MATH 301

Due Date: Friday 10th September before 5pm.

1. Find the general solution u(t, x) to the following PDEs:

(a)
$$\frac{\partial^2 u}{\partial t^2} = 0$$

(b) $u_x + tu = 0$

- 2. Solve the PDE $u_t + 2tx^2u_x = 0$.
- 3. Give the order and classify the following equations as (i) homogeneous linear, (ii) inhomogeneous linear, or (iii) nonlinear:

(a)
$$u_t + uu_x = 3u$$

(b) $u_x(1 - u_x^2)^{-1/2} + u_y(1 + u_y^2)^{-1/2}$

(c)
$$u_{xxx} - \cos u = u_t$$

(d) $\nabla \cdot u = 0$

(e)
$$u_{xx}u_{yy} - u_{xy}^2 = 0$$

- 4. (a) Find the general solution to the PDE $u_t + \frac{3}{2}u_x = 0$
 - (b) Find a specific solution with the initial condition $u(0, x) = \sin x$. Is your solution unique?
- 5. Consider the initial value problem

$$u_t + uu_x = 0, \quad x \in \mathbb{R} \quad t > 0,$$
$$u(x, 0) = e^{-x^2}, \quad x \in \mathbb{R}.$$

Sketch the characteristic diagram and find the point (x_b, t_b) in space-time where the wave breaks.

- 6. By writing $v = u_y$, solve the equation $3u_y + u_{xy} = 0$ subject to the condition $u_x(0, y) = 1$ and u(x, 0) = x.
- 7. Find the linear dispersion relation of the Benjamin-Bona-Mahony (BBM) equation

$$u_t + u_x + uu_x - u_{xxt} = 0, \qquad x \in (-\infty, +\infty) .$$

Prove that the solution of the *BBM* equation given any initial condition $u(0, x) = u_0(x)$ preserve the following quantities (functionals):

$$\begin{split} M(t;u) &= \int_{-\infty}^{\infty} u(t,x) \ dx \qquad \text{(Mass)} \\ I(t;u) &= \int_{-\infty}^{\infty} u^2(t,x) + u_x^2(t,x) \ dx \qquad \text{(Impulse)} \\ E(t;u) &= \int_{-\infty}^{\infty} u^2(t,x) + \frac{1}{3}u_x^3(t,x) \ dx \qquad \text{(Energy)} \end{split}$$

Find an analytical formula for the solitary waves solution of the BBM equation that travels with constant speed $c_s > 0$.

MATH 301

Assignment 3

Page 1 of 1