v < 0)
We write the ODE as a separable ODE

2vdv _
/(v—a)(v—b) _/d§
The first integral gives

/(v —2;;?;}—1)) - b2—7a log (3:21)

b—a v—a

where § new integration constant.
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traveling waves

Keeping ¢ arbitrary we solve for

aeb-a)(E=0)/(2) L p
cb-a)(E0)/) 1

v =

and thus
aeb—a)(z—ct=8)/(27) 4

elb—a)(w—ct=06)/(2v) 41 °

Uniqueness

The traveling wave is unique (except for horizontal translations) meaning
that for each ¢ > 0 there is only one traveling wave (perhaps translated
horizontally due to —9).

u(t,z) =
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traveling waves

N\

v =.25 v=.1 v =.025

For smaller values of v the traveling wave becomes steeper but it will
always remain smooth (differentiable)
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Dispersive waves

For waves w is the frequency, k the wave number then the phase (actual)
speed is
L w
‘=%
This means that if 2
w
a7’

then waves with different wavelength (A = 27 /k) travel with different
speed.

Dispersive waves

Dispersive waves are waves that their speed depends on the wavelength
(wavenumber or amplitude).
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Dispersive waves
Consider the linearised KDV equation

Ut + Ugge = 0
and search for solutions of the form
u(t, l‘) — Aei(k:rfwt)

These are periodic, traveling waves (for example take the real part to get a
sinus function).
Substitution into the LKDV we obtain

—iw + (ik)®> =0

or better
wk) = k3

The relationship between w and k is called (linear) dispersion relationship.
We can only estimate for linear waves.
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Solitary waves - Solitons

Consider the KdV equation
Ut + Uly + Ugypy =0
We will search for traveling waves of the form
u(t,z) =v(&) =v(z — ct)
where £ = x — ct for any ¢ > 0. By chain rule we have

/

/ "
Ut = —Cv, Uy = VU, Ugzy = U

and thus we get
V" o — e =0
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Solitary waves - Solitons

Because solitary waves as described by J-S Russel have u — 0 along with
their derivatives as |{| — £o00, we get after integration

1
v”—i—ivz—cv:O

We multiply with v/ and integrate again to obtain

1 1 1
5(U/)z n 6U3 5Cvz —0
Solving for v" we get
dv 1
— =wvi/c— v
dé 3
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Solitary waves - Solitons

dv 1
— =uv\/c— v
dé 3
Set 1
w? =c¢— 3?
we get v/ = —6ww’ and thus
—6ww’ = 3(c — w?)w
or better
w1
w2 —c 2
for £ <0
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Solitary waves - Solitons

w’ 1

w2 —c 2
Integration (simple fractions) gives

1og(£fw> = % (Vg + 6]

Solving for w we obtain

e% [\/Ef+6] —1

1
CW = +/c tanh <§ [\/Ef + 6])

Since v = 3(c — w?) and sech? = 1 — tanh? we have
1
u(t,z) = v(z — ct) = 3¢ sech? [5\/5(33 —ct) + 5}
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