Due Date: Friday 10th September before 5pm.

1. Find the general solution $u(t, x)$ to the following PDEs:
(a) $\frac{\partial^{2} u}{\partial t^{2}}=0$
(b) $u_{x}+t u=0$
2. Solve the PDE $u_{t}+2 t x^{2} u_{x}=0$.
3. Give the order and classify the following equations as (i) homogeneous linear, (ii) inhomogeneous linear, or (iii) nonlinear:
(a) $u_{t}+u u_{x}=3 u$
(b) $u_{x}\left(1-u_{x}^{2}\right)^{-1 / 2}+u_{y}\left(1+u_{y}^{2}\right)^{-1 / 2}$
(c) $u_{x x x}-\cos u=u_{t}$
(d) $\nabla \cdot u=0$
(e) $u_{x x} u_{y y}-u_{x y}^{2}=0$
4. (a) Find the general solution to the PDE $u_{t}+\frac{3}{2} u_{x}=0$
(b) Find a specific solution with the initial condition $u(0, x)=\sin x$. Is your solution unique?
5. Consider the initial value problem

$$
\begin{gathered}
u_{t}+u u_{x}=0, \quad x \in \mathbb{R} \quad t>0 \\
u(x, 0)=e^{-x^{2}}, \quad x \in \mathbb{R}
\end{gathered}
$$

Sketch the characteristic diagram and find the point $\left(x_{b}, t_{b}\right)$ in space-time where the wave breaks.
6. By writing $v=u_{y}$, solve the equation $3 u_{y}+u_{x y}=0$ subject to the condition $u_{x}(0, y)=1$ and $u(x, 0)=x$.
7. Find the linear dispersion relation of the Benjamin-Bona-Mahony (BBM) equation

$$
u_{t}+u_{x}+u u_{x}-u_{x x t}=0, \quad x \in(-\infty,+\infty)
$$

Prove that the solution of the $B B M$ equation given any initial condition $u(0, x)=u_{0}(x)$ preserve the following quantities (functionals):

$$
\begin{gathered}
M(t ; u)=\int_{-\infty}^{\infty} u(t, x) d x \\
I(t ; u)=\int_{-\infty}^{\infty} u^{2}(t, x)+u_{x}^{2}(t, x) d x \quad \text { (Mass) } \\
E(t ; u)=\int_{-\infty}^{\infty} u^{2}(t, x)+\frac{1}{3} u_{x}^{3}(t, x) d x \quad \text { (Energy) }
\end{gathered}
$$

Find an analytical formula for the solitary waves solution of the BBM equation that travels with constant speed $c_{s}>0$.

