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Chapter 1

Introduction

• Math 301, Partial Differential Equations, PDEs

• Version: Autumn 2024. (Draft.)

• Part 1 of the course consists of a brief introduction to PDEs.

• Part 2 will cover a few more specialized topics.

• PDEs are one of the most useful tools of applied mathematics and
mathematical physics. If you intend to continue studying in either of
these fields, get used to working with PDEs — they are ubiquitous.

• PDEs are also central to mathematical finance, where they underlie
(for instance) the Black–Scholes theory for the pricing of stock market
options and [financial] derivatives.

• This set of notes is rather roughly based on an older collection of notes
originally provided some 25 years ago by Dr Chris Grigson; with various
modifications due to Professor Mark McGuinness, and myself.

• Updates, LaTeX conversion, corrections, and extensive additions have
been made by Matt Visser.

• Modern textbook (for background reference):
Peter J Olver,
Introduction to Partial Differential Equations,
Springer.

• These lectures correspond very roughly to Chapters 1 to 4 of Olver.

• Note:
ODE = Ordinary Differential Equation;
PDE = Partial Differential Equation.
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In addition to the “official” textbook, and this set of notes, there are many
other books you can look at for additional background material, ideas, and
examples. A traditional textbook is:

• Boyce and DiPrima,
Elementary Differential Equations and Boundary Value Problems,
Seventh edition.
These lecture notes correspond very roughly to Chapter 10:
Partial differential equations and Fourier series.

Other good solid textbooks include:

• Erwin Kreyszig,
“Advanced engineering mathematics”.

• Stanley Farlow,
“Partial differential equations for scientists and engineers”.

• Ronald Guenther and John Lee,
“Partial differential equations of mathematical physics and integral
equations”.

• Carl Bender and Steven Orszag,
“Advanced mathematical methods for scientists and engineers”.

• Ray Wylie and Louis Barrett,
“Advanced engineering mathematics”.

• Dennis Zill and Michael Cullen,
“Differential equations with boundary value problems”.

• Kent Nagle and Edward Saff,
“Fundamentals of differential equations”.

• Yehuda Pinchover and Jacob Rubinstein,
“An introduction to partial differential equations”.

• S. L. Sobelov,
“Partial differential equations of mathematical physics”.

• E. C. Zachmanoglou and Dale Thoe,
“Introduction to partial differential equations with applications”.

• K. F. Riley, M. P. Hobson, and S. J. Bence,
“Mathematical methods for physics and engineering”.

• Walter Strauss,
“Partial differential equations: An introduction”.

• Robert Borrelli and Courtney Coleman,
“Differential equations: A modelling perspective”.
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• Polyanin’s “handbook” series:

– Andrei Polyanin and Valentin Zaitsev,
“Exact solutions for ordinary differential equations”.

– Andrei Polyanin and Valentin Zaitsev,
“Nonlinear partial differential equations”.

– Andrei Polyanin,
“Linear partial differential equations for scientists and engineers”.

– Andrei Polyanin, Valentin Zaitsev, and A. Moussiaux,
“First order partial differential equations”.

• In addition, Google can quite easily direct you to lots of online notes
on PDEs — almost all of very high quality.

• This is also a topic on which Wikipedia is reasonably trustworthy.

• See for instance:

– http://en.wikipedia.org/wiki/Partial_differential_equation

– http://en.wikipedia.org/wiki/First_order_partial_differential_

equation

– http://en.wikipedia.org/wiki/Separable_partial_differential_

equation

– http://en.wikipedia.org/wiki/Separation_of_variables

– http://en.wikipedia.org/wiki/Method_of_characteristics

– http://en.wikipedia.org/wiki/Fourier_series

– http://en.wikipedia.org/wiki/Convergence_of_Fourier_series

——VUW——
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Chapter 2

Fundamentals

2.1 Basic definition of a PDE

Definition 1 PDEs:
A partial differential equation (PDE) is an equation involving one or more
unknown functions, (the “fields”), of two or more independent variables,
(“position” and possibly “time”), and the derivatives of the unknown func-
tions with respect to the independent variables.

2.2 Variables (independent and dependent)

• For simplicity we shall generally consider there to be two independent
variables, denoted either by x and y, by t and x, (sometimes [rarely]
by x1 and x2), or by x1 and x2.

• In differential geometry and most of theoretical physics it is typically
most common to use superscripts to denote the different independent
variables, x1 and x2.

• A potential problem with this convention is that you then you have to
be careful to not get confused with exponents.

That is: x2 6= (x)2 ! (2.1)
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• Nevertheless the superscript convention is so well established [in both
applied mathematics and theoretical physics] that I will consistently
adopt it throughout these notes. So get used to seeing things like x1

and x2.

• Notation such as x1 and x2 is to be discouraged.
(You might sometimes still see such notation — just don’t copy it.)

• The generalization of results and methods to more than two indepen-
dent variables will be “straightforward” and is left to you.

• (Actually “straightforward” is a “code word” that you should learn to
recognize — it means that extensions to more than two dimensions are
in principle easy but in practice can turn quickly into computational
nightmares.)

• This means that almost everything we will be doing is either in (1 + 1)
dimensions [one space dimension, plus one time dimension] or in two
space dimensions — (2 + 0) dimensions if you want to be difficult.

• Some constructions and techniques do depend specifically on the num-
ber of dimensions — watch out; I’ll try to give you appropriate warn-
ings.

• There are some features of (3 + 1) dimensions [three space dimensions,
plus one time dimension], the universe we live in, that are just not
adequately captured by the (1 + 1) dimensional simplification.

• In cases of high symmetry one can often reduce the effective number
of dimensions of the problem:

– Spherical symmetry in (3+1) dimensions
=⇒ everything depends on at most distance from the centre,
and perhaps on time,
=⇒ effectively (1+1) dimensions.

– Cylindrical symmetry in (3+1) dimensions
=⇒ everything depends on at most distance from the axis,
and perhaps on time,
=⇒ effectively (1+1) dimensions.

– Planar symmetry in (3+1) dimensions
=⇒ everything depends x and y but not z,
and perhaps on time,
=⇒ effectively (2+1) dimensions.

– Time independent in (3+1) dimensions
=⇒ effectively (3+0) = 3 dimensions.
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• We shall also [for many of these lectures, excluding the section on
Frobenius systems] assume there is only one dependent variable.
(In physics language, we are dealing with only one “field”; such as
pressure, or density, or displacement.)
We shall use any of the symbols U , u, V , v . . . to denote that variable.

• The generalization of results and methods to more than one dependent
variable will be “straightforward” and is left to you.

• (Notice that code word “straightforward” again. Be very afraid.)

• Physically, generalizing to more than one dependent variable would be
useful in situations such as:

– Electric and magnetic fields [the Maxwell equations], 6 “fields”,
in (3+1) dimensions.

– Einstein’s theory of gravity [the general relativity, where there are
10 inter-connected gravitational “potentials”], (3+1) dimensions.

– Fluid mechanics [where at a minimum you have to keep track of
both density and velocity].

Still, one step at a time, in this course we will mostly stick to one
dependent variable.

• Warning: you will soon se that the mathematical theory of (general)
PDEs is much less well-developed than the mathematical theory of
general ODEs.

• When it comes to PDEs, the mathematical situation is still pretty much
that we have a lot of information about a large number of special cases
— and relatively little information about truly general situations.
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2.3 Partial derivatives

There are many different notations used for partial derivatives.
Variously used, but completely equivalent, notations are:

D(0,1)U = D1U = DxU =
∂U

∂x
= ∂xU = Ux =

∂U

∂x1

=
∂U

∂x1
. (2.2)

D(1,0)U = D2U = DyU =
∂U

∂y
= ∂yU = Uy =

∂U

∂x2

=
∂U

∂x2
. (2.3)

D(1,1)U = D1D2U = DxDyU =
∂2U

∂x ∂y
= ∂x∂yU = Uxy (2.4)

=
∂2U

∂x1 ∂x2

=
∂2U

∂x1 ∂x2
. (2.5)

D(2,1)U = D2
1D2U = D2

xDyU =
∂3U

(∂x)2 ∂y
= ∂2

x∂yU = Uxxy (2.6)

=
∂3U

(∂x1)2 ∂x2

=
∂3U

(∂x1)2 ∂x2
. (2.7)

And so on. ...
Learn to recognize all of these variant notations.

I will try to standardize notation in this course to be as follows:

Ux = ∂xU =
∂U

∂x
. (2.8)

Uy = ∂yU =
∂U

∂y
. (2.9)

Uxy = ∂x∂yU =
∂2U

∂x ∂y
. (2.10)

Uxxy = ∂2
x∂yU =

∂3U

(∂x)2 ∂y
. (2.11)
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I will also sometimes use:

U,i = ∂iU =
∂U

∂xi
, (2.12)

especially when I have more than two independent variables to deal with.

These “standard” notations are the most common of the notations you are
likely to run into when reading books or scientific articles.

Notes:

1. So long as the function U(x, y) is Cs (meaning that all partial deriva-
tives up to order s exist and are continuous), then the sequence in
which you take the partial derivatives in an r-th order derivative, for
any r ≤ s, does not matter.

2. In the usual spirit of applied mathematics and theoretical physics, we
shall take all our functions to be smooth enough, in the sense that all
partial derivatives that we may happen to need will be assumed to exist
and to be continuous.

3. That is, for all practical purposes :

∂2U

∂x ∂y
=

∂2U

∂y ∂x
. (2.13)

2.4 Order

Definition 2 Order:
The order of a PDE is the highest order of differentiation appearing in the
PDE.
Do not confuse this with the degree of terms appearing in the equation.

• If we wish to refer to a general derivative of U of them-th order, without
regard to the precise variables that are being used in the differentiation,
we shall write U (m).
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• That is, U (m) stands generically for an m-th order derivative, and we
can write

F
(
x, y, U, U (1), U (2), ...., U (n)

)
= 0 (2.14)

as the general form of an n-th order PDE, with one dependent variable
U , and two independent variables x and y.

• Note that U (2) for instance could mean any (or all) of Uxx, Uxy, Uyy.

Definition 3 n-th order PDE:
An n-th order PDE is a relation of the form

F
(
x, y, U, U (1), ..., U (n)

)
= 0. (2.15)

Order is a statement about how many times you will need to differentiate
the dependent variable to even write down the PDE.

2.5 Linearity

Definition 4 Linear PDE:
An n-th order PDE,

F
(
x, y, U, U (1), ..., U (n)

)
= 0, (2.16)

is n-th order linear if it is of the form:

an(x, y) U (n) + an−1(x, y) U (n−1) + ...+ a0(x, y) U + b(x, y) = 0, (2.17)

with an(x, y) not identically zero.

If it is linear, then it is homogeneous if b(x, y) = 0.

Linearity is a statement about the manner in which the dependent field
U(x, y) appears in the PDE.
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Examples:

• The wave equation:
∂2U

∂t2
− ∂2U

∂x2
= 0 (2.18)

is a second-order linear homogeneous equation.

• The Klein–Gordon equation:

∂2U

∂t2
− ∂2U

∂x2
= m2U (2.19)

is a second-order linear homogeneous equation.

• The Sine–Gordon equation:

∂2U

∂t2
− ∂2U

∂x2
= sinU (2.20)

is a second-order non-linear equation.

• The Korteweg–deVries (KdV) equation:

∂3U

∂x3
+ 6U

∂U

∂x
+
∂U

∂t
= 0. (2.21)

This equation arises as one particular model for describing shallow
water waves.

It is a third-order non-linear PDE.

• Both KdV and SG have become very prominent as model equations for
analyzing problems involving solitary waves (solitons).

• Laplace’s equation:
∂2U

∂x2
+
∂2U

∂y2
= 0, (2.22)

is a second-order linear equation which is important in the descrip-
tion of many electrostatic and gravitational phenomena. (Newtonian
gravity that is, not general relativity.)

• The diffusion equation (heat equation):

∂2U

∂x2
− ∂U

∂t
= 0, (2.23)

is an important second-order linear equation which describes many
transfer problems, such as diffusion (gaseous or chemical) or heat trans-
fer.
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– The Boltzmann equation of statistical mechanics is an equation
of this type.

– The diffusion equation is also important in various “random walk”
models (“drunkard’s walk”), and underlies important financial
mathematics in the theory of financial derivative pricing — the
Black–Scholes differential equation is of this type.

– Similarly “genetic drift” in population dynamics is governed by
diffusion-type equations.

• The (free) Schroedinger equation:

∂2U

∂x2
− i∂U

∂t
= 0, (2.24)

is a complexified version of the diffusion equation. It is again second-
order, and linear, and homogeneous.

This equation underlies all of quantum physics, and a good hunk of
modern technology (in particular, all solid state electronics).

• The Maxwell equations of classical electromagnetism are coupled first-
order linear inhomogeneous PDEs in 6 dependent variables (the electric
and magnetic fields) and 4 independent variables (space + time).

• Linear PDEs are extremely useful, and quite a lot is known about them.

• Much less is known about general nonlinear PDEs.
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2.6 Quasi-linearity

Definition 5 Quasi-linear PDE:
An n-th order PDE,

F
(
x, y, U, U (1), ..., U (n)

)
= 0, (2.25)

is quasi-linear if it is linear in the n-th order derivatives.
(It is allowed to be nonlinear in lower-order derivatives, and even the

coefficients of the n-th order derivatives are allowed to depend on the lower-
order derivatives in a nonlinear manner).

That is, letting U
(n)
A denote the various possible n-th order derivatives, a

quasi-linear PDE is described by an equation of the form∑
A

CA(x, y, U, U (1), ..., U (n−1)) U
(n)
A +F̃

(
x, y, U, U (1), ..., U (n−1)

)
= 0, (2.26)

with the CA(x, y, U, U (1), ..., U (n−1)) not all identically zero.

Examples:

• First-order quasi-linear PDEs are of the form

α(x, y, U) ∂xU + β(x, y, U) ∂yU + γ(x, y, U) = 0. (2.27)

Quite a lot is still known about solving PDEs of this type.
(There is technique called the method of characteristics, which we will
at best only mention in this part of the course.)
Specific examples:

– xux + (x+ y)uy = u+ 1.

– xux + u4uy = u3.

• Second-order quasi-linear PDEs are of the form

a(x, y, U, Ux, Uy) Uxx + b(x, y, U, Ux, Uy) Uxy + c(x, y, U, Ux, Uy) Uyy

+d(x, y, U, Ux, Uy) = 0. (2.28)

We shall see these PDEs again later on in the course, and under a
different name.
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• The Sine–Gordon equation:

∂2U

∂t2
− ∂2U

∂x2
= sinU (2.29)

is a specific second-order quasi-linear equation.

• The quasi-linear Klein–Gordon equation

∂2U

∂t2
− ∂2U

∂x2
+m2 U = λ U3 (2.30)

is another commonly occurring second-order quasi-linear equation.

(Challenge: Find the exact plane wave solutions for this PDE,
and no, I am not talking about sine and cosine anymore...)

(Challenge: Relate this PDE to the Higgs particle occurring in the
standard model of particle physics.)

• Mathematicians now quite often talk about “f–Gordon equations” where

∂2U

∂t2
− ∂2U

∂x2
= f(x, t, U, Ux, Uy). (2.31)

Here f(x, t, U, Ux, Uy) is an arbitrary nonlinear function of its argu-
ments.

• The Korteweg–deVries (KdV) equation

∂3U

∂x3
+ 6U

∂U

∂x
+
∂U

∂t
= 0, (2.32)

is quasi-linear because the Uxxx term occurs linearly.

• Keeping the highest-order derivatives linear is sometimes enough to let
us prove useful theorems.

• Quite a lot (comparatively speaking) is known about quasi-linear PDEs.

• The Einstein equations of classical general relativity are second-order
quasi-linear PDEs in 10 dependent variables (the “metric” describing
the spacetime geometry) and 4 independent variables (space + time).
(General relativity is however nonlinear in the first-order derivatives
and non-linear in the metric components themselves.)

• PhD theses are still being written on (advanced) first-order systems of
PDEs.

• PhD theses are still being written on (advanced) second-order PDEs.
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2.7 Boundary conditions/Initial conditions

Many PDEs arise in problems for which, in addition to defining the PDE to
solve, there are naturally occurring conditions, called “boundary conditions”
(BC), [or sometimes “initial conditions” (IC)], that the solution must also
satisfy.

In many common specific cases, the PDEs and their associated BC and/or
IC can be classified into standard types (with names such as, “elliptic”,
“hyperbolic”, “parabolic”) for which the whole problem, PDE and associated
BC and/or IC, can be shown to have a unique solution.

The distinction between boundary conditions and initial conditions makes
sense only if you have a problem involving both space and time.

• Initial conditions provide constraints on the dependent variables at
some initial instant in time, throughout some region of space.

• Boundary conditions provide constraints on the dependent variables
at some place in space, throughout some interval of time.

• Radiation conditions provide constraints on the dependent variables
in terms of incoming [or outgoing] wave motion.

If you are into special or general relativity — Initial conditions are specified
on spacelike surfaces, boundary conditions are specified on timelike surfaces,
and radiation conditions are specified on lightlike surfaces [null surfaces].

And to add confusion, sometimes the phrase “boundary conditions” is
used indiscriminately to refer to all three types.

Suppose now we denote the boundary by the curve (x(s), y(s)), or more
generally the surface ~x(σ), and denote the normal derivative to the boundary
by ∂n. Standard terminology is:

• Normal derivative:
∂n = n̂ · ∇ (2.33)

• Dirichlet BC: The value of the dependent variable is specified on the
boundary:

U(~x(σ)) = f(σ). (2.34)

• Neumann BC: The value of the normal derivative of the dependent
variable is specified on the boundary:

∂nU(~x(σ)) = f(σ). (2.35)
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• Robin BC: Some linear combination of the dependent variable and
its normal derivative is specified on the boundary:

a(σ) U(~x(σ)) + b(σ) ∂nU(~x(σ)) = f(σ). (2.36)

There is a vast literature on solving equations of these types.
Look, for example, in:

• Courant, R. and D. Hilbert,
Methods of Mathematical Physics Vols 1 and 2.

I’ll have a lot more to say about these issues soon.

2.8 Exercises (On order, linearity, etc...)

Reminder:

• The order of a PDE is the order of the highest derivative appearing in
the equation.

• PDE is linear if it is of the first degree in the dependent variables and
their derivatives.

• A linear PDE is homogeneous if every term in its expression is linear
in the dependent variables and their derivatives.

• A PDE is quasi-linear if the highest-order “derivative part” is linear,
though the coefficients and the sub-leading terms are allowed to be
nonlinear.

• If a PDE is nonlinear the question of whether or not it is homogeneous
is best regarded as meaningless.
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Classify the following PDEs:

• By stating their order.

• By stating whether they are linear or not linear.

• If linear, classify then as to whether they are homogeneous or not.

• If nonlinear, classify then as to whether they are quasi-linear or not.

a. V 2 Vxy + Vx Vy + (x2 − y2)V = 3xy.

b. Uxxz − 2(x+ z)Uxyz − Uxx + sin(xyz)Uxx = cos(U)

c. Ut − UUxx + 12xUx = U .

d. Yxxx − cosY = Yt.

e. Vxt − sinV = exp(x+ t).

f. Yxx + cos(xy)Yyxy = Y + ln(x2 + y3).

g. Ut = Uxx − 12U Ux.

h. Vyx + Vx + Vy = Vxyy.

i. Utt − cos(Ux) = U .

j. cos x · Ux + sin t · Ut = U .

k. Schrodinger equation (with potential):

−i∂tψ =
1

2m
∇2ψ + V (x)ψ. (2.37)

l. Monge–Ampere equation (2 variable):

uxxuyy − u2
xy = f(x, y, u, ux, uy). (2.38)

m. Monge–Ampere equation (multi-variable):

det

[
∂2u

∂xi ∂xj

]
= f

(
xi, u,

∂u

∂xi

)
. (2.39)
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n. Navier–Stokes equation:

∂t~v + (~v · ~∇)~v =
~∇p
ρ

+ ν∇2~v. (2.40)

o. Tricomi equation:
y Uxx + Uyy = 0. (2.41)

p. Frobenius–Mayer equation (special case, one dependent variable):

∂U

∂xi
= Fi(x, U). (2.42)

(More on this PDE below.)

q. Biharmonic equation:
∇4Ψ = 0. (2.43)

That is, (∇2)2 Ψ = 0, or more explicitly:[
∂2
x + ∂2

y + ∂2
z

]2
Ψ = 0. (2.44)

r. Benjamin–Bona–Mahony equation:

ut + ux + uux − uxxt = 0. (2.45)

s. Chaplygin equation:

uxx +
c2 y2

c2 − y2
uyy + y uy = 0. (2.46)

t. Boissinesq equation:

utt − α2uxx = β2uxxtt. (2.47)

u. Euler–Darboux equation:

uxy +
α ux − β uy

x− y
= 0. (2.48)
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v. Korteweg–deVries–Burger equation:

ut + 2uux − ν uxx + µ uxxx = 0. (2.49)

w. Kirchever–Novikov equation:

ut
ux

=
1

4

uxxx
ux
− 3

8

u2
xx

u2
x

+
3

8

4u3 − g2u− g3

u2
x

. (2.50)

(Start by simplifying this a little.)

x. Lin–Tsien equation:

2utx + ux uxx − uyy = 0. (2.51)

y. Monge–Ampere equation (generalized):

E(x, y, U, Ux, Uy)
[
UxxUyy − U2

xy

]
+A(x, y, U, Ux, Uy) Uxx +B(x, y, U, Ux, Uy) Uxy + C(x, y, U, Ux, Uy) Uyy

+D(x, y, U, Ux, Uy) = 0, (2.52)

or even more generally (the multi-variable case):

E(xi, U, ∂iU) det

[
∂2U

∂xi ∂xj

]
+
∑
ij

Aij(xi, U, ∂iU) U,ij+D(xi, U, ∂iU) = 0.

(2.53)

z. Cauchy–Riemann equations:

∂u

∂x
=
∂v

∂y
; (2.54)

∂v

∂x
= −∂u

∂y
. (2.55)

Iterate these Cauchy–Riemann equations to find a pair of PDEs that
decouple — they depend only on u, and only on v, but not both.

——VUW——
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Chapter 3

General solutions

Unlike ODEs, the notion of a general solution of a PDE can get extremely
complicated, very quickly.

3.1 Definition

In these lectures, when the term “general solution” is used, it will be meant
in the following rather special sense:

Definition 6 General solution:

A solution U(x, y) of an n-th order PDE with a single dependent variable

F
(
x, y, U(x, y), U (1), U (2), ., ., ., U (n)

)
= 0 (3.1)

is a “general solution” if U depends on n arbitrary independent functions.

Warning 1 Note “independent functions” not “independent constants”.
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This is a direct extension of the notion of a general solution taken from the
case of ODEs:

• Recall that for an ODE, a general solution is a solution depending on
n independent constants: and recall that we arrived at this idea by
noting that, in principle, to solve an n-th order DE, we essentially need
to integrate n times — and each integration introduces an arbitrary
constant. The same applies of course to a PDE — to solve it, we
in principle must integrate n times, and each integration introduces a
function (rather than a constant). The examples below illustrate this
fact.

• When it comes to a general PDE, or general systems of PDEs, the
precise situation regarding a general solution can only be clearly stated
using the relatively sophisticated work of Riquier and Janet, (brief
comments in the next chapter). It is not appropriate to describe this
Riquier–Janet formalism in MATH 301.

Reminder 1
Even for ODEs, in the nonlinear case life is a lot more complicated than you
might at first suspect.

3.2 Examples

Here are some simple examples of “general solutions”:

1. The equation
∂U

∂x
= 0. (3.2)

Keep in mind what the partial derivative means — you are differenti-
ating U with respect to x, treating y as if it were constant. To regain
U , set:

U(x, y) = G(y) (3.3)

where G is an arbitrary “constant”, which, since y is considered to be an
independent constant, is allowed to be a different arbitrary “constant”
for each specific value of y. That is G(y) is generally a function of y.

You should then check this final result by differentiating.

Note that for the general solution of this particular 1st order PDE there
is manifestly one arbitrary function G(y).

25



2. The equation

∂U

∂x
= f(x, y), for some given f(x, y). (3.4)

Keep in mind what the partial derivative means — you are differenti-
ating U with respect to x, treating y as if it were constant. To regain
U , then it would seem that we should integrate with respect to x, again
keeping y constant:

U(x, y) =

∫
y constant

f(x, y) dx+G(y) (3.5)

where G is an arbitrary “constant”, which, since y is considered con-
stant, is allowed to be a different arbitrary “constant” for each specific
value of y. That is G(y) is generally a function of y.

Introducing the dummy variable x̄ we can make this general solution
more explicit as:

U(x, y) =

∫ x

x0

f(x̄, y) dx̄+G(y). (3.6)

You should then check this final result by differentiating.

Note that for the general solution of this particular 1st order PDE there
is manifestly one arbitrary function G(y).

3. The equation
∂U

∂x
+
∂U

∂y
= g(x, y), (3.7)

where g is a given function.

Here it will pay to change the independent variables, to new ones s, t
defined by

s = x+ y; t = x− y. (3.8)

So that

x =
s+ t

2
; y =

s− t
2

. (3.9)

But by the chain rule

∂

∂x
=
∂s

∂x

∂

∂s
+
∂t

∂x

∂

∂t
. (3.10)
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Then it is easy to show that

∂

∂x
=

∂

∂s
+
∂

∂t
; (3.11)

and similarly
∂

∂y
=

∂

∂s
− ∂

∂t
; (3.12)

or equivalently
∂

∂s
=

1

2

{
∂

∂x
+

∂

∂y

}
; (3.13)

∂

∂t
=

1

2

{
∂

∂x
− ∂

∂y

}
. (3.14)

Hence the original PDE is

∂U

∂s
=

1

2
g

(
s+ t

2
,
s− t

2

)
= G(s, t), (3.15)

which can now be solved in general as in the first example.

Doing so yields

U(s, t) =

∫
t constant

G(s, t) ds+H(t), (3.16)

which we first re-write (explicitly using the dummy variable s̄) as

U(s, t) =
1

2

∫ s

s0

g

(
s̄+ t

2
,
s̄− t

2

)
ds̄+H(t). (3.17)

Now follow this by a change of independent variables back to x and y
to produce our final answer:

U(x, y) =
1

2

∫ x+y

s0

g

(
s̄+ [x− y]

2
,
s̄− [x− y]

2

)
ds̄+H(x−y). (3.18)

You should then check this final result by differentiating.

Note that for the general solution of this particular 1st order PDE there
is manifestly one arbitrary function H(x− y).
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4. The equation
∂2U

∂x ∂y
= H(x, y), (3.19)

for a given function H(x, y).

Take the LHS to be
∂

∂x

[
∂U

∂y

]
, (3.20)

and proceed as in the first example, integrating with respect to x,
treating y as constant:

∂U

∂y
=

∫
y constant

H(x, y) dx+ g(y). (3.21)

where g is an arbitrary function.

Now integrate with respect to y, treating x as a constant:

U(x, y) =

∫
x constant

[∫
y constant

H(x, y) dx

]
dy +G(y) + F (x) (3.22)

where F is another arbitrary function, and G is the integral of g (and
so is an arbitrary function).

In terms of dummy variables x̄ and ȳ our general solution can be rewrit-
ten in the explicit form:

U(x, y) =

∫ y

y0

[∫ x

x0

H(x̄, ȳ) dx̄

]
dȳ +G(y) + F (x). (3.23)

You should then check this final result by differentiating.

Note that for the general solution of this particular 2nd order PDE there
are manifestly two arbitrary functions G(y) and F (x).

5. The equation
∂2U

(∂x)2
= H(x, y), (3.24)

for a given function H.

Note
∂2U

(∂x)2
=

∂

∂x

[
∂U

∂x

]
. (3.25)
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Proceeding as before, integrating [twice] with respect to x and keeping
y fixed, we find

U(x, y) =

∫
y constant

[∫
y constant

H(x, y) dx

]
dx+x G(y)+F (y), (3.26)

where G and F are arbitrary “constants”; but potentially different
constants for each value of y.

In terms of dummy variables, now x̄ and x̃, our general solution can be
rewritten in the explicit form:

U(x, y) =

∫ x

x0

[∫ x̃

x0

H(x̄, y) dx̄

]
dx̃+ x G(y) + F (y). (3.27)

You should then check this final result by differentiating.

Note that for the general solution of this particular 2nd order PDE there
are manifestly two arbitrary functions G(y) and F (y).

From these four examples the general pattern should be obvious.

Comment 1 Consider the general change of independent variables (that is,
the general two-dimensional change of coordinates):

(x, y)→ (u, v) = (u(x, y), v(x, y)) (3.28)

What happens to the partial derivatives? The general rule is this:

∂

∂x
=
∂u

∂x

∂

∂u
+
∂v

∂x

∂

∂v
;

∂

∂y
=
∂u

∂y

∂

∂u
+
∂v

∂y

∂

∂v
. (3.29)

This should be obvious — think of it as an application of the chain rule.
(That is, the multi-variable chain rule...)
Similarly if we consider the inverse transformation

(u, v)→ (x, y) = (x(u, v), y(u, v)) (3.30)

we see
∂

∂u
=
∂x

∂u

∂

∂x
+
∂y

∂u

∂

∂y
;

∂

∂v
=
∂x

∂v

∂

∂x
+
∂y

∂v

∂

∂y
. (3.31)
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Comment 2 You should also be prepared for notation such as

(x, y)→ (u, v) = (u(x, y), v(x, y)) (3.32)

∂x = (∂xu) ∂u + (∂xv) ∂v; ∂y = (∂yu) ∂u + (∂yv) ∂v. (3.33)

and
(u, v)→ (x, y) = (x(u, v), y(u, v)) (3.34)

∂u = (∂ux) ∂x + (∂uy) ∂y; ∂v = (∂vx) ∂x + (∂vy) ∂y. (3.35)

3.3 Exercises

Reminder:

• The general solution to an ODE of the n-th order contains n arbitrary
and independent constants. For PDEs the situation is much more com-
plicated, but nevertheless we will define a general solution of a single
PDE of the n-th order in a single unknown U as a solution involving
n arbitrary functions. This of course is not the best definition, but it
will do here.

• In the case of an ODE the general solution completely defines its corre-
sponding ODE in the sense that, given a function depending on n inde-
pendent and arbitrary constants, there should only be one n-th order
ODE which has that function as its general solution [to see this, recall
that we considered an ODE as a means of encoding all the derivatives
of its solution, the n arbitrary constants being the first few derivatives,
at x = 0 say, that are not defined by the ODE].

• In a similar fashion, given a function u(x, y) which also involves n
independent functions, there will be a (hopefully unique) PDE of n-
th order that will have that function as its general solution. One of
the questions below asks you to find the corresponding PDE for given
general solutions.
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3.3.1 From general solution to PDE

Consider
u = f(x− y). (3.36)

Then
∂u

∂x
= f ′(x− y);

∂u

∂y
= −f ′(x− y). (3.37)

Eliminate f ′, obtaining
∂u

∂x
+
∂u

∂y
= 0. (3.38)

This PDE now makes no reference to f , and the general solution of this PDE
is the equation you started from.

• Using this technique, eliminate the arbitrary functions from the follow-
ing and so obtain partial differential equations of which they are the
general solution:

a. u = f(x+ y).

b. u = g(xy).

c. u = f(x+ y) + g(x− y).

d. u = xn h(y/x).

e. v = g(x2 + y2).

f. v = f(x2 − y2).

h. v = f(x2 − y2) + g(x2 + y2).

i. v = h(2x− y)− g(2x+ y).

• Now consider a general solution specified by the system of two equa-
tions:

u(x, y) = α(x, y) x+ w(α(x, y)) y + v(α(x, y));

0 = x+ w′(α(x, y)) y + v′(α(x, y)).

Eliminate the arbitrary functions w(α) and v(α), and the parameter α
itself, to obtain a PDE for u(x, y).

(You should find a particularly simple example of a Monge–Ampere
equation.)

Hint: See Courant and Hilbert — Volume 2 page 10.
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• Suppose you are given a class of functions y(x : ~a) = f(x : a1, a2, . . . , an)
of the single variable x, where the class of functions is parameterized
by n arbitrary parameters a1, a2, . . . , an, denoted collectively by ~a.

Suppose further that the parameters come under the heading of being
both “arbitrary and independent”, namely, suppose that the following
determinant is non-zero (i, j = 1, . . . , n):

det

[(
∂

∂x

)i
∂

∂aj
f(x : ~a)

]
6= 0. (C) (3.39)

Then you can easily prove that y(x : ~a) must be the general solution
of some ODE of the n-th order. You do this effectively by eliminating
the parameters ak, k = 1, 2, . . . , n.

Consider the n equations:

y = y(x : a1, a2, . . . , an) (3.40)

y′ = f ′(x : a1, a2, . . . , an) (3.41)

y′′ = f ′′(x : a1, a2, . . . , an) (3.42)

. . . . . (3.43)

. . . . . (3.44)

. . . . . (3.45)

y(n−1) = f (n−1)(x : a1, a2, . . . , an) (3.46)

These are n equations relating the n variables y, y′, y′′, .., y(n−1) to the
n parameters a1, a2, . . . , an.

But because of the condition (C) above, the inverse function theorem
guarantees that you can (at least locally) solve these equations, to
thereby find the parameters a1, a2, . . . , an as functions of the variables
y, y′, y′′, . . . , y(n−1), and x:

ak = Ak(x : y, y′, y′′, . . . , y(n−1)) (3.47)

for k = 1, 2, ..., n and some functions Ak of the indicated variables..

Now use these functions Ak to eliminate the variables a1, a2, . . . , an in
the expression for the n-th derivative of y:

y(n) = f (n)(x : a1, a2, .., an) (3.48)
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in favour of the derivatives y, y′, y′′, .., y(n−1). That is

y(n) = f (n)
(
x : Ai(x : y, y′, y′′, ...y(n−1))

)
. (3.49)

In doing so, you will end up with a relation between the derivatives of
the function y of the form:

y(n) = G(x, y′, y′′, ..., y(n−1)), (3.50)

which is an ODE in y of order n.
(In fact it’s even guaranteed to be quasi-linear).

Can you now set up an analogous way of obtaining a PDE?
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Two examples:

– Specifically, consider the general class of functions

u = f(x, y;α, β) (3.51)

By differentiating with respect to α and β, and then appealing
to the inverse function theorem, argue that this general class of
functions is the solution set of the generic first-order PDE

F (x, y, u, ux, uy) = 0. (3.52)

– What happens for the three-parameter general class of functions

u = f(x, y;α, β, γ)? (3.53)

Develop a general formalism for going from a parameterized class of
“solutions” to the PDE that “generates” that solution class.

(When all else fails, look up Courant and Hilbert, volume 2, pp. 8 ff.
for some hints...)
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3.3.2 From PDE to general solution

By integrating out the partial derivatives in the following PDEs, find the
general solution.

a. Uxy = y U3
x .

b. Uxy = xy Uy.

c. Uxy = y Uy + x3y2.

d. Uxx = y Ux + xy.

e. Ux = Uy.

f. α Ux + β Uy = 0. (Treat α and β as given constants.)

g. Ux gy(x, y)− Uy gx(x, y) = 0. (Treat g(x, y) as given.)

h. Uxxyy = 0.

This exercise illustrates the rather complex way that the arbitrary functions
could appear in the general solution.

Now try to find the general solutions for

i. α(U) Ux − β(U) Uy = 0.

j. Ux gy(x, y, U)− Uy gx(x, y, U) = 0. (Treat g(x, y, U) as given.)

In these cases you will have to be satisfied with an implicit relation for U(x, y)
in terms of some arbitrary function.

Finally:

k. Hence or otherwise show that the general solution of the (1+1) PDE

vt + vvx = 0 (3.54)

is given implicitly by

v(t, x) = f
(
x− v(t, x)t

)
. (3.55)

(Challenge: Try to come up with a physical model for a situation
where this PDE is relevant.)
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l. Hence or otherwise show that the general solution of the (3+1) PDE

~vt + (~v · ∇) ~v = 0 (3.56)

is given implicitly by

~v(t, x) = ~f
(
~x− ~v(t, ~x)t

)
. (3.57)

(Challenge: Try to come up with a physical model for a situation
where this PDE is relevant.)

3.3.3 General solution versus singular solution

The definition of general solution for a single first order PDE in a single
unknown was that it be a solution involving one arbitrary function.
As for ODEs, the general solution may not always cover all possible solutions,
(those exceptional solutions are called singular solutions).
See, for example, Courant and Hilbert, volume 2 pp. 2 ff. (§1).
Here is an example:
Consider the (1+1) dimensional PDE

∂U

∂x
− ∂U

∂y
= 2
√
U. (3.58)

i. Explicitly verify that U = [x+η(x+y)]2 is a solution, for any arbitrary
function η( ).

Therefore, since we have a solution to a first order PDE containing one
arbitrary function, this is an example of a “general solution”.

ii. Show that U = 0 is also a specific solution to the equation.

iii. Show that one cannot express the specific solution U = 0 in the form
[x+ η(x+ y)]2 = 0 for any function η.

Thus we have found a specific solution that does not follow from the
general solution!!

For a general discussion of singular solutions for such equations see
M. J. Hill, Proceedings of the London Mathematical Society, 1917.
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Hint: Using the substitution U = W 2 show that the PDE reduces to

W

(
∂W

∂x
− ∂W

∂y
−W

)
= 0. (3.59)

This should make it obvious why there are two disconnected branches of
solutions.

3.3.4 General solutions

Write down, using whatever technique you find easiest, the general solution
for these PDEs:

a. y
∂U

∂x
− x ∂U

∂y
= 0.

b. x
∂U

∂x
+ y

∂U

∂y
= 0.

c. x U
∂U

∂x
+ y U

∂U

∂y
= xy.

d. tanx
∂U

∂x
+ tan y

∂U

∂y
= tanU .

e. y
∂U

∂x
+ z

∂U

∂y
− x ∂U

∂z
= 0.

3.3.5 Boundary value problems

Solve the following boundary value problems by first obtaining, using that
innate cunning for which Math 301 students are renowned, the general solu-
tions of the PDEs and then fitting them to the given boundary conditions:

a. Uxx = 1
c2
Utt, given that U(x, 0) = 0 and Ut(x, 0) = 1/(1 + x2).

b. Uxx = 2xy, given that U(0, y) = y2 and Ux(0, y) = y.

c. Vxy = 1, given that V = 0 and Vx = 0 when x+ y = 0.

Classify these BC as to whether they are Dirichlet, Neumann, Robin, or
something else.

——VUW——
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Chapter 4

Existence and uniqueness

4.1 Definition: Solution of a PDE

Definition 7 Solution of a PDE:

A function U = U(x, y) is a solution of the PDE

F
(
x, y, U, U (1), U (2), . . . , U (n)

)
= 0 (4.1)

on a region W of the plane IR2 if:

• Both U(x, y) and its partial derivatives

U (1)(x, y), . . . , U (n)(x, y) (4.2)

exist on W .

• For every (x, y) in W

F
(
x, y, U(x, y), U (1), U (2), . . . , U (n)

)
= 0. (4.3)

That is, the function U can be differentiated as often as necessary,
and when substituted back into the PDE it makes the equation true.
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Warning 2
Sometimes solutions in the sense given above are called “classical solutions”.
(Sometimes they are called “strong solutions”.)

Warning 3
There is a whole separate issue of so-called “weak solutions” of PDEs.
Not appropriate for this part of MATH 301.
(Though you could always look up Chapter 10 in Olver.)

The general situation regarding existence and uniqueness of solutions for
systems of PDEs is considerably more complicated than for ODEs.

Below we give a very cursory description of the situation.

4.2 The Cauchy Theorem

Only in the case where all functions involved in defining the PDE are analytic
is there an existence and uniqueness result of complete generality resembling
the EUS (Existence and Uniqueness of Solutions) theorem for ODEs.

The most basic of the EUS theorems, which is easy to state and to un-
derstand, and which initiated many of the later developments in the theory
of PDEs, is due to Cauchy.

See, for example, Courant and Hilbert, volume 2 pp. 39 ff. (§7).

Reminder 2
Analytic, Cω, means infinitely differentiable and expandable as a power series
with non-zero radius of convergence.
Smooth, C∞, just means infinitely differentiable.
C2 means twice differentiable [with continuous derivative].
C1 means once differentiable [with continuous derivative].
C0 means continuous.

Example 1
exp(x) is Cω for finite x.
exp(1/x) is C∞ for finite x, but not even C0 at x = 0.
|x3| is C2 but not C3.
|x| is C0 but not C1.
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Theorem 1 Cauchy

Consider the PDE
∂U

∂x
= f

(
x, y, U,

∂U

∂y

)
. (4.4)

This is a specific example of a first-order PDE in one dependent variable and
two independent variables.

Consider the initial condition that

U(0, y) = g(y), (4.5)

is, at x = 0, a prescribed analytic function of the independent variable y.

Suppose furthermore that f(•, •, •, •) is an analytic function of its arguments.

Then there exists one, and only one, unique solution satisfying these initial
conditions.

Notes:

• Note that you have to make some extremely powerful assumptions to
be able to derive the theorem — much more powerful than those needed
for the EUS (existence and uniqueness theorem) for ODEs.

• You can find a generalized version of the theorem and proof discussed
fully in Courant and Hilbert (reference below), [volume 2] pages 39–56.

• Note that you are only trying to solve a first-order PDE, but to derive
the theorem you need to make analyticity assumptions for f(x, y, · · ·).
That is — infinitely differentiable and a convergent Taylor series.

• So the hypotheses you have to put in are very strong compared to the
result you wish to prove.

• Note that the two independent variables x and y are treated asymmet-
rically.
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• Cauchy’s theorem can be generalized in a number of ways:

– To many independent variables, to higher order PDEs, and to
systems of PDEs. This is relatively “straightforward” and leads
to the Cauchy–Kowalewsky theorem.

– To more complicated though analytic PDEs — this leads to the
Riquier–Janet theory.
(Not even Olver wants to open that particular can of worms...)
(While Google can sometimes be your friend, in this particular
case it will lead you into a rabbit warren...)

– To many different non-analytic but relatively simple PDEs —
these are often the most useful EUS theorems in practice.

4.3 The Cauchy–Kowalewsky Theorem

A reasonably well-known generalization of the Cauchy theorem (which is
however still a very special case of the Riquier–Janet theory, which I will
not even try to discuss) is the Cauchy–Kowalewsky Theorem, which I quote
below for the case of a system of PDEs of the k-th order with several depen-
dent variables UA, which are functions of the n + 1 independent variables
x, y1, y2, . . . , yn.

Note that one of the independent variables, x, has been singled out for
special treatment!

(That is, one of the coordinates is treated differently from the others!)

Historical note 1 Since the Russian alphabet is radically different from
both the English alphabet, and since she published a lot of work in German
and French, [and Swedish?], poor Sophie (Sofia, Sonya) Kowalewsky’s name
has gotten rather mangled over the years. In addition to Kowalewsky I have
seen Kovalevskaya, Kowalevskaya, and Kovalevski. I’m sure there’s other
variants out there.

See: http://en.wikipedia.org/wiki/Sofia_Kovalevskaya
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Historical note 2 Sophie Kowalewsky (1850-91) did important work in par-
tial differential equations. Born in Moscow, she married a paleontologist and
moved to Germany. At the University of Heidelberg she studied privately
with the great mathematician Weierstrass; women were not allowed at lec-
tures. She received a degree in absentia in 1874 for her thesis on partial
differential equations. Her most famous work tells conditions when a partial
differential equation has a solution that is unique and analytic.

She won the Paris Academy Prize in 1888 for a paper on the integration
of the equations of motion for a solid body rotating around a fixed point; the
paper was of such high quality that the announced award money was doubled.
In 1889 she became a professor of mathematics at Stockholm. In addition
to her work in mathematics, she wrote some noted novels depicting life in
Russia.

Historical note 3 Courant and Hilbert credit Cauchy with the basic idea
for this theorem, and credit Kowalewsky with carrying out the proof “in a
rather general manner”.

See, for example, Courant and Hilbert, volume 2 pp. 39 ff. (§7).
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Theorem 2 Cauchy–Kowalewsky

Consider the system of PDEs

∂kUA

(∂x)k
= fA

(
x, y1, ..., yn, UB,

∂UB

∂x
, . . . ,

∂k−1UB

(∂x)k−1
,
∂UB

∂yi
, . . . ,

∂kUB

(∂yi)k

)
. (4.6)

Consider the initial conditions that the functions

UA(0, y1, . . . , yn),
∂UA

∂x
(0, y1, . . . , yn),

∂2UA

(∂x)2
(0, y1, . . . , yn), (4.7)

and
∂k−1UA

(∂x)k−1
(0, y1, . . . , yn) (4.8)

are, at x = 0, all prescribed analytic functions of the independent variables
y1, . . . , yn.

Suppose furthermore that the functions fA(•, •, •, · · ·) are analytic functions
of their arguments.

Then there exists one and only one unique solution satisfying these initial
conditions.
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• When the PDE is presented in this particular manner it is said to be
in “normal form”.

• Note that this is a k’th order system of PDEs in (n + 1) independent
variables — that is, defined on a space with (n+ 1) coordinates.

• The number of equations, and hence the number of dependent variables,
is arbitrary.

• Note that the initial conditions are all specified on the very special
hyperplane x = 0.

• You can find the theorem and proof discussed fully in Courant and
Hilbert (reference below), [volume 2] pages 39–56.

• Note that the Courant and Hilbert book is definitely not light reading;
it is however a gold-mine of highly technical information.

• Note that you are only trying to solve a k’th order system of PDEs,
but to derive the theorem you need to make analyticity assumptions
for f(x, · · ·). That is — infinitely differentiable and a convergent Tay-
lor series. The hypotheses you have to put in are extremely strong
compared to the result you wish to prove.

• To see what is going on it is convenient to work with systems of first-
order PDEs in two independent variables x and y. As Courant and
Hilbert say, “there is no modification necessary for more independent
variables”. Because we are now dealing with systems of first-order
PDEs, this is still a significant generalization of the original Cauchy
theorem.
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Theorem 3 Cauchy–Kowalewsky (simplified 2 dimensions)

Consider the system of PDEs

∂UA

∂x
= fA

(
x, y, UB,

∂UB

∂y

)
. (4.9)

Consider the initial conditions that the fields

UA(0, y) = gA(y), (4.10)

are, at x = 0, all prescribed analytic functions, gA(y), of the independent
variable y.

Suppose, furthermore, that the fA(•, •, •, •) are analytic functions of their
arguments.

Then there exists one, and only one, unique solution satisfying these initial
conditions.

• Courant and Hilbert state:
“To prove the theorem one first formally constructs power series for the
solution and then shows the uniform convergence of these series.”

• The details are “straightforward” and are left as an exercise for the
reader.

• Remember how to translate that code word “straightforward”?
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4.4 The non-analytic case

If the PDE involves non-analytic coefficients, or some non-analytic function
F ( , , ) relating the various partial derivatives, then the general situation
is not particularly general at all:

• A single first-order PDE in a single unknown, with given IC, is known to
have a unique solution, and methods for its construction are available.

– That is, equations of the form

F
(
x, y, U (1), U

)
= 0 (4.11)

are sufficiently simple that EUS theorems can be developed.

– See, for example, Courant and Hilbert, volume 2 pp. 22 ff. (§4).

• We can also develop rather simpler EUS theorems for first-order linear
equations of the form

n∑
i=1

ai(x1, . . . , xn)
∂U(x1, . . . , xn)

∂xi
(4.12)

+b(x1, . . . , xn) U(x1, . . . , xn) + f(x1, . . . , xn) = 0.
(4.13)

Such an equation can be directly related to a system of first-order
ordinary DEs, leading to the theory of “characteristics”.

[See Forsyth, (reference below), Courant and Hilbert, Hormander,
(reference below), for more details.]

– See, for example, Courant and Hilbert, volume 2 pp. 28 ff. (§5).

• Similarly we can also develop rather simple EUS theorems for some
first-order quasi-linear equations of the form

n∑
i=1

ai(x1, . . . , xn, U)
∂U(x1, . . . , xn)

∂xi
+ f(x1, . . . , xn, U) = 0. (4.14)

This leads to a generalization of the theory of characteristics.

– See, for example, Courant and Hilbert, volume 2 pp. 28 ff. (§5).
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• For a system of first-order equations in a single unknown, consistency
conditions can be formulated, and methods for the construction of the
unique solution for given consistent initial conditions have been found
— see, for example, Forsyth again.

(This can be transformed into a special case of the Frobenius–Mayer
system, as will be discussed below).

• A general system of first order PDEs in many unknowns is very difficult
to analyse, and only special cases are known (see, for example, Forsyth
again).

• Warning: You can always take a single n’th-order PDE, in one
dependent variable, and recast it as a system of n first-order PDEs, in
n dependent variables.

However the converse is not true for PDEs (though it is true for ODEs).
That is:

– Given a system of n first-order ODEs it is in general possible to
reduce this to a single equivalent n’th order ODE.

– Given a system of n first-order PDEs it is in general not possible
to reduce this to a single equivalent n’th order PDE.

– See, for example, Courant and Hilbert, volume 2 pp. 58 ff.
(Appendix 2 to Chapter 1).

• There is no single unified theory of PDEs — it’s very much a collection
of special cases (some more general than others).

References:

• Hormander, L., Linear Partial Differential Equations,
Academic Press N.Y. 1963.

• Courant R., and D. Hilbert,
Methods of Mathematical Physics Vols 1 and 2, Interscience 1966.

• Forsyth R., Differential Equations, in six volumes,
Oxford University Press, (1906 onwards).

This opus covers a large number of techniques, many of which are now
mostly forgotten, but which crop up from time to time in research
papers.
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4.5 EUS results for specific PDEs

Although, as we have just seen, the general theory of EUS for generic PDEs
is quite patchy and relatively ill-developed (compared to EUS for ODEs), the
situation for specific PDEs is often (not always) a lot better. If some specific
PDE has become important for some specific physical/ chemical/ biological/
financial/ military or other reason, then there has generally been a lot of hard
work done on the EUS problem for that specific PDE. So in some specific
cases we can say a lot, in other cases things are still a bit of a mess.

4.6 Exercise

Solve the following first order linear PDE:

∂U

∂x
+
∂U

∂y
= x cos(xy). (4.15)

Do this by making a cunning transformation of variables s = x+y, t = x−y
and rewriting the equation in terms of these variables.

Challenge: Read and understand the theory of characteristic curves.

Challenge: Read and understand the proof of the Cauchy theorem.

Challenge: Read and understand some advanced books on PDEs.

Challenge: Find, read, and understand some recent PhD theses on PDEs.

I reiterate:

• PhD theses are still being written on (advanced) first-order systems of
PDEs.

• PhD theses are still being written on (advanced) second-order PDEs.

• PhD theses are still being written on the general theory of PDEs.

——VUW——
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Chapter 5

Some 1st-order PDEs

5.1 Frobenius–Mayer systems

Frobenius–Mayer systems are a specific example of a system of PDEs that is
sufficiently simple to enable us to obtain a EUS theorem without having to
make analyticity assumptions.

5.1.1 Definition

Definition 8 Frobenius/Mayer system:

One special case that is very important is the Frobenius or Mayer system

∂UA

∂xi
= FA

i(x
1, . . . , xn, U1, . . . , Um) (F ) (5.1)

A = 1, 2, . . . ,m, i = 1, 2, . . . , n (5.2)

where the m dependent variables {UA}, (the “fields”), depend on the n inde-
pendent variables {xi}, (the “position in some n-dimensional space”).

All these equations are all of first order.

In such a system there are as many PDEs as there are first-order derivatives
of the dependent functions (i.e., nm of them)
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Notes:

• We see that the Frobenius–Mayer PDE systems are examples of first-
order quasi-linear PDE systems.

• The superscripts now tell you which of the U ’s you are dealing with;
not the order of the derivative.

• The only derivatives occurring above are first-order on the LHS.

(And they occur linearly with coefficient unity.)

• The RHS of the system does not involve any derivatives.

• Just because it’s important does not mean it’s easy to find any explicit
discussion of this system.

• You can find a discussion in Volume 1 of Spivak, chapter 6.
See especially pages 254–257.
(The notation is slightly different).

• You can find a discussion in Volume 5 of Forsyth, chapter 4.
See especially pages 100 ff.
(The notation is, unfortunately, seriously archaic).

References:

• Courant R., and D. Hilbert,
Methods of Mathematical Physics Vols 1 and 2, Interscience 1966.

• Forsyth R., Differential Equations, in six volumes,
Oxford University Press, (1906 onwards).

• Spivak, M., A comprehensive introduction to differential geometry,
in six volumes, (Publish or Perish, Berkeley, 1979).

50



5.1.2 Integrability theorem

Theorem 4 The Frobenius Complete Integrability Theorem:

Suppose the functions FA
i(•, . . .) are C1 functions of all their variables in a

neighbourhood of the origin, for A = 1, 2, . . . ,m and i = 1, 2, . . . , n.

Then the Frobenius system (F) has a unique solution satisfying the IC

UA(0, 0, . . . , 0) = bA (A = 1, 2, . . . ,m) (5.3)

for arbitrary given bA, if and only if

∂FA
i

∂xj
+

m∑
B=1

FB
j
∂FA

i

∂UB
=
∂FA

j

∂xi
+

m∑
B=1

FB
i
∂FA

j

∂UB
(C) (5.4)

for all i, j, and A in their respective ranges.

• Note that we only require F to be C1 instead of Cω. That C1 is a
necessary condition is obvious — it is required so that the relevant
derivatives in the compatibility condition (C) exist.

• This Frobenius integrability theorem is an extremely important result.
The condition (C) is effectively the requirement that the second partial
derivatives should all commute:

∂2UA

∂xi ∂xj
=

∂2UA

∂xj ∂xi
. (5.5)

• To see necessity (not sufficiency) note that if the PDE defining the
Frobenius–Mayer system is satisfied, then

∂2UA

∂xi ∂xj
=

d

dxi
FA
j (x, U(x)). (5.6)

Then by applying the chain rule

∂2UA

∂xi ∂xj
=

∂

∂xi
FA
j +

m∑
B=1

∂FA
j

∂UB

∂UB

∂xi
. (5.7)
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Now use the Frobenius–Mayer PDE again, we see

∂2UA

∂xi ∂xj
=

∂

∂xi
FA
j +

m∑
B=1

∂FA
j

∂UB
FB
i . (5.8)

But the LHS is symmetric under interchange i←→ j.

This leads to the consistency condition (C).

• You can find a full proof [both necessity and sufficiency ] in Volume 1
of Spivak, chapter 6, pages 254–257. Note that Spivak’s notation is
slightly different.

• You can get a feel for how important the Frobenius integrability theo-
rem is from Spivak’s comment:

The Frobenius theorem (which represents everything we know
about partial differential equations) was used in [ ...long list
of topics... ].

(See Spivak, volume 5, page 1).

This should be balanced against his further comment:

Now it’s really rather laughable to call these things partial
differential equations at all. True ... partial derivatives are
involved, but we do not posit any relationship between dif-
ferent partial derivatives; this comes out quite clearly in the
proof [of the integrability theorem] where the equations are
reduced to ordinary differential equations.

Proof of the Frobenius integrability theorem:
Consider, in the specified coordinate chart, the “straight line” xi(t) = t xi

and on this “straight line” solve the ODE

dUA(t)

dt
= xi FA

i(t x
i;UB(t)); UA(0) = bA. (5.9)

Since this is simply an ODE, (albeit a non-autonomous coupled ODE in m
variables), it will have unique solutions, at least on some finite interval. Now
use the UA(t) to define UA(xi) as follows

UA(xi) = bA +

∫ 1

0

xi FA
i(t x

i;UA(t)) dt. (5.10)
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These UA(xi) certainly exist, but what PDEs do they satisfy? Let us compute

∂iU
a(x) =

∫ 1

0

FA
i(t x;U(t)) dt

+xj
∫ 1

0

t{∂iFA
j(t x;U(t)) + ∂BF

A
j(t x;U(t)) ∂iU

B(t)} dt.

(5.11)

But that first term can be integrated by parts as∫ 1

0

FA
i(t x;U(t)) dt = [tFA

i(t x;U(t))]10 −
∫
t

d

dt
[FA

i(t x;U(t))]dt

(5.12)

= FA
i(x;U(x))

−
∫ 1

0

t
{
FA

i,j(t x;U(t)xj + ∂BF
A
iU̇

B
}

dt

(5.13)

= FA
i(x;U(x))

−
∫ 1

0

t
{
FA

i,j(t x;U(t)xj + ∂BF
A
iF

B
j x

j
}

dt.

(5.14)

Combining

∂iU
a(x) = FA

i(t x;U(x)) +

∫ i

0

txj{FA
i,j−FA

j,i +∂BF
A
j ∂iU

B−∂BFA
i F

B
j }dt.

(5.15)
Now apply the consistency condition. Thence

∂iU
a(x)− FA

i(t x;U(x)) =

∫ 1

0

t xj∂BF
A
j

{
∂iU

B(t)− FB
i (tx, U(t))

}
dt.

(5.16)
This is an integral equation. One solution is clearly ∂iU

a(x) = FA
i(t x;U(x)).

As long as the integral transform does not have eigenvalue unity, this will be
the only solution. (And for sufficiently small x, where the integral transform
is guaranteed to be small, this will certainly be the unique solution.) So
under the stated consistency condition we have established the existence of
a set of fields UA(xi) such that ∂iU

a(x) = FA
i(t x;U(x)).
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(This proof is slightly different from other presentations you might eventually
track down, either on the internet or in various older texts. I feel the present
discussion is pedagogically simpler.)
Various comments:

• Clearly if n = 1 [only one independent variable, one dimension] then
condition (C) is always satisfied. But this just means that if we have
one independent variable then the 1-dimensional Frobenius equation

∂UA

∂x
= FA(x, U1, . . . , Um) A = 1, 2, . . . ,m, (1d F )

(5.17)
is always integrable. This will be less of a surprise if we realise this is
now an ODE, and change variables (x→ t, UA → xA) to rewrite it in
the more usual form

dxA

dt
= FA(t, xB) A = 1, 2, . . . ,m. (5.18)

We already know, by elementary means, that this simple ODE is inte-
grable.

• A second important case is m = 1 [only one dependent variable, one
“field” but many dimensions] then condition (C) reduces to

∂F i

∂xj
+ F j

∂F i

∂U
=
∂F j

∂xi
+ F i

∂F j

∂U
(1 variable C) (5.19)

That is

∂F i

∂xj
− ∂F j

∂xi
+ F j

∂F i

∂U
− F i

∂F j

∂U
(1 variable C) (5.20)

Alternatively

∂jF i − ∂iF j + F j
∂F i

∂U
− F i

∂F j

∂U
(1 variable C) (5.21)

This is one of the most common cases to arise in practice.

• It is sometimes useful to rewrite condition (C) in the equivalent form

∂FA
i

∂xj
− ∂FA

j

∂xi
=

m∑
B=1

{
FB

i
∂FA

j

∂UB
− FB

j
∂FA

i

∂UB

}
(C) (5.22)
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or

∂jF
A
i − ∂iFA

j =
m∑
B=1

{
FB

i
∂FA

j

∂UB
− FB

j
∂FA

i

∂UB

}
(C) (5.23)

Doing this should focus your attention on conservative vector fields as
a possible way of satisfying the integrability constraints.

• A sufficient condition for condition (C) to hold in general is that

FA
i(x, U) =

∂Φ(x)

∂xi
JA(U); (C2) (5.24)

Try it and see. (I explicitly do not claim this condition is necessary.)

If this sufficient condition holds, then the Frobenius/Mayer system
reduces to

∂UA

∂xi
=
∂Φ(x)

∂xi
JA(U). (5.25)

But now we can solve this by reducing it to an ODE. Note that each
of the UA, considered as a function of the xi, can change only in the
direction parallel to

∂iΦ(x) =
∂Φ(x)

∂xi
. (5.26)

But this means that for some set of functions ŨA(Φ) we have

UA(x) = ŨA(Φ(x)), (5.27)

with the PDE reducing to

dŨA(Φ)

dΦ
= JA(Ũ). (5.28)

This reduces the Frobenius/ Mayer system [subject to this sufficient
condition (C2)] to an ODE. In fact it is an autonomous ODE, which
we already know to be integrable.

• There is an even more special case, obvious given the above discus-
sion, that I will belabour because of its importance: the autonomous
Frobenius/ Mayer system.
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5.1.3 Autonomous Frobenius–Mayer systems

Definition 9 Autonomous Frobenius/Mayer system:

The autonomous Frobenius/ Mayer system is

∂UA

∂xi
= FA

i(U
1, . . . , Um) A = 1, 2, . . . ,m, i = 1, 2, . . . , n (AF )

(5.29)

• Note: The key feature is that there is now no explicit x dependence on
the RHS.

• The class of autonomous Frobenius/ Mayer systems can be charac-
terized as a particular sub-class of autonomous first-order quasi-linear
PDEs.

• The m dependent variables {UA} again depend on the n independent
variables {xi}.
• All these equations are again of first order.

• There are again as many PDEs as there are first-order derivatives.

• That is, nm of them.

• The RHS now depends only on the dependent variables, the U ’s.

• There is no explicit x dependence on the RHS.

• The equations are “autonomous” in the sense that the “driving term”
does not pay any attention to the independent variables, the x’s.

• The “driving term” or “source term” now depends only on the “current
state” of the system — the U ’s.
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Theorem 5 The Autonomous Frobenius Integrability Theorem:

Suppose the functions FA
i(U

A) are smooth functions of all their variables in
a neighbourhood of the origin, for A = 1, 2, . . . ,m.

Then the autonomous Frobenius system (AF ) has a unique solution, satisfy-
ing the IC

UA(0, 0, . . . , 0) = bA (k = 1, 2, . . . ,m) (5.30)

for arbitrary given bA, if and only if

m∑
B=1

FB
i
∂FA

j

∂UB
=

m∑
B=1

FB
j
∂FA

i

∂UB
(AC) (5.31)

for all i, j, and A in their respective ranges.

But now let’s take a more careful look at the condition (AC).

• If n = 1 [so that we are working in one dimension] condition (AC)
is always satisfied. But this is just the autonomous version of our
previous discussion. After a change in notation (x→ t, UA → xA) the
1-d autonomous Frobenius equation becomes

dxA

dt
= FA(xB) A = 1, 2, . . . ,m. (5.32)

• Suppose in contrast that m = 1 so there is only one dependent variable
U , only a single “field”. Then condition (AC) reduces to

F i
∂F j

∂U
= F j

∂F i

∂U
(1 variable AC) (5.33)

Then

F i
∂F j

∂U
− F j

∂F i

∂U
= F 2

i

∂(Fj/Fi)

∂U
= 0 (5.34)

But this is satisfied iff (if and only if) Fi/Fj = ki/kj for some set of
constants ki independent of U .

That implies
F i(U) = ki f(U), (5.35)
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for some constant vector ki.

But this now lets us write the 1-variable integrable autonomous Frobe-
nius system as

∂U

∂xi
= ki f(U) i = 1, 2, . . . ,m. (5.36)

Thus the system (if it satisfies condition (AC) so that it is integrable)
can be reduced to an ODE in a single variable, call it ξ:

U(x) = Ũ (k · x) ;
dŨ(ξ)

dξ
= f(Ũ) (5.37)

Note that this is all a special case of condition (C2) above.

• In fact for any n and m, a sufficient condition for condition (AC) to
hold is that

FA
i(x, U) = ki J

A(U); (AC2) (5.38)

Try it and see. (I do not claim this condition is necessary.)

If this sufficient condition holds then the autonomous Frobenius–Mayer
system reduces to

∂UA

∂xi
= ki J

A(U). (5.39)

But we can again solve this by reducing it to an ODE. Note that each
of the UA, considered as a function of the xi, can change only in the
direction parallel to ki.

But this means that for some set of functions ŨA(ξ) we have

UA(x) = ŨA(ξ); ξ = ξ0 +
m∑
i=1

ki x
i (5.40)

with the PDE reducing to

dŨA(ξ)

dξ
= JA(Ũ). (5.41)

This again reduces the autonomous Frobenius–Mayer system [subject
to this sufficient condition (AC2)] to an ODE.

• Clearly the most interesting cases are n > 1 and m > 1.

• You can have some fun exploring necessary and sufficient conditions,
and digging deep into the bowels of the library.
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5.1.4 Exercises

Conservative vector fields

A vector field V is called conservative if curl V = 0.
It is a well known fact that if V is conservative on an open subset W of IR3,
then there is a function U(x, y, z) such that

~V = −grad U (5.42)

on W .
We now want to relate this to the concept of a Frobenius–Mayer system.

a. Show that the system of PDEs that result from

grad U = −~V (5.43)

is a Frobenius system, (a particularly simple Frobenius system), and
show that this system can be made to satisfiy the conditions of the
Frobenius Complete Integrability theorem.
(What is the consistency condition?)

b. Find the function U if:

i. ~V = xyz~i+ (x2z/2− z sin(yz))~j + (x2y/2− y sin(yz))~k.

ii. ~V = (A/r3)~r, where A is a constant, ~r = x~i + y~j + z ~k is the
usual radius vector, ~r, and r = |r|.

Height-slope relations

(A slightly more complicated example; essentially two-dimensional)
Consider now a specific Frobenius theorem with m = 1 (so there is only

one dependent variable, which I will call h) and n = 2 (so there are two
independent variables, two dimensions, which I shall call x and y). Then the
Frobenius system is

∂h(x, y)

∂x
= Fx(x, y, h);

∂h(x, y)

∂y
= Fy(x, y, h). (5.44)

You can interpret this, for instance, as the equation for the height of a hill as
a function of x and y, given that there is a PDE controlling the height of the
hill that makes the slope of the hill depend on its height (a self-referential
height-slope function).
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a. Explicitly write out the set of consistency conditions required for this
Frobenius system to have a solution. Ignoring trivial re-labellings, how
many non-trivial consistency conditions are there?

b. Now consider the three-dimensional vector

~v(x, y, z) =
(
Fx(x, y, z), Fy(x, y, z), 1

)
, (5.45)

where now I have relabelled h→ z.
Calculate the “vorticity”:

~ω = curl ~v = ∇× ~v. (5.46)

Calculate the “helicity”:

H = ~v · (curl ~v) = ~v · (∇× ~v). (5.47)

c. Show that the condition that the helicity vanishes,

H = ~v · (curl ~v) = 0, (5.48)

is equivalent to the Frobenius consistency condition in part [a].
This implies that if the helicity H of ~v(x, y, z) is zero then it is possible
to self-consistently find a height function z(x, y) with

∂iz(x, y) = vi(x, y, z). (5.49)

(This result as given is special to m = 1, n = 2; there is a generalization
of this result to m = 1, n ≥ 3 which is a little tricker to formulate
nicely.)

Autonomous example

(Fully three-dimensional) Consider the system of PDEs

∂xU = hx(U(x, y, z)); (5.50)

∂yU = hy(U(x, y, z)); (5.51)

∂zU = hz(U(x, y, z)). (5.52)
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1. Write down all the Frobenius integrability conditions for this system.
How many of the constraints are nontrivial?

2. By adopting the notation

~H = (hx, hy, hz), (5.53)

show that the integrability conditions are equivalent to

~H × d ~H

dU
= 0. (5.54)

3. Hence show that this system satisfies the integrability conditions iff

~H = ~k f(U). (5.55)

where ~k is a constant vector.

4. Show that in this situation the solution of the Frobenius system is given
by the implicit equation ∫ U

U0

dŪ

f(Ū)
= ~k · ~x. (5.56)

That is, there exists an invertible function g(U) such that

g(U) = ~k · ~x, (5.57)

and so
U(x) = g−1

(
~k · ~x

)
. (5.58)

Indeed
dg

dU
=

1

f(U)
. (5.59)

Challenges

• Challenge: Look up, read, and understand, the proof of the Frobenius–
Meyer integrability theorem.

• Challenge: Look up, read, and understand, the connection between
the Frobenius–Meyer integrability theorem for PDEs and the “Frobe-
nius theorem” of differential geometry.

——VUW——
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5.2 Two other first-order PDEs

We have already seen several examples of reasonably general classes of first-
order PDEs:

• First-order quasi-linear PDEs:

α(x, y, U) ∂xU + β(x, y, U) ∂yU + γ(x, y, U) = 0. (5.60)

• The PDE of Cauchy’s theorem:

∂U

∂x
= f

(
x, y, U,

∂U

∂y

)
. (5.61)

• Frobenius–Mayer systems:

∂iU
A = FA

i (xj, UB). (5.62)

Two other first-order PDEs of considerable importance are briefly discussed
below.

5.2.1 The continuity equation

The continuity equation is

∂tρ+ ~∇ · (ρ~v) = 0 (5.63)

• Used wherever there is a “conservation law” for either mass/ charge/
probability.

• Fluid dynamics.

• Electromagnetism.

• Probabilistic modelling; stochastic equations.
(Physics, Statistics, Finance, Biology, Chemistry, Geology.)

In the general situation you would want to think of the velocity ~v as three
additional dependent variables, so that you have

∂tρ+ (~v · ~∇)ρ+ ρ (~∇ · ~v) = 0. (5.64)

This is a first-order quasi-linear PDE connecting (in three space dimensions)
four dependent variables.
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5.2.2 The fluid dynamics Euler equation

The hydrodynamic Euler equation is

∂t~v + (~v · ~∇)~v = −
~∇p
ρ

+
~B

ρ
(5.65)

This is actually Newton’s second law ~F = m ~a, but rewritten in terms of
individual little blobs of fluid. Here p is the pressure, ~B is any external force
(for example, gravity).

For a velocity field ~v(t, ~x) the velocity of an individual particle at point
~x at time t is:

d~x

dt
≡ ~v(t, ~x) (5.66)

But now take a look at the acceleration:

~a =
d2~x

dt2
=

d~v(t, ~x(t))

dt
(5.67)

But by the chain rule
~a = ∂t~v + (~v · ~∇)~v (5.68)

Note the nonlinearity in the velocity field.
The hydrodynamic Euler equation is another example of a first-order

quasi-linear PDE connecting many dependent variables.

Exercise 1 Suppose the pressure is identically zero, a situation generally re-
ferred to as “dust”, and there are no body forces. Then Euler’s hydrodynamic
equation reduces to

∂t~v + (~v · ~∇)~v = ~0. (5.69)

By whatever means you can, demonstrate that this PDE has the (implicit)
general solution:

~v(t, x) = ~f
(
~x− ~v(t, ~x)t

)
. (5.70)

Here ~f(~x) is an arbitrary function <n → <n.

In the next chapter we will use the phrase “Euler equation” in a very
different way. The nomenclature, with Euler’s name being attached to two
such very distinct equations, is unfortunately standard.

——VUW——
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Chapter 6

The 2nd order Euler PDE

The Euler equation of 2nd order PDEs is a specific PDE, (not the Euler
equation of fluid dynamics), that encompasses a wide variety of phenomena
— that’s why we are going to spend quite some time discussing both it and
its general solutions.

6.1 Definition

Definition 10 The Euler PDE (of 2nd order PDEs) is

a Uxx + 2h Uxy + b Uyy = 0 (6.1)

where a, b, and h are constants.

[ They could in general be taken as functions of x and y, but not yet! ].

We shall rewrite this equation in a form for which the general solution will
be obvious.

Warning 4
This is not the Euler equation of fluid mechanics.
That is a rather different beastie. See previous chapter.

Comment 3 Note that this version of the Euler equation is a linear second-
order PDE with constant coefficients.
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6.2 Transformation of coordinates

Consider a linear transformation of the coordinates (that is, the independent
variables x and y) to new independent variables s, t, defined as follows:

s = x+ cy; (6.2)

t = x+ dy. (6.3)

Note the Jacobian determinant is

det

(
∂(s, t)

∂(x, y)

)
= det

[
1 c
1 d

]
= d− c. (6.4)

We shall now rewrite the Euler equation in terms of these new independent
variables, and then cunningly choose the parameters c and d so that the
resulting equation is really easy to solve.

We have (by the 2-variable chain rule):

∂U

∂x
=
∂U

∂s

∂s

∂x
+
∂U

∂t

∂t

∂x
=
∂U

∂s
+
∂U

∂t
, (6.5)

or equivalently
∂

∂x
=

∂

∂s
+
∂

∂t
. (6.6)

Similarly,
∂

∂y
= c

∂

∂s
+ d

∂

∂t
. (6.7)

Hence

Uxx =

[
∂

∂x

] [
∂

∂x

]
U (6.8)

=

[
∂

∂s
+
∂

∂t

] [
∂

∂s
+
∂

∂t

]
U (6.9)

= Uss + 2Ust + Utt. (6.10)

Similarly

Uyy = c2 Uss + 2cd Ust + d2 Utt; (6.11)

and

Uxy = c Uss + (c+ d) Ust + d Utt. (6.12)
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Combining these results we easily see:

a Uxx + 2h Uxy + b Uyy =

(a+ 2hc+ bc2) Uss + 2(a+ h(c+ d) + bcd) Ust + (a+ 2hd+ bd2) Utt.

(6.13)

Leading to the transformed Euler equation (TEE):

(a+ 2hc+ bc2) Uss + 2(a+ h(c+ d) + bcd) Ust + (a+ 2hd+ bd2) Utt = 0.

(6.14)

6.3 Choosing the parameters

Some very cunning choices (VCC)

To solve the TEE we will make some crafty choices for the parameters c and
d occurring in the change of variables. The choices we shall make will depend
on the solutions to the quadratic equation

a+ 2hz + bz2 = 0. (6.15)

We start by supposing that b is nonzero, so this quadratic always has two
solutions.

6.3.1 Distinct roots

If this equation has two distinct solutions, say z1, z2, then choose the con-
stants c and d to be these solutions:

c = z1; d = z2. (6.16)

Then we plainly have:
• c+ d = the sum of the solutions = −2h/b.

• cd = the product of solutions = ab.

• The discriminant 4(h2 − ab) 6= 0.
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Note that since the roots are distinct, the transformation is proper (i.e., both
the original x and y, and the new s and t, are independent variables).1 The
Euler equation becomes

2

[
a+ h

(
−2h

b

)
+ b

a

b

]
Ust = 0 (6.17)

or

2
2ab− 2h2

b
Ust = 0. (6.18)

That is

−4(h2 − ab)
b

Ust = 0. (6.19)

whence, since by hypothesis h2 − ab is not zero, and b is not zero, we have

Ust = 0.

This transformed PDE is, of course, easy to solve. Its general solution is

U(s, t) = F (s) +G(t),

where F and G are arbitrary functions. Therefore, as functions of x and y:

U(x, y) = F (x+ cy) +G(x+ dy).

6.3.2 Coincident roots

In this case, the discriminant 4(h2−ab) = 0, and the quadratic has the single
solution z = −h/b. So let’s choose d to be the single root, d = −h/b. The last
term in the transformed Euler equation (TEE) then vanishes. Furthermore
the coefficient of the second term is:

a+ h(c+ d) + bcd = a+ hc− h2

b
− bh

b
c = 0. (6.20)

Hence the TEE reduces to

(a+ 2hc+ bc2) Uss = 0. (6.21)

1The transformation is proper iff the Jacobian determinant is non-zero: That is

det
(

∂(s,t)
∂(x,y)

)
6= 0. This happens iff c 6= d.
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If we choose c to be different from d (which we must do to keep the
transformation proper,2 and so keep the independent variables s and t truly
independent of each other) we have

Uss = 0,

which has the obvious general solution

U(s, t) = sF (t) +G(t),

where F and G are arbitrary functions. The choice of the value of c is up
to you here — it can be anything except d, the solution to the quadratic.
Therefore, as functions of x and y:

U(x, y) = (x+ cy) F (x+ dy) +G(x+ dy); c 6= d.

6.3.3 Degenerate quadratic

When b = 0, the work above does not apply, as we no longer have a genuine
quadratic in z. However, you can easily adapt the theory outlined above for
a transformation

s = cx+ y, (6.22)

t = dx+ y, (6.23)

leading to the quadratic

az2 + 2hz + b2 = 0. (6.24)

Then so long as a is nonzero, the results indicated above, with the role of
x and y interchanged, apply. If it happens that both a and b are zero, then
you have the equation Uxy = 0 to solve: and this is an easy thing to do. (In
fact we have already done it.)

2The transformation is proper, (that is, invertible), iff the Jacobian determinant is

non-zero: det
(

∂(s,t)
∂(x,y)

)
6= 0. This happens iff c 6= d.
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6.4 Summary

• If b is nonzero:

– If h2 − ab 6= 0:

U(x, y) = F (x+ cy) +G(x+ dy), (6.25)

where c and d are the distinct solutions to the quadratic equation

a+ 2hz + bz2 = 0. (6.26)

– If h2 − ab = 0:

U(x, y) = (x+ cy) F (x+ dy) +G(x+ dy), (6.27)

where d is the single solution to

a+ 2hz + bz2 = 0, (6.28)

and c is any constant not equal to d.

• If a is nonzero:

– If h2 − ab 6= 0:

U(x, y) = F (cx+ y) +G(dx+ y), (6.29)

where c and d are the distinct solutions to the quadratic equation

az2 + 2hz + b = 0. (6.30)

– If h2 − ab = 0:

U(x, y) = (cx+ y) F (dx+ y) +G(dx+ y), (6.31)

where d is the single solution to

az2 + 2hz + b = 0, (6.32)

and c is any constant not equal to d.

• If both a = 0 and b = 0:

– The solution is
U(x, y) = F (x) +G(y), (6.33)

where F and G are arbitrary.

Question 1

Do we have to do anything special if the roots of the quadratic are complex?
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6.5 Euler type

We define the “Euler type” of an Euler PDE by looking at the 2× 2 matrix
formed by the coefficients of the second-derivative terms

E =

[
a h
h b

]
. (6.34)

The reason this 2×2 matrix is interesting is because it can be used to re-write
the Euler equation as

[ ∂x, ∂y ]

[
a h
h b

] [
∂x
∂y

]
U = a Uxx + 2h Uxy + b Uyy = 0. (6.35)

Now consider the determinant of this matrix and use it to classify Euler
equations into the three classes:

Elliptic: If the determinant det(E) is positive.

Parabolic: If the determinant det(E) is zero.

Hyperbolic: If the determinant det(E) is negative.

The reason for the terminology will be a bit mysterious at this stage. Note
that the determinant det(E) = ab − h2 is the negative of the discriminant
occurring in the quadratic equation we used to simplify the Euler equation
when finding the general solution.

Thus for Euler equations we can re-phrase the classification in terms of
the algebraic equation:

[ 1, z ]

[
a h
h b

] [
1

z

]
= a+ 2h z + b z2 = 0 (6.36)

Elliptic: If the roots are complex.

Parabolic: If the roots are coincident.

Hyperbolic: If the roots are real.

Once you go through the analysis leading to the general solution this
leads to the characterization:
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Elliptic: If the general solution involves arbitrary functions of two distinct
complex variables.

Parabolic: If the general solution involves arbitrary functions of only one
real variable.

Hyperbolic: If the general solution involves arbitrary functions of two dis-
tinct real variables.

Warning 5 I should warn you that while these words Elliptic/ Parabolic/
Hyperbolic are most commonly used within the context of Euler’s equation,
(and its generalization with first order and linear terms as will be discussed
below), the notion is much more general.

Extending the Elliptic/ Parabolic/ Hyperbolic distinction to variable
coefficients (so that the matrix E(x, y) is position dependent) is easy.

Extending it to more dimensions is also easy.

Warning 6 It is less straightforward, but sometimes still possible and useful,
to extend the Elliptic/ Parabolic/ Hyperbolic distinction to nonlinear PDEs
and to systems of PDEs. See, for instance, Courant and Hilbert for details.

6.6 Challenges

For a challenge here’s a few questions to think about — be prepared to do
some internet searching...

Question 2 Terminology:
What is the origin of the terminology Elliptic/ Parabolic/ Hyperbolic?

Question 3 Terminology:
Are the terms Elliptic/ Parabolic/ Hyperbolic exclusive?

Question 4 Terminology:
Are the terms Elliptic/ Parabolic/ Hyperbolic complete?
(Do they cover all the possibilities?)

Question 5 Eikonal:
What is the meaning of the word “eikonal”?
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Question 6 Symbol:
What is the “symbol” of a PDE?

Question 7 Fresnel equation:
What is the “Fresnel equation” of a PDE?

6.7 Exercises

6.7.1 Euler type

Determine the Euler type (i.e., elliptic, hyperbolic, or parabolic) of each of
the following PDEs, and obtain the general solution in each case:

a. 3Uxx + 4Uxy − Uyy = 0.

b. Uxx − 2Uxy + Uyy = 0.

c. 4Uxx + Uyy = 0.

d. Uxx + 4Uxy + 4Uyy = 0.

e. Uyy + 2Uxx = 0.

f. 4Uxx + Uyy = 0.

g. 4U,xx − U,yy = 0.

h. 4U,xx + U,xy + U,yy = 0.

i. 9U,xx + 3U,xy + U,yy = 0.

j. 8U,xx + 3U,xy + U,yy = 0.

6.7.2 General solution to Euler’s equation

Find the general solution to the partial differential equation

4U,xx + 2U,xy + U,yy = 0, (6.37)

in terms of two arbitrary functions.
Now repeat this exercise for all of items [a.] to [j.] above.
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6.7.3 Generalized constant-coefficient Euler PDE

Definition 11
One simple way of generalizing the Euler PDE is this:

a Uxx + 2h Uxy + b Uyy + c Ux + d Uy + e U + f = 0, (6.38)

where a, b, h, and c, d, e, f are constants (and at least one of the second-
order coefficients a, b, or h, is nonzero).

Comment 4
This is still a linear second-order PDE with constant coefficients.

This generalization is not really as painful as it looks. If the coefficients
are constants the general solution can sometimes be found using modifica-
tions of the preceding argument. Even then, sometimes there is no closed-
form general solution, even for this constant coefficient case.

Project 1 Generalized constant-coefficient Euler PDE:
Analyze this generalized constant-coefficient Euler PDE in detail.

Completely classify those situations for which closed-form general solu-
tions (in terms of two arbitrary functions) can be written down.

Even when completely general solutions cannot be explicitly written down,
it is often possible to find reasonably general classes of specific solution.

Do as much as possible...

6.7.4 Specific variable-coefficient extension of Euler’s
equation

Show that
u(x, y) = f(2x+ y2) + g(2x− y2), (6.39)

is a general solution to the equation

y2uxx +
1

y
uy − uyy = 0, (6.40)

where f and g are arbitrary differentiable functions.
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This is a specific example of a variable-coefficient extension of the Euler
equation. Is it elliptic, parabolic, or hyperbolic?

We will have a lot more to say about this class of PDEs later.

6.7.5 Tricomi’s equation

Consider Tricomi’s PDE:
y Uxx + Uyy = 0. (6.41)

Is it elliptic, parabolic, or hyperbolic?

Try to find a general solution to this PDE...
(Don’t be surprised to find it’s impossible, at least at this stage of the

course. By the end of the course you will see techniques powerful enough to
write down a general solution for this PDE.)

We will have a lot more to say about this class of PDEs later.

——VUW——
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Chapter 7

Euler PDEs:
Standard examples

I’ll now give a catalogue of standard examples of Euler PDEs that you should
learn to recognize.

7.1 The Wave Equation

(Typical example of a hyperbolic PDE).

Uxx −
1

c2
Utt = 0.

• Here, U(x, t) represents the displacement at point x and at time t of a
string from its equilibrium position.

• That is, U(x, t) is the shape of the string at time t.

• The constant c is the velocity of the wave disturbance.

• The same equation can be used to describe sound waves or light waves;
at least in flat spacetime.

• The generalizations to get to curved spacetime are not too onerous, but
not appropriate for Math 301.
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• Usually you know:

– That the string is fixed at the origin x = 0 and at the end point
A (x = L, say).

– The initial shape of the string, U(x, 0).

– The velocity of each point x of the string, Ut(x, 0).
[most often this will be zero, the string will start from rest]

– Conditions of this sort, where you know initial values of the func-
tion and its derivatives, are called Cauchy (initial) conditions.

– It can be shown that Cauchy initial conditions are necessary and
sufficient for the existence and uniqueness of solutions.

(This is typical of those problems that are classified as hyper-
bolic — Cauchy conditions are enough to guarantee existence and
uniqueness of solutions).

• In terms of the Euler PDE

a Uxx + 2h Uxy + b Uyy = 0, (7.1)

the wave equation corresponds to

a→ 1; h→ 0; b→ − 1

c2
, (7.2)

with the notational change y → t.

• Without further calculation we can use the analysis of the Euler PDE
to immediately write down the general solution of the wave equation:

U(x, t) = f(x− ct) + g(x+ ct). (7.3)

This is d’Alembert’s solution, and I’ll have considerably more to say
about it later.
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7.2 The Heat or Diffusion equation

(Typical example of a parabolic PDE).

Ut = σ Uxx.

• Here σ is a constant, called the thermal diffusivity (heat equation) or
simply the diffusion constant.

• Such an equation often occurs in situations where diffusion occurs. For
example, consider a heated bar of metal:

U(x, t) is the temperature at time t at a point x along the bar.

You might be given:

– the initial distribution of temperature in the bar, U(x, 0).

– or, that the two ends of the bar are kept a fixed temperatures,

U(0, t) = T1, (7.4)

U(L, t) = T2, (7.5)

where L is the length of the bar.

Then again you might be told:

– the initial distribution of temperature in the bar, U(x, 0).

– or, the fact that the ends are insulated, so that no heat can pass
through them:

Ux(0, t) = 0 = Ux(L, t) for all t. (7.6)

• Typically, for parabolic equations, conditions of the type described
above will guarantee the existence and uniqueness of a solution.

• In terms of the generalized Euler PDE

a Uxx + 2h Uxy + b Uyy + c Ux + d Uy + e U + f = 0 (7.7)

the heat equation corresponds to

a→ σ; h→ 0; b→ 0; (7.8)

c→ 0; d→ −1; e→ 0; f → 0 (7.9)

with the notational change y → t.
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• There is no closed-form general solution in terms of arbitrary functions,
(at least not without doing some extra integrals), but we will later in
the course use Fourier series to give a general solution in terms of an
infinite series of suitable “basis functions”.

• Here is another trick:

U(x, t) =
exp(− x2

4σt
)

√
t

(7.10)

satisfies the heat equation for t > 0.

Check:

Uxx =

(
− 1

2σt
+

x2

4σ2t2

)
U ; Ut =

(
− 1

2t
+

x2

4σt2

)
U. (7.11)

So yes,
Ut = σ Uxx. (7.12)

This is a very specific solution to the heat equation, but we shall later
on see how to build up other interesting solutions based on this specific
solution.

• Let x0 and t0 be arbitrary constants. Show that

U(x, t;x0, t0) =
exp(− (x−x0)2

4σ(t−t0)
)

√
t− t0

(7.13)

satisfies the heat equation for t > t0.

• Hence show that for any sufficiently well behaved function s(x0, t0) the
function

U(x, t) =

∫ 0

−∞

∫ +∞

−∞
s(x0, t0)

exp(− (x−x0)2

4σ(t−t0)
)

√
t− t0

dx0dt0 (7.14)

satisfies the heat equation for t > 0.
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7.3 Laplace’s equation

(Typical of an elliptic PDE).

Uxx + Uyy = 0.

• Now U(x, y) represents, for example,

– the electrostatic potential at the point (x, y) in a piece R of di-
electric medium,

– or the Newtonian gravitational potential in empty space (outside
the sources),

– or it might represent the equilibrium temperature at the point
(x, y) inside a heated solid R.

• Typically, in problems involving Laplace’s equation, boundary condi-
tions of the following form are known:

1. You might be given the potential (temperature) on the boundary
B = ∂R of the region R:

U(x, y) is given on B. (7.15)

Such a condition is called a Dirichlet condition.
2. You might know the flux of U (that is, the gradient of U normal

to the boundary B) into the region R :

∂U

∂n
is given on B. (7.16)

Such a condition is called a Neumann condition.
3. Frequently, you might be given a mixture of Dirichlet and Neu-

mann conditions. (Robin boundary conditions.)

• So long as the boundary shape B is “reasonable”, you can be sure there
will be a unique solution to Laplace’s equation satisfying any of these
boundary conditions.

• In terms of the Euler PDE

a Uxx + 2h Uxy + b Uyy = 0, (7.17)

the Laplace equation corresponds to

a→ 1; h→ 0; b→ 1. (7.18)
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• Without further calculation we can use the analysis of the Euler PDE
to immediately write down the general solution of Laplace’s equation:

U(x, y) = f(x+ iy) + g(x− iy). (7.19)

This is Laplace’s solution, which relates the solution of the Laplace
PDE to the theory of functions of a complex variable. I’ll also have
more to say about this later.

7.4 Review: Elliptic/ Parabolic/ Hyperbolic

7.4.1 Euler PDE versus Laplace PDE:

• When is the Euler differential equation elliptic?

• When is the Euler differential equation qualitatively similar to Laplace’s
equation?

• When is it qualitatively different?

7.4.2 Euler PDE versus Wave PDE:

• When is the Euler differential equation hyperbolic?

• When is the Euler differential equation qualitatively similar to the wave
equation?

• When is it qualitatively different?

7.4.3 d’Alembert’s solution

What is the general solution of the wave equation

Utt = c2Uxx (7.20)

in terms of two arbitrary functions?

7.4.4 Laplace’s solution.

What is the general solution of Laplace’s equation

Uxx + Uyy = 0 (7.21)

in terms of two arbitrary functions?
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7.5 Other standard Euler PDEs

Additional examples of PDEs of the generalized constant-coefficient Euler
class are:

• Klein–Gordon equation:

∂2
t φ−∇2φ = −m2φ. (7.22)

– This generalizes the wave equation.
– In particle physics, suitable for a scalar particle with mass.

(For example, the Higgs particle after spontaneous symmetry break-
ing in the standard model of particle physics.)

– In plasma physics, where it is useful for describing screening
effects. (m ←→ Debye screening length.)

– Also used in super-conductivity — m is then related to the London
flux penetration depth.

– Useful for a string in a valley.
– A specific solution:

φ(x, t) = sin
(√

m2 + k2 t+ kx+ ϕ
)

(7.23)

In terms of the generalized Euler PDE

a Uxx + 2h Uxy + b Uyy + c Ux + d Uy + e U + f = 0, (7.24)

the Klein–Gordon equation corresponds to

a→ 1; h→ 0; b→ −1; (7.25)

c→ 0; d→ 0; e→ m2; f → 0, (7.26)

with the notational change x→ t, y → x.

There is also a natural generalization from (1+1) to (2+1) and (3+1)
dimensions.

• Helmholtz equation:
∇2φ = m2φ. (7.27)

– Generalizes Laplace’s equation.
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– Often results from the wave equation after “separation of vari-
ables” — lots more on this later!

– Also used in early nuclear physics — the pion potential.
– In 3 dimensions a specific solution is:

φ =
exp(−mr)

r
. (7.28)

∇φ = −(1 +mr) exp(−mr) r̂

r2
. (7.29)

– Note exponential modification of “inverse square” law.

In terms of the generalized Euler PDE

a Uxx + 2h Uxy + b Uyy + c Ux + d Uy + e U + f = 0, (7.30)

the Helmholtz equation corresponds to

a→ 1; h→ 0; b→ 1; (7.31)

c→ 0; d→ 0; e→ m2; f → 0. (7.32)

There is a natural generalization to three space dimensions.

• Maxwell equations (source free):

div E = 0; (7.33)

curl B − ∂tE = 0; (7.34)

div B = 0; (7.35)

curl E + ∂tB = 0. (7.36)

These four PDEs link the space and time dependence of electric and
magnetic fields. (Thankfully they are linear PDEs, which is why we
can do such a lot with them.) These equations are very well understood
and underly much of humanity’s pre-quantum technology.

The Maxwell equations can be put into the form of a system of Euler
PDEs, with electric fields coupled to magnetic fields.

For a small challenge, use the rules of vector calculus to derive wave
equations for E and B:

∂2
tE −∇2E = 0; (7.37)
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∂2
tB −∇2B = 0. (7.38)

Note that for simplicity I have adopted units where the speed of light
equals unity.

For a small challenge, write F = E + iB and show that the (source
free) Maxwell equations reduce to

div F = 0; curl F = i Ḟ (7.39)

By now I hope you are convinced of the central importance of the Euler
PDE, both in its original form and in the generalized constant-coefficient
case. (And later on we’ll see even more generalizations.)

——VUW——
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Chapter 8

The d’Alembert solution

8.1 General solution and boundary conditions

Suppose U(x, t) satisfies the wave equation

Uxx −
1

c2
Utt = 0,

and suppose that the BC (actually, IC) are:

U(x, 0) = f(x), (8.1)

Ut(x, 0) = g(x). (8.2)

For example, U(x, t) could be the displacement of an infinitely long stretched
string set vibrating from its equilibrium position along the X-axis by starting
it off with the shape defined by f(x) and the velocity g(x).
The general solution to this equation is

U(x, t) = F (x+ ct) +G(x− ct), (8.3)

where F and G are arbitrary functions.

• But we do not at this stage know what F and G look like in terms of
our “given” data, f and g, that is the problem we will now solve.

Applying the initial conditions, we have

F (x) +G(x) = f(x), (8.4)

c F ′(x)− cG′(x) = g(x), (8.5)

where ′ denotes derivative.
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These equations can be solved to find

F (x) =
1

2c

∫ x

a

g(s) ds+
1

2
f(x), (a is arbitrary) (8.6)

and

G(x) = − 1

2c

∫ x

a

g(s) ds+
1

2
f(x), (8.7)

so that the general solution, when constrained in terms of the two initial
conditions f and g, is:

U(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct
g(s) ds.

If, for example, the string was released from rest, so that g(x) = 0, and
if its initial displacement is f(x), we find

U(x, t) =
1

2
[f(x+ ct) + f(x− ct)]

which shows that the displacement travels down the string both ways, keeping
its shape, with velocity c. Thus we can interpret the constant c in the wave
equation as the velocity of the ensuing waves of vibration.

Question 8
How does this generalize to more than one space dimension?
In fact, does this generalize to more than one space dimension?

8.2 Difficulties with d’Alembert’s solution

Many problems have equations for which the general solution is easy to find,
but for which other conditions (boundary conditions, initial condition) make
it impossible to solve by using this general solution. In d’Alembert’s solution,
for example, we knew the initial shape of the string, so we required our general
solution to also satisfy the Boundary Conditions, leading to the functional
equations:

F (x) +G(x) = f(x), (8.8)

c F ′(x)− c G′(x) = g(x), (8.9)

for the arbitrary functions F and G.
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In d’Alembert’s case, these were easy equations to solve: but in many
other cases, the functional equations that result from the BC are extremely
difficult to solve. (This is one of the reasons why we are not too concerned if
it’s not possible to write down a “general solution” for a given PDE. Though
nice to have available, once you apply boundary conditions “general solu-
tions” are not always as useful as one might hope.)

Consult the second heat equation example of the of the SOV problems/
exercises below. There, the general solution is obvious, but the equations
resulting from the boundary conditions are practically impossible to solve.

8.3 Exercises

8.3.1 An extension to d’Alembert’s solution

Show that

U(x, y, t) = F (x+ iay − vt) +G(x− iay − vt), (8.10)

where F and G are arbitrary twice differentiable functions, is a general solu-
tion (in the sense we have defined it) of the (2+1) dimensional wave equation

Uxx + Uyy =
1

c2
Utt, (8.11)

when
a2 = 1− v2/c2. (8.12)

Show that this can be rewritten (θ is a constant) as

U(x, y, t) = F̃ (x cos θ + iy sin θ − ct) + G̃(x cos θ − iy sin θ − ct), (8.13)

8.3.2 Applying d’Alembert’s solution

Solve the wave equation Uxx − Utt = 0 given that U(x, 0) = B(x) and
Ut(x, 0) = 0, where B(x) is the bump function

B(x) =

{
1 if 0 < x < 1
0 otherwise.

(8.14)

Sketch the shape of U(x, t) at some future times t > 0; say t = 2, 4, 6,
and 8. What is the wave velocity?

——VUW——
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Chapter 9

Euler equation with variable
coefficients

9.1 Definitions

It is often useful to consider a further extension of the definition of the Euler
PDE:

Definition 12
The generalized variable-coefficient Euler PDE is

a(x, y) Uxx + 2h(x, y) Uxy + b(x, y) Uyy + c(x, y) Ux + d(x, y) Uy

+e(x, y) U + f(x, y) = 0, (9.1)

where a, b, h, and c, d, e, f are now functions of x and y.

(And at least one of the second-order coefficients a, b, or h,
is not identically zero.)

• This is not really as painful as it looks.

• Note that this is simply another name for the most general linear
second-order PDE.
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• First let’s simultaneously focus attention on the second-order deriva-
tives, and generalize the Euler equation even further by allowing for a
nonlinear source term. Consider the form below.

Definition 13
The generalized variable-coefficient Euler PDE (with non-linear source) is

a(x, y) Uxx + 2h(x, y) Uxy + b(x, y) Uyy = F (x, y, U, Ux, Uy), (9.2)

where a, b, and h are functions of x and y, and F is a function of its indicated
arguments.

(And at least one of the second-order coefficients a, b, or h,
is not identically zero.)

• This is still less general than the class of quasi-linear Euler PDEs, see
below.

9.2 Canonical form

A remarkable result in 2-dimensions is that by a change of coordinates the
variable coefficients of the second-order terms can always be made constant,
and the Euler equation can always be brought into a simple canonical form.
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Theorem 6
In 2 dimensions, as long as a(x, y), h(x, y), and b(x, y) are not all zero, you
can always divide the plane into disjoint regions in each of which you can,
by change of independent variables, bring the generalized variable-coefficient
Euler PDE

a(x, y) Uxx + 2h(x, y) Uxy + b(x, y) Uyy = F (x, y, U, Ux, Uy), (9.3)

into the form
Uxx + ε Uyy = F̃ (x, y, U, Ux, Uy), (9.4)

where ε = ±1 or 0, and F̃ is a function of its indicated arguments.

Furthermore

ε = sign
[
a(x, y) b(x, y)− h(x, y)2

]
. (9.5)

• This theorem generalizes what we are able to do with the constant-
coefficient case.

• The existence of this theorem is one of the reasons the 2-dimensional
Laplace and wave equations are of such fundamental importance.

• Note that

det

[
a(x, y) h(x, y)
h(x, y) b(x, y)

]
= a(x, y) b(x, y)− h(x, y)2 (9.6)

can still be used to classify the PDE as elliptic, parabolic, or hyperbolic,
but that this is now a position-dependent classification — the Euler
type of the PDE can change from one part of the plane to another.

Proof of the canonical form theorem:
Consider a change of variables from x, y to x̄, ȳ. Let

x̄ = φ(x, y); ȳ = ψ(x, y). (9.7)

Assume the change of variables is invertible (at least locally) so that

x = Φ(x̄, ȳ); y = Ψ(x̄, ȳ). (9.8)
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By the inverse function theorem this will be true as long as the Jacobian is
nonzero. That is, as long as

∂(x̄, ȳ)

∂(x, y)
=

∣∣∣∣ φx φy
ψx ψy

∣∣∣∣ = φxψy − φyψx 6= 0. (9.9)

Then
U(x, y) = U(Φ(x̄, ȳ),Ψ(x̄, ȳ)) = Ū(x̄, ȳ). (9.10)

Applying the chain rule:

Ux = Ūx̄ φx + Ūȳ ψx; (9.11)

Uy = Ūȳ φy + Ūȳ ψy. (9.12)

Differentiating a second time:

Uxx = Ūx̄x̄ φ
2
x + 2Ūx̄ȳ φxψx + Ūȳȳ ψ

2
x + Ūx̄ φxx + Ūȳ ψxx; (9.13)

Uxy = Ūx̄x̄ φxφy + Ūx̄ȳ (φx ψy +ψx φy) + Ūȳȳ ψxψy + Ūx̄ φxy + Ūȳ ψxy; (9.14)

Uyy = Ūx̄x̄ φ
2
y + 2Ūx̄ȳ φyψy + Ūȳȳ ψ

2
y + Ūx̄ φyy + Ūȳ ψyy. (9.15)

Now add and collect terms to obtain

a Uxx + 2h Uxy + b Uyy = ā Ūx̄x̄ + 2h̄ Ūx̄ȳ + b̄ Ūȳȳ + ē Ūx̄ + f̄ Ūȳ, (9.16)

where
ā = a φ2

x + 2h φxφy + b φ2
y; (9.17)

h̄ = a φx ψx + 2h (φxφy + ψxφy) + b φyψy; (9.18)

b̄ = a ψ2
x + 2h ψxψy + b ψ2

y; (9.19)

ē = a φxx + 2h φxy + c φyy; (9.20)

f̄ = a ψxx + 2h ψxy + c ψyy. (9.21)

This turns the original PDE

a Uxx + 2h Uxy + b Uyy = F (x, y, U, Ux, Uy), (9.22)

into the form

ā Ūx̄x̄ + 2h̄ Ūx̄ȳ + b̄ Ūȳȳ = F2(x̄, ȳ, Ū , Ūx̄, Ūȳ), (9.23)
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but we now have the freedom to choose φ and ψ to make the transformed
coefficients ā, h̄, and c̄, as simple as possible.

Start by choosing φx and φy so that a φx + h φy 6= 0 and ā 6= 0;
this can always be done.
Then choose ψy 6= 0, and solve for h̄ = 0. This requires

ψx = −ψy
hφx + bψy
aφx + hφy

. (9.24)

We can check that these choices make sense by computing the Jacobian

∂(x̄, ȳ)

∂(x, y)
= φxψy−φyψx =

ψy
aφx + hφy

(a φ2
x + 2h φxφy + b φ2

y) =
ψy

aφx + hφy
ā,

(9.25)
which is nonzero by hypothesis. But then b̄ is easily computed to be

b̄ =
ψ2
y

(aφx + hφy)2
(ab− h2) ā. (9.26)

So at this stage we have h̄ = 0 and

sign(b̄) = sign(ab− h2) sign(ā). (9.27)

But the only thing we have used about ψy is that it is nonzero, so we are
still free to pick

ψy =
aφx + hφy√
|ab− h2|

. (9.28)

But then we have both h̄ = 0 and

b̄ = sign(ab− h2) ā. (9.29)

So in this particular coordinate system the PDE is

ā(x̄, ȳ)
{
Ūx̄x̄ + sign(ab− h2) Ūȳȳ

}
= F2(x̄, ȳ, Ū , Ūx̄, Ūȳ). (9.30)

Dividing through by ā now yields

Ūx̄x̄ + sign(ab− h2) Ūȳȳ = F3(x̄, ȳ, Ū , Ūx̄, Ūȳ). (9.31)

Now adopt the notation
ε = sign(ab− h2), (9.32)
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and drop the over-bars to obtain

Uxx + ε Uyy = F̃ (x, y, U, Ux, Uy), (9.33)

and we are done. QED!

• Note that this works in any two-dimensional region where (ab− h2) is
of constant sign.

• This includes two dimensional regions where (ab − h2) is identically
zero.

• Note that this is a relatively “straightforward” extension of what we
did for the constant-coefficient Euler equation.

• If you want to consider a two dimensional region where (ab−h2) changes
sign, then the trick is to use (ab− h2) as one of your new coordinates,
say x̄. You can still eliminate h̄ in the same way, but now

b̄ =
ψ2
y

(aφx + hφy)2
(ab− h2)× ā →

ψ2
y

(aφx + hφy)2
x̄ ā, (9.34)

and the further choice
ψy = aφx + hφy, (9.35)

now leads to

ā(x̄, ȳ)
{
Ūx̄x̄ + x̄ Ūȳȳ

}
= F2(x̄, ȳ, Ū , Ūx̄, Ūȳ). (9.36)

We now rewrite this as

Uxx + x Uyy = F̃ (x, y, U, Ux, Uy), (9.37)

which is Tricomi’s equation with a nonlinear source term.

• Note what we have done — in two dimensions the second-derivative
part of the general variable-coefficient Euler equation has been re-
duced to a very small number of standard cases — the wave equation
(with nonlinear source), Laplace’s equation (with nonlinear source), a
parabolic equation (with nonlinear source), or Tricomi’s equation (with
nonlinear source). This is a tremendous simplification.
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• This whole discussion can be given a “geometrical” interpretation which
will not make any sense until know some differential geometry (Math
464):

– Any two-dimensional manifold with a non-singular metric tensor
is locally conformally flat.

– Any two-dimensional manifold with a Euclidean metric tensor is
locally conformal to two-dimensional Euclidean space.

– Any two-dimensional manifold with a Lorentzian metric tensor is
locally conformal to two-dimensional Minkowski space.

• Unfortunately if you go beyond 2 dimensions things get a whole lot
more complicated.

– In 3 dimensions you can at least diagonalize the matrix of coeffi-
cients of the second-order terms, but you cannot make the coeffi-
cients piecewise constant.

(Proving this is not easy.)

– In 4 or more dimensions you cannot even always diagonalize the
matrix of coefficients of the second-order terms.

(Proving this is relatively easy but way outside the scope of this
course.)

– The elliptic/ parabolic/ hyperbolic distinction can still be made
but now requires more information than just the determinant of
the matrix of second order coefficients — you now need to know
the signature of that matrix, the number of positive, negative, and
zero eigenvalues.

∗ If all the eigenvalues of the matrix of second-order coefficients
are nonzero and have the same sign, then the PDE is elliptic.

∗ If all the eigenvalues of the matrix of second-order coefficients
are nonzero and some have differing sign, then the PDE is
hyperbolic.

∗ If all the eigenvalues of the matrix of second-order coefficients
are nonzero and exactly one has a different sign from all the
others, then the PDE is strictly hyperbolic.
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∗ If all the eigenvalues of the matrix of second-order coefficients
are nonzero and at least two are positive while at least two are
negative (which can only happen in four or more dimensions),
then the PDE is ultra-hyperbolic.

∗ If some of the eigenvalues of the matrix of second-order coef-
ficients are zero, then the PDE is elliptic.

9.3 Examples

Here are some examples of standard PDEs of considerable importance that
fall under the heading of variable-coefficient Euler type.

• Poisson equation:
∇2φ = ρ. (9.38)

Laplace’s equation with a position-dependent source.

– Electrostatic potential in the presence of electric charge.

– Gravitational potential in the presence of matter.

– Equilibrium temperature in the presence of heat sources.

In terms of the generalized Euler PDE

a Uxx + 2h Uxy + b Uyy + c Ux + d Uy + e U + f = 0, (9.39)

the Poisson equation corresponds to

a→ σ; h→ 0; b→ 1; (9.40)

c→ 0; d→ 0; e→ 0; f → ρ(x, y). (9.41)

There is a natural generalization to three space dimensions.

• Maxwell equation (with sources):
Adding charges and currents to the Maxwell equations

div E = ρ; (9.42)

curl B − ∂tE = j; (9.43)

div B = 0; (9.44)

curl E + ∂tB = 0. (9.45)
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In the presence of sources the Maxwell equations can be put into the
form of a system of generalized variable-coefficient Euler PDEs, with
electric fields coupled to magnetic fields, charges, and currents. You
can use the rules of vector calculus to derive wave equations for E and
B:

∂2
tE −∇2E = grad ρ− ∂tj; (9.46)

∂2
tB −∇2B = −curl j. (9.47)

You might find this form more intuitive:

(−∂2
t +∇2)E = −grad ρ+ ∂tj; (9.48)

(−∂2
t +∇2)B = curl j. (9.49)

Note that for simplicity I have again adopted units where the speed of
light equals unity, and that we are now dealing with wave equations
with sources.

• Schroedinger equation:

−i~ ∂
∂t
ψ(t, ~x) =

{
− ~2

2m
∇2 + V (t, ~x)

}
ψ(t, ~x). (9.50)

This particular PDE links the space and time dependence of the proba-
bility amplitude for finding a particle at a particular point. (Thankfully
it is a linear PDE, which is why we can do such a lot with it.) This
equation is very well understood and underlies much of humanity’s
quantum technology.

In terms of the generalized Euler PDE

a Uxx + 2h Uxy + b Uyy + c Ux + d Uy + e U + f = 0, (9.51)

the Schroedinger equation corresponds to

a→ 0; h→ 0; b→ +
~2

2m
; (9.52)

c→ −i~; d→ 0; e→ −V (t, x); f → 0, (9.53)

with the notational change x → t, y → x. There is a natural general-
ization from (1+1) to (2+1) and (3+1) dimensions.
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• Continuity equation:
∂tρ+ ~∇ · (ρ~v) = 0. (9.54)

Recall that this is a quasi-linear first order PDE. Because there are no
second-order derivatives, the continuity equation cannot be put into
Euler form.

• Euler equation (hydrodynamics):

∂t~v + (~v · ~∇)~v = −
~∇p
ρ

+
~B

ρ
. (9.55)

Recall that this is a quasi-linear first order PDE. Because there are no
second-order derivatives, the hydrodynamic Euler equation cannot be
put into Euler form.

9.4 Quasi-linear Euler PDE

Definition 14
The generalized quasi-linear Euler PDE is

a(x, y, U, Ux, Uy) Uxx + 2h(x, y, U, Ux, Uy) Uxy + b(x, y, U, Ux, Uy) Uyy

= F (x, y, U, Ux, Uy), (9.56)

where a, h, and b, are functions of x, y, U and its first derivatives, and F is
a function of its indicated arguments. (And at least one of the second-order
coefficients a, b, or h, is not identically zero.)

• Note that the quasi-linear Euler equation is simply another name for
the general quasi-linear second order PDE.

• Note that if you classify the quasi-linear Euler equations into elliptic,
parabolic, hyperbolic by looking at the sign of ab− h2, then the Euler
type can depend not only on where you are in space, but also on the
value of the dependent variable and its derivatives at that point.
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9.5 Examples

Here are some examples of standard PDEs of considerable importance that
fall under the heading of quasi-linear Euler type. (Though the interpretation
might be considered a bit strained.)

• Navier–Stokes

∂t~v + (~v · ~∇)~v = −
~∇p
ρ

+
~B

ρ
+ ν∇2~v (9.57)

~∇ · ~v = 0 (9.58)

– This is Euler’s fluid dynamic equation (Newton’s second law),
plus incompressibility, plus conservation of mass, plus a partic-
ular model for viscosity.

– Because of the viscosity term there is now at least one second-
order term in the PDE — and because this second-order derivative
occurs linearly the first of the two PDEs can be viewed as a quasi-
linear Euler PDE.

– Indeed this is a parabolic PDE.

– These equations look innocent; they are very difficult to analyze.

– The fact that they are nonlinear in the velocity field ~v is the
ultimate source of all the difficulty.

– Remember I told you that EUS is extremely difficult to prove for
generic PDEs?

– There is currently a US$1,000,000 Millennium prize from the Clay
Mathematics institute for “substantial progress towards proving
existence and smoothness” of the solutions:

Waves follow our boat as we meander across the lake, and
turbulent air currents follow our flight in a modern jet.
Mathematicians and physicists believe that an explana-
tion for and the prediction of both the breeze and the
turbulence can be found through an understanding of so-
lutions to the Navier–Stokes equations. Although these
equations were written down in the 19th Century, our un-
derstanding of them remains minimal. The challenge is to
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make substantial progress toward a mathematical theory
which will unlock the secrets hidden in the Navier-Stokes
equations.

For the details of the challenge, see:
http://www.claymath.org/prizeproblems/navier stokes.pdf

Please do not present me with any prize claims; see the rules as
given on the website.

9.6 Exercises

Classify the following PDEs according to whether or not they are

• Euler (simple, constant coefficient).

• Euler (generalized, constant coefficient).

• Euler (variable coefficient, possibly with nonlinear source).

• Euler (quasi-linear).

• Non-Euler.

Whenever they fall into one of the many Euler classes above, further classify
them according to whether they are elliptic, parabolic, hyperbolic.

(For some of these PDEs it will simply be a matter of reading the notes
and copying the answers I’ve already given.)

a. V 2 Vxy + Vx Vy + (x2 − y2)V = 3xy.

b. Uxxz − 2(x+ z)Uxyz − Uxx + sin(xyz)Uxx = cos(U)

c. Ut − UUxx + 12xUx = U .

d. Yxxx − cosY = Yt.

e. Vxt − sinV = exp(x+ t).

f. Yxx + cos(xy)Yyxy = Y + ln(x2 + y3).

g. Ut = Uxx − 12U Ux.

h. Vyx + Vx + Vy = Vxyy.

i. Utt − cos(Ux) = U .

j. cos x · Ux + sin t · Ut = U .

k. Schrodinger equation (with potential):

−i∂tψ =
1

2m
∇2ψ + V (x)ψ. (9.59)
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l. Monge–Ampere equation (2 variable):

uxxuyy − u2
xy = f(x, y, u, ux, uy). (9.60)

m. Monge–Ampere equation (multi-variable):

det

[
∂2u

∂xi ∂xj

]
= f

(
xi, u,

∂u

∂xi

)
. (9.61)

n. Navier–Stokes equation:

∂t~v + (~v · ~∇)~v =
~∇p
ρ

+ ν∇2~v. (9.62)

o. Tricomi equation:
y Uxx + Uyy = 0. (9.63)

p. Frobenius–Mayer equation (special case, one dependent variable):

∂U

∂xi
= Fi(x, U). (9.64)

q. Biharmonic equation:
∇4Ψ = 0. (9.65)

That is, (∇2)2 Ψ = 0, or more explicitly:[
∂2
x + ∂2

y + ∂2
z

]2
Ψ = 0. (9.66)

r. Benjamin–Bona–Mahony equation:

ut + ux + uux − uxxt = 0. (9.67)

s. Chaplygin equation:

uxx +
c2 y2

c2 − y2
uyy + y uy = 0. (9.68)

t. Boissinesq equation:

utt − α2uxx = β2uxxtt. (9.69)
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u. Euler–Darboux equation:

uxy +
α ux − β uy

x− y
= 0. (9.70)

v. Korteweg–deVries–Burger:

ut + 2uux − ν uxx + µ uxxx = 0. (9.71)

w. Kirchever–Novikov equation:

ut
ux

=
1

4

uxxx
ux
− 3

8

u2
xx

u2
x

+
3

8

4u3 − g2u− g3

u2
x

. (9.72)

(Start by simplifying this a little.)

x. Lin–Tsien equation:

2utx + ux uxx − uyy = 0. (9.73)

y. Monge–Ampere equation (generalized):

E(x, y, U, Ux, Uy)
[
UxxUyy − U2

xy

]
+A(x, y, U, Ux, Uy) Uxx +B(x, y, U, Ux, Uy) Uxy + C(x, y, U, Ux, Uy) Uyy

+D(x, y, U, Ux, Uy) = 0

or even more generally (multi variable case):

E(xi, U, ∂iU) det

[
∂2u

∂xi ∂xj

]
+
∑
ij

Aij(xi, U, ∂iU) U,ij+D(xi, U, ∂iU) = 0.

(9.74)

z. Cauchy–Riemann system of PDEs:

∂u

∂x
=
∂v

∂y
; (9.75)

∂v

∂x
= −∂u

∂y
. (9.76)

After answering the question for the Cauchy–Riemann system itself,
iterate these Cauchy–Riemann equations to find a pair of PDEs that
decouple — they depend only on u, and only on v, but not both.

——VUW——
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Chapter 10

Separation of Variables

The method of Separation of Variables (SOV) is a very general technique of
fundamental importance for solving PDEs — I’ll introduce it by looking at
a specific example.

10.1 Sample problem

Example used for illustration:

Consider the wave equation

Uxx − Utt = 0, (10.1)

with boundary conditions

U(x, 0) = f(x) ( the initial shape of the string ) (10.2)

Ut(x, 0) = g(x) ( the initial velocity of the string ) (10.3)

U(0, t) = 0 ( pinned endpoint ) (10.4)

U(L, t) = 0 ( pinned endpoint ) (10.5)

This is a linear PDE.
The last two boundary conditions are called homogeneous because they

involve the dependent variable U and its derivative linearly and homoge-
neously.

The first two boundary conditions are inhomogeneous.
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10.2 The method

1. Use a trial solution of the variable-separated form:

U(x, t) = X(x) T (t). (10.6)

In the case of the example we have chosen we find

Uxx = X ′′(x) T (t), (10.7)

Utt = X(x) T ′′(t), (10.8)

and so
X ′′(x) T (t)−X(x) T ′′(t) = 0, (10.9)

where ′ stands for a derivative of the function with respect to its argument
— either x or t as appropriate.

2. Separate the variables:

With luck, the PDE will allow you to gather all terms involving one
independent variable on the left (x, say) and all other independent variables
(t in this case) on the right hand side.

We have
X ′′(x) T (t) = X(x) T ′′(t). (10.10)

Dividing both sides by X(x) T (t), we find

X ′′(x)

X(x)
=
T ′′(t)

T (t)
. (10.11)

Warning 7
If it turns out that you cannot separate the variables this way, then you will
have to solve the DE some other way, because SOV won’t work.

Warning 8
Though rare, sometimes you might have to try additive SOV

U(x, t) = X(x) + T (t). (10.12)
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3. Find corresponding ODEs:

Each of the separated terms must be a constant.
Thus you find two ODEs to solve, involving as yet arbitrary constants.

Use the fact that the only way you can have a function F (x), of one
variable x, equal to another function G(t), of another independent variable t,
is to have both functions constant. Using this find ODEs that the separated
functions must satisfy.

We have therefore:

X ′′(x)

X(x)
= k, and

T ′′(t)

T (t)
= k, (10.13)

where k is some constant (as yet to be determined).
Thus we obtain a pair of ODEs for the unknown functions X and T .

X ′′ = k X; (10.14)

T ′′ = k T. (10.15)

If there are more than two independent variables, you will need to con-
tinue the separation of variables procedure.

At the end, you should finish up with a collection of ODEs, one for each
of the assumed functions in the separated variable form.

4. The ODEs can be solved in the usual way.

Doing so will give the functions X(x) and T (t) in terms of a selection of
arbitrary constants.

X = A e
√
kx +B e−

√
kx; (10.16)

T (t) = C e
√
kt +D e−

√
kt. (10.17)

103



5. Apply homogeneous boundary conditions.

Now apply any homogeneous boundary conditions that you may have, in
order to find out some information about the constants A, B, C, D and k
that are lying about.

Note that, if U(x, t) = X(x) T (t), and if one of the boundary conditions
is U(0, t) = 0 = X(0)T (t), then we must have X(0) = 0, since we certainly
do not want T (t) = 0.

(That would make U(x, t) identically zero, which is uninteresting.)
More specifically: If T (t) = 0, then U(x, t) = 0 for all values of t and x, so

we have the trivial solution [which obviously will not satisfy the remaining
initial conditions, which have U(x, t) nonzero for some values of x and t].
Thus, we will always look for “non-trivial” solutions only.

At this point it becomes apparent that some values of k are acceptable,
and others not.

Indeed, in the case we are treating here, k cannot in fact be positive:

• If k > 0, so we can write k = b2 for some real b, then

X(x) = A ebx +B e−bx. (10.18)

Then the boundary conditions imply

X(0) = 0 : A+B = 0, (10.19)

X(L) = 0 : A ebL +B e−bL = 0, (10.20)

which has the unique solution A = 0 = B.

But this solution would imply that X(x) = 0 for all x, and hence
U(x, t) = 0 for all x and t — i.e. the solution is trivial.

Thus, to avoid triviality, k must be zero or negative, and we can write

k = −b2, (10.21)

where b is real or zero, to stress this fact.
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• In that case, the solution to the equation for X is, in general,

X(x) = A sin(bx) +B cos(bx). (10.22)

Applying the conditions then gives

B = 0 and A sin(bL) = 0. (10.23)

Since we want to avoid trivial solutions, (so we don’t want both A and
B to be zero), we must ask that

sin(bL) = 0, (10.24)

which means that

bL = nπ where n = 1, 2, 3, . . . is a positive integer. (10.25)

i.e. b =
nπ

L
. (10.26)

• But this now means that T (t) is very tightly constrained, it must satisfy

T ′′(t)

T (t)
= k = −b2 = −n

2π2

L2
, (10.27)

with general solution

T (t) = An sin

(
nπt

L

)
+Bn cos

(
nπt

L

)
. (10.28)

Thus we have discovered that

U(x, t) = X(x) T (t) (10.29)

= An sin
(nπx
L

)
sin

(
nπt

L

)
+Bn sin

(nπx
L

)
cos

(
nπt

L

)
is a solution of the wave equation whatever the constants An and Bn, and
whatever the integer n. Here we have written the constants A and B suffixed
with n, to stress the fact that they can be different constants for each choice
of k = −b2 = −n2π2/L2 , or equivalently, any choice of the integer n.
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6. Superposition:

By the principle of superposition, any arbitrary linear combination of
these solutions is also a solution satisfying the same homogeneous conditions.

Note that this works because the equation is linear and the boundary
conditions are homogeneous (i.e., if we had done the above work and found
a class of solutions satisfying non-homogeneous conditions, then we could
not assert that arbitrary linear combinations of them also satisfy both the
equation and the conditions!)

That is,

U(x, t) =
∞∑
n=0

{
An sin

(nπx
L

)
sin

(
nπt

L

)
+Bn sin

(nπx
L

)
cos

(
nπt

L

)}
(10.30)

is a solution too, satisfying the same homogeneous conditions.

Warning 9
Note that the whole SOV approach is primarily designed for use on linear
PDEs.

If the PDE is not linear, then even if you succeed in separating variables
(difficult at best), you could not now appeal to superposition to construct the
general solution.

Though there is a considerable industry of applying SOV to quasi-linear
and nonlinear PDEs, that industry is aimed more at finding specific solutions
rather than general solutions.

See, for instance, the Polyanin series of handbooks on PDEs for more
than you ever wanted to know about “functional separation of variables”.

Note 1
Thankfully, many of the most important PDEs are linear.
For example:

• wave equation;

• heat equation;

• Laplace’s equation;

• many Euler equations;

• and their cousins.
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Note 2
For more complicated nonlinear PDEs such as

• Einstein’s equations of general relativity,

• Navier–Stokes equations of fluid mechanics,

the situation is much messier.
(And SOV is typically not a useful technique for solving those PDEs —
unless you have an awful lot of symmetry in the problem; which means [by
definition] that you cannot be looking for a truly general solution.)

Question 9
The generalization to non-homogeneous boundary conditions is actually not
too difficult. (Just make sure it’s a linear PDE.) Any ideas?

7. Fit series:

Now try to fit the series solution you have found to the remaining non-
homogeneous conditions. (Typically, but not always, initial conditions.)

In general you will get something like the Fourier problem, for which the
solution is well known. (You have not seen Fourier series yet. Fourier series
are the next topic.)

The condition
U(x, 0) = f(x), (10.31)

gives
∞∑
n=0

Bn sin(nπx/L) = f(x), (1) (10.32)

(note that there is effectively no B0) and the condition

Ut(x, 0) = g(x), (10.33)

gives
∞∑
n=0

An
nπ

L
sin(nπx/L) = g(x). (2) (10.34)
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Historically this is the way Fourier series were first encountered.

Since f(x) and g(x) above are arbitrary functions of x, and physically
we know the vibrating string had better have a mathematical solution for
arbitrary initial data, and the SOV technique seems to indicate that f(x)
and g(x) must be sums of sines and cosines, this strongly suggests that (more
or less) arbitrary functions of x can be represented as sums of sines and
cosines.

This is the “miracle” of Fourier series, and at first mathematicians and
physicists simply did not believe their own results.

From Fourier Series theory the constants An and Bn can be found in the
usual way. (I will justify these formulae later.)
From (1)

An =
2

nπ

∫ L

0

g(x) sin(nπx/L) dx [n = 1, 2, 3, ....], (10.35)

and from (2) we have

Bn =
2

L

∫ L

0

f(x) sin(nπx/L) dx [n = 1, 2, 3, ....], (10.36)

and so the general solution satisfying all the given conditions is

U(x, t) =
∞∑
n=0

[An sin(nπx/L) sin(nπt/L) +Bn sin(nπx/L) cos(nπt/L)] ,

(10.37)

with the specific An, Bn found above.
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8. A specific example:

Suppose the string has length L = 2, and was plucked in such a way that

f(x) =


x/10 for 0 = x = 1;

(2− x)/10 for 1 = x = 2.
(10.38)

and
g(x) = 0, (10.39)

corresponding to the string being initially held fixed.
Then you find

An = 0 for all n, (10.40)

and

Bn =
2

nπ
[1− cos(nπ)]

[
2

nπ
sin(nπ/2)− cos(nπ/2)

]
, (10.41)

and the explicit solution to our example is

U(x, t) =
∞∑
n=0

{
2

nπ
[1− cos(nπ)]

[
2

nπ
sin
(nπ

2

)
− cos

(nπ
2

)]
× sin

(nπx
L

)
cos

(
nπt

L

)}
, (10.42)

which is perhaps not very edifying!
You can use Maple to plot a diagram of the sum taking, say, the first ten

terms (this should give a pretty good picture of the situation).

Exercise 2 Use Maple to generate a plot, truncated at the 30’th term, for
time values t = 0.0,0.5, 1.0, 1.5, and 2.0. You should see quite clearly the
development of the oscillations in the string. Note that the rounded edges
near peaks are simply due to the truncation.
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10.3 Comments on SOV

10.3.1 Possible complications

I have presented only the simplest form of the SOV technique. It can be
modified in much more general ways. For example, for systems where there
is some version of spherical symmetry it is often useful to write

U(t, x, y, z) = T (t) R(r) L(θ) Φ(φ). (10.43)

If you then consider the (3 + 1)–dimensional wave equation it will separate,
but you might be a little surprised at the results

• T (t) is a complex exponential (cis: cosine plus i sine).

• Φ(φ) is a complex exponential (cis: cosine plus i sine).

• L(θ) is a Legendre polynomial in the variable cos θ.

• R(r) is a spherical Bessel function.

• The combinations Y (θ, φ) = L(θ) Φ(φ) are the spherical harmonics.

In other words, sines and cosines often arise in SOV, but more complicated
functions also show up.

If you are solving the wave equation on a circular drum-head [two space
dimensions, one time dimension] you will typically get

U(t, x, y) = T (t) B(r) Φ(φ). (10.44)

Here:

• T (t) is a complex exponential (cis: cosine plus i sine).

• Φ(φ) is a complex exponential (cis: cosine plus i sine).

• B(r) is an ordinary Bessel function.

Again, sines and cosines often arise in SOV, but more complicated functions
also show up.

Comment 5 Of course, the fact that Bessel functions (both ordinary and
spherical) show up in such simple applications of SOV to the wave equation
is the fundamental reason why applied mathematicians are so interested in
Bessel functions — this is why they have been given a special name, and why
the properties of Bessel functions have been so intensely investigated.
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10.3.2 A sufficient condition

A sufficient condition for the SOV technique to work is described below:
Consider the linear homogeneous PDE

DnUn − λnUn = 0, (10.45)

where Dn is some partial differential operator in n independent variables.
If you can find a coordinate system such that the partial differential

operator decomposes into something proportional to a sum of an ordinary
differential operator plus a lower-dimensional partial differential operator,

Dn = D1 + h1(x1) Dn−1, (10.46)

where D1 is an ordinary differential operator which involves only one of the
independent variables, h1 is a function which depends only on x1, and Dn−1

involves the remaining n − 1 independent variables, then you can begin to
apply the SOV technique.

Definition 15 Partially separable coordinates:
A coordinate system such that

Dn = D1 + h1 Dn−1, (10.47)

is said to be partially separable for the partial differential operator D.

To see how this works take

Un = X(x1) Un−1(xi 6=1), (10.48)

then
DnUn = (D1X) Un−1 +X h1 (Dn−1Un−1), (10.49)

which implies
D1X

X
+ h1

Dn−1Un−1

Un−1

− λn = 0. (10.50)

That is (
D1X

X
− λn

)
1

h1

+
Dn−1Un−1

Un−1

= 0, (10.51)
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with the first term depending only on x1 and the second only on the other
n− 1 independent variables xi 6=1.

Therefore there exists a number λn−1, the separation constant, such that

Dn−1Un−1 = λn−1 Un−1; (10.52)

D1X = {λn − λn−1 h1}X. (10.53)

This has reduced the number of independent variables by one, and split the
problem into a simpler PDE in n − 1 independent variables, plus a linear
ODE. If you can iterate this process all the way down to n = 1 then the
system is completely separable. (And even if the problem is only partially
separable, that may still represent significant progress.)

10.3.3 Examples

For the Laplacian operator the following coordinate systems are separable:

• Cartesian coordinates

∇2 =

(
∂

∂x

)2

+

(
∂

∂y

)2

+

(
∂

∂z

)2

. (10.54)

• Spherical polar coordinates

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

cot θ

r2

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2
(10.55)

Now apply the above analysis to re-write this as:

∇2 =

[
∂2

∂r2
+

2

r

∂

∂r

]
+

1

r2

[{
∂2

∂θ2
+ cot θ

∂

∂θ

}
+

1

sin2 θ

{
∂2

∂φ2

}]
(10.56)

Note it is completely separable.

• There are nine other separable coordinate systems known for the 3-d
Laplacian; some are relatively simple (cylindrical polar coordinates)
others are more obscure (prolate and oblate spheroidal coordinates).
And some I’ve never heard of.
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10.3.4 Boundary Conditions

To finish applying SOV you will need to verify that in this same coordinate
system the boundary conditions “factorize” in the sense that they can be
written as independent sets of boundary conditions for each variable xi that
do not “cross communicate” with each other.

10.4 Exercises

10.4.1 Heat equation

A square copper sheet has its edges maintained at prescribed temperatures.
Along the x and y axes the temperature is held to zero (say by a nice big
block of ice). The temperature is also held to zero along the side given by
the line x = 1. Finally, along the fourth edge of the square at y = 1 the
temperature is held at 100x(1−x) — so that it is zero at the edges and rises
quadratically with a maximum of 25 at the centre of this edge.
When all has settled down to equilibrium, the distribution of heat in the slab
satisfies Laplace’s equation

Uxx + Uyy = 0 (0 ≤ x, y ≤ 1). (10.57)

where U(x, y) is the temperature at the point (x, y) in the slab.
From the situation described, we have the boundary conditions:

U(x, 0) = 0; (10.58)

U(0, y) = 0; (10.59)

U(1, y) = 0; (10.60)

U(x, 1) = 100x(1− x). (10.61)

a. Find the distribution of temperature in the slab at equilibrium.

[Of course, you will try separation of variables: U = X(x) Y (y), and
deduce that X ′′ = −b2X and Y ′′ = b2Y where b is real. You will also
demonstrate that X cannot satisfy the alternative possibility X ′′ =
+b2X for real b. Then you will apply the homogeneous BC to find out
about b.

b. An isotherm is a curve of constant temperature. Sketch the isotherms
for temperatures 0, 10, 20, 30 and 40 degrees. [Here is your chance to
use Maple.]
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10.4.2 Applying Laplace’s general solution

Have a go at the previous question by noting that the general solution of
Uxx + Uyy = 0 is given by

U(x, y) = F (x+ iy) +G(x− iy), (10.62)

(where F and G are arbitrary functions) and trying to fit this general solution
to the given conditions.

Do not be surprised to find that it seems impossible.

10.4.3 Elastic string
(from SOV to d’Alembert and back again)

For a finite elastic string stretched between x = 0 and x = L, the equation
describing its displacement U(x, t) away from the equilibrium configuration
at position x at time t is the wave equation

∂2U(x, t)

∂x2
− 1

c2

∂2U(x, t)

∂t2
= 0. (10.63)

Here c is a constant depending on the elastic properties of the string and its
tension. We shall suppose c = 1. The appropriate boundary conditions for
the problem are:

i. BC1: U(x, 0) = f(x) for 0 < x < L, describing the initial shape of the
string when first plucked.

ii. BC2: Ut(x, 0) = 0 for 0 < x < L, stating that the string initially was
held in the shape of f(x) and was then released from rest.

iii. BC3: U(0, t) = 0, stating that the string is permanently fixed at x = 0.

iv. BC4: U(L, t) = 0, stating that the string is also permanently fixed at
x = L.

When you solve this equation using the method Separation of Variables, you
find the solution is of the form:

U(x, t) =
∞∑
n=0

An sin(nπx/L) cos(nπt/L). (10.64)
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Here

An =
2

L

∫ L

0

f(x) sin(nπx/L) dx. (10.65)

You will notice that the solution you have here is defined for all x and t. For
any fixed t it is an odd function for all x which is periodic with period 2L
and for any fixed x it is an even function which is periodic with period 2L.

On the other hand, you know that the general solution to the wave equa-
tion is U(x, t) = F (x + t) + G(x − t) where F and G are arbitrary. The
boundary conditions then imply that:

F (x) +G(x) = f(x) for 0 < x < L; (10.66)

F ′(x) +G′(x) = 0 for 0 < x < L; (10.67)

F (t) +G(−t) = 0 for all t; (10.68)

F (L+ t) +G(L− t) = 0 for all t. (10.69)

Use these conditions to show that U(x, t) has the properties alluded to above,
viz that it is defined for all x and t, for any fixed t it is an odd function for all
x which is periodic with period 2L and for any fixed x it is an even function
which is periodic with period 2L.

Hence show in general that the solution can be expressed in the form you
found using separation of variables.

10.4.4 Heat equation

Solve the heat equation for diffusion of heat down a bar of length L = 10:

Uxx =
1

k2
Ut (10.70)

subject to the conditions

U(x, 0) = x for 0 < x < 5 (10.71)

= 10− x for 5 < x < 10 (10.72)

U(0, t) = 0 = U(10, t). (10.73)

Take k = 1 for argument’s sake.
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Graph the distribution of temperature down the bar:

i. Initially.

ii. At time t = 3 (Plot only the first few terms of the Fourier series you
should have. Indeed, if you are a Maple fanatic, you could present a
rather good time sequence here. Choose a value for k for yourself.)

iii. After an extremely long time.

——VUW——
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Chapter 11

Fourier series

11.1 Basics

Based on the example we used to describe the SOV principle, we found
strong reasons for suspecting that relatively general functions f(x) should be
representable as sums of sines and cosines:

f(x) =
∞∑
n=0

[An cos(πnx/L) +Bn sin(πnx/L)] . (11.1)

In this chapter we will ask (and partially answer) how general this sort of
decomposition is, and how to calculate the coefficients An and Bn.

11.2 Fourier coefficients

As it turns out, calculating the coefficients is easy: Suppose we have a func-
tion f(x) defined on the interval (0, L), and suppose that in that interval it
is described by a Fourier series

f(x) =
∞∑
n=0

[An cos(πnx/L) +Bn sin(πnx/L)] , (11.2)

which we shall assume converges (at least “almost everywhere”, in some
point-wise sense).
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Warning 10 There is nothing sacred about the use of the interval [0, L].
Any interval [a, b] could be used as long as you are willing to translate and
rescale the domain of the function. You could, for instance always choose
to work on the domain [0, 1]. Working on [0, L] is a compromise between
complete generality and obtaining tractable equations.

Note that the Fourier sum is automatically periodic under x → x + 2L,
even if the original function f(x) is undefined outside of this range.

Now consider the four integrals:

∫ L

−L
cos(πnx/L) cos(πmx/L) dx = L (δmn + δm0 δn0) ; (11.3)

∫ L

−L
sin(πnx/L) sin(πmx/L) dx = L (δmn + δm0 δn0) ; (11.4)

∫ L

−L
sin(πnx/L) cos(πmx/L) dx = 0; (11.5)

∫ L

−L
cos(πnx/L) sin(πmx/L) dx = 0. (11.6)

Proof:
For example, suppose to start with that both n+m and n−m are nonzero.
Then, taking x = z L and dx = Ldz, we have

∫ L

−L
cos(πnx/L) cos(πmx/L) dx = L

∫ 1

−1

cos(πnz) cos(πmz) dz (11.7)

=
L

2

∫ 1

−1

{cos(π[n+m]z) + cos(π[n−m]z)} dz (11.8)

=
L

2

2

π

{
1

n+m
sin(π[n+m]z)|1−1 +

1

n−m
sin(π[n−m]z)|1−1

}
(11.9)

= 0. (11.10)

Thus this integral is definitely zero if both n+m and n−m are nonzero.
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If n+m = 0 but n−m 6= 0 (i.e., n = −m 6= 0) then∫ L

−L
cos(πnx/L) cos(πmx/L) dx = L

∫ 1

−1

cos(πnz) cos(πmz) dz

= L

∫ 1

−1

cos2(πnz) dz (11.11)

= L× 2× 1

2
(11.12)

= L (11.13)

Similarly if n−m = 0 but n+m 6= 0 (i.e., n = m 6= 0) then∫ L

−L
cos(πnx/L) cos(πmx/L) dx = L

∫ 1

−1

cos(πnz) cos(πmz) dz

= L

∫ 1

−1

cos2(πnz) dz (11.14)

= L× 2× 1

2
(11.15)

= L (11.16)

Finally if n = m = 0∫ L

−L
cos(πnx/L) cos(πmx/L) dx =

∫ L

−L
1 dx (11.17)

(11.18)

= 2L. (11.19)

Collecting these results, in all cases we have∫ L

−L
cos(πnx/L) cos(πmx/L) dx = L (δmn + δm0 δn0) . (11.20)

The other three integrals are just minor variations on this theme.

Exercise 3 Check the other three integrals.
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So now we play a trick. Take f(x) to be defined in x ∈ (0, L) and extend it,
in any completely arbitrary way, to a function f̂(x) defined on x ∈ [−L,+L].

Warning 11 There is again nothing sacred about the use of the interval
[−L,L]. Any interval [a, b] could be used as long as you are willing to translate
and rescale the domain of the function. You could, for instance, always
choose to work on the domain [−1, 1]. Working on [−L,L] is a compromise
between complete generality and obtaining tractable equations.

Assume that f̂(x), defined on [−L,L], possesses a Fourier series

f̂(x) =
∞∑
n=0

[An cos(πnx/L) +Bn sin(πnx/L)] . (11.21)

Now multiply both sides of this equation by cos(πmx/L) and integrate from
−L to +L.∫ L

−L
cos(πmx/L) f̂(x) dx =

∞∑
n=0

[An L (δmn + δm0 δn0)] . (11.22)

Then the sum over n is trivially done and

A0 =
1

2L

∫ L

−L
f̂(x) dx. (11.23)

An 6=0 =
1

L

∫ L

−L
cos(πnx/L) f̂(x) dx. (11.24)

Similarly if we multiply both sides of this equation by sin(πmx/L) and
integrate from −L to +L we have∫ L

−L
sin(πmx/L) f̂(x) dx =

∞∑
n=0

[Bn L (δmn + δm0 δn0)] . (11.25)

Then, summing over n, we have

B0 = 0. (11.26)

Bn 6=0 =
1

L

∫ L

−L
sin(πnx/L) f̂(x) dx. (11.27)

120



Currently, these formulae have been derived under the assumption that the
series converges. We assume that

f̂(x) =
∞∑
n=0

[An cos(πnx/L) +Bn sin(πnx/L)] , (11.28)

with f̂(x) defined on [−L,+L], makes sense!

Remarks:

• These formulae for the coefficients are often called the Euler–Fourier
formulae. (Or sometimes just the Euler formulae — Euler did a truly
tremendous amount of research on PDEs.)

• The above shows how to find Am and Bm, given that f(x) is extended
in some arbitrary way to f̂(x), and given that f̂(x) can be written as
an infinite Fourier series.

• It does not (yet) follow that, if you were to calculate the Am and Bm

by this prescription, and put these values of Am and Bm back into
the series, that the resulting series would always converge to f(x).
(In fact it does not always converge; at best it is convergent “almost
everywhere”.)

• There is a large degree of arbitrariness in the prescription — f(x) can
be extended to f̂(x) in an arbitrary way and we still seem to get a
sensible Fourier series?

What on earth is going on here? [Explanation below.]

• A necessary condition for the Fourier series to exist is that the Fourier
coefficients be well defined, which in turn requires (at the very least),
that f̂(x) be integrable.

• Now let’s try for sufficient conditions.
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11.3 Fourier series

Definition 16 Piecewise continuity:
A function f(x) is piecewise continuous on the interval a < x < b if the
interval can be partitioned into a finite number of sub-intervals by using the
points a = x0 < x1 < x2... < xn = b and verifying that:

• f(x) is continuous on each of the subintervals (xi, xi+1).

• f(x) approaches a finite limit as the endpoints of each subinterval are
approached from within the subinterval.

That is, if

f(x+
i ) = lim

h→0+
f(xi + h) and f(x−i ) = lim

h→0−
f(xi + h) (11.29)

both exist and are finite for all i = 0, 1, 2, . . . n.

Theorem 7 Fourier’s general theorem:
Suppose that the functions f̂(x) and f̂ ′(x) are both piecewise continuous on
the interval −L ≤ 0 ≤ L, then

• f̂(x) has a Fourier series whose coefficients are determined by the
Euler–Fourier formulae above.

• the Fourier series converges to f̂(x) at all points where f̂(x) is contin-
uous, and converges to 1

2
[f̂(x+) + f̂(x−)] at points of discontinuity.
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Remarks:

• The conditions of this theorem are certainly sufficient for the conver-
gence of the Fourier series. They are not necessary. Further, they are
not even the most general sufficient conditions. As far as I can tell,
nobody knows the minimal necessary and sufficient conditions for the
Fourier series to converge to the function almost everywhere.

• That is, we know many different theorems specifying necessary con-
ditions, and many other quite different theorems specifying sufficient
conditions, but no-one seems to know the minimal necessary and suf-
ficient conditions for convergence. Research is ongoing...

For more background information, see:
http://en.wikipedia.org/wiki/Convergence_of_Fourier_series

Proof: Convergence of the Fourier series:
We here reproduce Kreyszig’s proof of convergence for the Fourier series

for functions f̂(x) which are continuous, have continuous second derivatives,
and which are periodic with period 2L. This convergence theorem is useful
because of its simplicity and because it illustrates the use of convergence
theorems you should already have seen.

The more general case enunciated above, and the proof that it actually
converges to the values stated, requires more analysis than we have done.

Note that under the conditions stated, f̂(−L) = f̂(L) and f̂ ′(−L) =
f̂ ′(L). Integrating the Euler–Fourier formulae (for n 6= 0) by parts we find
that

An =
1

L

∫ L

−L
cos(πnx/L) f̂(x) dx

=
f(x) sin(πnx/L)

nπ

∣∣∣∣+L
−L
− 1

nπ

∫ L

−L
sin(πnx/L) f̂ ′(x) dx

= − 1

nπ

∫ L

−L
sin(πnx/L) f̂ ′(x) dx. (11.30)

(The contributions from upper and lower limits vanish because the sine func-
tion is zero there.)
Now integrate by parts again

An =
f ′(x) cos(πnx/L)

nπ (nπ/L)

∣∣∣∣+L
−L
− 1

nπ (nπ/L)

∫ L

−L
cos(πnx/L) f̂ ′′(x) dx
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= − L

n2π2

∫ L

−L
cos(πnx/L) f̂ ′′(x) dx. (11.31)

(The contributions from upper and lower limits cancel because the second
derivative is periodic.)
But now, because f̂(x) by assumption has a continuous second derivative on
[−L,+L], it must be bounded

|f ′′(x)| < M. (11.32)

Therefore

|An| <
L

n2π2

∫ L

−L
| cos(πnx/L) f̂ ′′(x)| dx < L

n2π2

∫ L

−L
Mdx <

2ML2

n2π2
.

(11.33)
Similarly, we can bound the Bn for all n (just repeat the analogous steps)

|Bn| <
2ML2

n2π2
. (11.34)

But then

|Fourier series| < |A0|+ 4M

(
1 +

1

22
+

1

32
+

1

42
+ . . .

)
. (11.35)

And this series definitely does converge. Therefore the Fourier series con-
verges.

Note 3 It is a standard result that

1 +
1

22
+

1

32
+

1

42
. . . = ζ(2) =

π2

6
. (11.36)

This is called the “Basel problem”, and was solved by, surprise, Euler.

Note 4
(For the dedicated): In fact by the Weirstrauss uniform convergence test the
Fourier series converges uniformly; which ultimately justifies the way we have
cavalierly interchanged summations and integrations.

Note 5
(For the dedicated): A considerably more subtle proof is needed if you want
to get away with piecewise continuity as your only input assumption.

Note 6

|Fourier series| < |A0|+
2Mπ2

3
. (11.37)
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Periodicity:

• Since sin(πx/L) and cos(πx/L) are functions which are periodic with
period 2L, it follows that the Fourier series are themselves functions
which are periodic with period 2L. Thus, unless the function f̂(x) has
the same period, the Fourier series and the function it is obtained from
can only agree on the original interval.

• On the other hand, if f̂(x) has period 2L then the series and the func-
tion agree (almost) everywhere.

References:

• Advanced Calculus, pp 321 ff.

• Kreyszig, E. Advanced Engineering Mathematics, pp 581 ff.

• In fact, any text on Engineering Mathematics will probably have a
discussion of Fourier series.

11.4 Fourier sine series

Now we are going to use the freedom of the extension process f : [0, L]→ f̂ :
[−L,L] to see if we can come up with simpler versions of the Fourier series.

Suppose we construct f̂(x) so that it is odd in the interval [−L,L]. That
is:

f̂(x) = f(x) for x ∈ (0, L) (11.38)

f̂(x) = −f(−x) for x ∈ (−L, 0) (11.39)

Then in the Euler–Fourier formulae all the coefficients An are zero and we
have

f(x) =
∞∑
n=1

[Bn sin(πnx/L)] , (11.40)

with

Bn =
1

L

∫ L

−L
sin(πnx/L) f̂(x) dx =

2

L

∫ L

0

sin(πnx/L) f̂(x) dx. (11.41)
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But then we can use the general Fourier theorem to obtain the more specific
result below:

Theorem 8 Fourier sine theorem:
If f(x) is piecewise continuous, with piecewise continuous derivatives, then
the Fourier sine series converges for all values of x in the interval [0, L].

Furthermore:

i. If x is a point in (0, L) where the function f(x) is continuous, then the
series converges to f(x).

ii. If x is a point in (0, L) where f(x) has a discontinuity, then the series
converges to

1

2
[f(x+) + f(x−)]. (11.42)

iii. At the points x = 0 and x = L, the series converges to y = 0.
[Not to f(0) and f(L).]

Proof:
The proof of the full theorem requires much more analysis than we have

developed. However, there is a proof of convergence given in Kreyszig for
C2 functions which are periodic with period 2L which is relatively straight-
forward. We have reproduced it above for the full Fourier series case; and
nothing extra is required for the Fourier sine theorem.

11.5 Fourier cosine series

As for the sine series:
Suppose we construct f̂(x) so that it is even in the interval [−L,L]. That

is:

f̂(x) = f(x) for x ∈ (0, L); (11.43)

f̂(x) = +f(−x) for x ∈ (−L, 0). (11.44)
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Then in the Euler–Fourier formulae all the coefficients Bn are zero and we
have

f(x) =
∞∑
n=0

[An cos(πnx/L)] , (11.45)

with

An =
1

L

∫ L

−L
cos(πnx/L) f̂(x) dx =

2

L

∫ L

0

cos(πnx/L) f̂(x) dx; (11.46)

A0 =
1

2L

∫ L

−L
f̂(x) dx =

1

L

∫ L

0

f̂(x) dx. (11.47)

Theorem 9 Fourier cosine theorem:
If f(x) is piecewise continuous, with piecewise continuous derivatives, then
the Fourier cosine series above converges for all values of x in the interval
[0, L].

Furthermore:

i. If x is a point in (0, L) where f(x) is continuous, then the series con-
verges to f(x).

ii. If x is a point in (0, L) where f has a discontinuity, then the series
converges to

[f(x+) + f(x−)]/2. (11.48)

iii. At the points x = 0 and x = L, the series converges to f(0) and f(L)
respectively.

Proof: Again, as for the sine functions.
Note the full Fourier theorem is applied to f̂(x) in the interval [−L,L];

whereas the Fourier cosine theorem tells you about f(x) in the interval [0, L].
Important Note:
In the case of the Fourier cosine series, it is common practice to re-write the
series as

f(x) =
Ā0

2
+
∞∑
n=1

[
Ān cos(πnx/L)

]
, (11.49)
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with

Ān =
2

L

∫ L

0

cos(πnx/L) f̂(x) dx, (11.50)

where the same formula for Ān now holds for all n = 0, 1, 2, 3, . . .
This has the effect of simplifying the Euler formulae for the coefficients

at the cost of putting an explicit 2 in the contribution of the n = 0 mode to
the Fourier series.

Personally, if I were to bother doing this at all, I’d go one step further
and define new coefficients an such that

f(x) =
∞∑

n=−∞

an cos(πnx/L), (11.51)

with

an =
1

L

∫ L

0

cos(πnx/L) f̂(x) dx, (11.52)

so that
a−n = a+n. (11.53)

This gets rid of the explicit occurrence of the 2, completely. There’s no longer
any explicit 2’s anywhere in either the Euler formula or the Fourier series —
of course the 2 is now hiding implicitly in the fact that the summation runs
from −∞ to +∞.

Symmetry:

• Since the sin(πx/L) are odd functions, it follows that the sine series is
an odd function. Therefore, expressing f(x) as a sine series can only be
true for the interval [0, L], unless of course f(x) is itself odd, in which
case the sine series agrees (as much as it can) with f(x) over the entire
interval [−L,L].

• On the other hand, the cos(πx/L) are even functions, so a cosine series
is an even function. Therefore, expressing f(x) as a cosine series can
only be true for the interval [0, L], unless of course f(x) is itself even,
in which case the cosine series agrees (as much as it can) with f(x)
over the entire interval [−L,L].
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• If a function f(x) is odd (even) then the full Fourier series for the
function has only sine functions (cosine functions) in it. Thus we obtain
the sine (cosine) series for a function f(x) on [0, L] if we extend f(x)
to the interval [−L,L] as an odd (even) function f̂(x) and then take
the full Fourier series for it.

• For this reason we really only needed to consider the full Fourier series
above!!

11.6 Truncation errors: Gibbs phenomenon

• Naturally when plotting the Fourier series you will need to truncate.
As you may surmise from the examples above, the error made in a
truncation depends on the point x (for instance, note that near jumps
and sharp points in the function the series fluctuates rapidly and the
error rises).

• Nevertheless, if you use the orthogonality properties of the Fourier
series, then you can estimate the size of the error.

• See next chapter...

11.7 Examples of Fourier series

• A Fourier sine series for

f(x) =


x for 0 < x < 1;

(2− x) for 1 < x < 2.
(11.54)

The coefficients are given by:

Bn =
2

L

∫ L

0

sin(πnx/L) f(x) dx. (11.55)

Hence, since f(x) is piecewise continuous on [0, 2] we can write

f(x) =
∞∑
n=1

[Bn sin(πnx/L)] . (11.56)
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The RHS will converge when x = 0 and x = 2 to 0 (which is f(0) or
f(2)).

Hence in fact the series converges to f(x) on the whole interval.

Exercise: Explicitly evaluate the Bn and check these claims.

• The Fourier cosine series for the same function:

The coefficients are given by:

An 6=0 =
2

L

∫ L

0

cos(πnx/L) f(x) dx; (11.57)

A0 =
1

L

∫ L

0

f̂(x) dx = 1/2. (11.58)

Hence, since f(x) is piecewise continuous on [0, 2] we can write

f(x) =
∞∑
n=0

[An cos(πnx/L)] (11.59)

The RHS will converge when x = 0 and x = 2 to 0 (which is f(0) or
f(2)).

Hence in fact the series in this case converges to f(x) on the whole
interval.

Exercise: Explicitly evaluate the An and check these claims.

11.8 Exercises

11.8.1 Some Fourier work

Recall the Fourier theorems given out in the lecture topic notes.
In each of the cases below, find the indicated Fourier series for the given

function, and, on the same diagram on which you have sketched the function,
sketch the first four partial sums (and so watch the series gradually converge
to the function).

a. f(x) = x2 for 0 < x < 1. Find a sine series.
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b. f(x) = x2 for 0 < x < 1. Find a cosine series.

c. f(x) = 1 for 0 < x < 1; f(x) = −1 for −1 < x < 0. Find the full
Fourier series.

d. g(x) = sin x for 0 < x < π. Find a Fourier cosine series.

e. h(x) = sin(3πx) for 0 < x < 1. Find a Fourier sine series.

Naturally, Maple will be incredibly helpful for drawing the partial sums, and
doing integrals!!

11.8.2 Fourier sine and cosine series

Consider the function f(x) = cos(2x) for x ∈ (0, π).

1. Find a Fourier cosine series for f(x).

2. Find a Fourier sine series for f(x).

The remaining questions illustrate how you must use the cunning and
brilliance honed over years of struggling through Maths courses to solve the
problem. And your common sense.

11.8.3 Heat equation using Fourier series

Boyce and DiPrima, Chapter 10.5, problem 5.

This illustrates how to deal with the case where the end temperatures are
kept fixed, but not at zero degrees. You should consult the relevant part of
Boyce and DiPrima.

Let an aluminium rod of length l be initially at the uniform temperature
of 25C. Suppose that at time t = 0 the end x = 0 is cooled to 0C while the
end x = L is heated to 60C, and that both ends are thereafter maintained
at those temperatures.

a. Find the temperature distribution in the rod at any time t.
Now assume that L = 20 cm.

b. Use only the first term in the series for the temperature U(x, t) to find
the approximate temperature at x = 5 when t = 30 sec, and when
t = 60 sec.
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c. Use the first two terms for the series for U(x, t) to find an approximate
value of U(5, 30). What is the percentage difference between the one-
and the two- term approximations? Does the third term in the series
have any appreciable effect for this value of t?

d. Use the first term in the series for U(x, t) to estimate the time that
must elapse before the temperature at x = 5 comes within 1% of its
steady state value.

11.8.4 Heat equation

Boyce and DiPrima, chapter 10.5, problem 10.

Another heat bar problem, this time with a mixture of end conditions.
Find the steady state temperature in a bar that is insulated at the end x = 0
and held constant at the end x = L.

Question 10 What does this mean physically?

11.8.5 Heat equation

Consider the heat equation

∂tU(t, x) = ∂2
xU(t, x), (11.60)

subject to the boundary conditions

U(t,−L) = 0 = U(t, L); (11.61)

U(0, x) = f(x) = f(−x). (11.62)

That is, f(x) is an even function of x.

1. Using separation of variables find a series representation for U(t, x) that
satisfies the boundary conditions at ±L.

2. Then specify the value of the various coefficients in the series on terms
of f(x), the initial data at t = 0.
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11.8.6 Laplace’s equation

Boyce and DiPrima, chapter 10.7, problem 6.

This problem requires you to write Laplace’s equation in terms of polar
coordinates, and then solve by separation of variables.

Find the solution u(r, θ) of Laplace’s equation in the circular sector r < a,
0 ≤ θ ≤ π, also satisfying the BC

u(r, 0) = 0; (11.63)

u(r, π) = 0 for 0 < r < a; (11.64)

u(a, θ) = f(θ) for 0 ≤ θ ≤ π. (11.65)

Assume that u is single-valued and bounded in the given region.
In the problem, take

f(θ) = sin2(2θ). (11.66)

Consider u(r, θ) to be the equilibrium temperature in the sector, when its
radial sides are kept fixed at zero degrees, and the arc is heated according to
f(θ).

11.8.7 Laplace’s equation

Use Fourier series to solve Laplace’s equation in the square 0 < x, y < 1
satisfying the boundary conditions

U(0, y) = 0; (11.67)

U(1, y) = 10; (11.68)

U(x, 0) = 20; (11.69)

U(x, 1) = 40x(1− x) = f(x); (11.70)

corresponding to the case of the equilibrium distribution of temperature in a
square of gold with edges kept at temperatures of 0, 10, 20, and f(x) degrees
respectively.

You will find problems 3, 4 of chapter 10.7 of Boyce and DiPrima very
useful, in that they indicate how to deal with the non-zero temperatures.

——VUW——
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Chapter 12

Gibbs phenomenon

From the various Maple worksheets we have seen, it is clear that the “squig-
gles”, the Gibbs phenomenon, have to do with discontinuities in the function
f(x)...

But for the Fourier theorem to apply f(x) must be piecewise continuous...
Therefore:

f(x) = (continuous and periodic) + (finite number of finite discontinuities)

With regards to the Gibbs phenomenon we need only focus on the:

(finite number of finite discontinuities)

But since the process of calculating the Fourier coefficients, and summing
the Fourier series is linear, there is no loss of generality in focussing on just a
single one of these discontinuities. In fact, there is really no loss of generality
in considering a step discontinuity:

f(x) = signum(x− a) =


+1 x > a
0 x = a
−1 x < a

.

For simplicity, (ie, good enough for most purposes), we set a = 0,
so that we consider

f(x) = signum(x) =


+1 x > 0
0 x = 0
−1 x < 0

.
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We saw, in one of the Maple worksheets, that a 6= 0 was qualitatively similar
to a = 0.

The function

f(x) = signum(x) =


+1 x > 0
0 x = 0
−1 x < 0

is odd, so the natural thing to do is consider a sine series...
We might as well work on the unit interval [−1,+1].
The Fourier coefficients are

An = 2

∫ 1

0

1 · sin(nπx)dx =
2

nπ
[− cos(nπx)]10 =

2

nπ
{1− cos(nπ)}

That is

A2m = 0; A2m+1 =
4

π(2m+ 1)

Therefore

signum(x) =
4

π

∞∑
m=0

sin([2m+ 1]πx)

2m+ 1

This Fourier series converges to +1 for x > 0, converges to 0 at x = 0, and
converges to −1 for x < 0.

Now define the finite sum

SM(x) =
4

π

M∑
m=0

sin([2m+ 1]πx)

2m+ 1

That is

SM(x) =
4

π

{
sin(πx) +

sin(3πx)

3
+

sin(5πx)

5
+ . . .+

sin([2M + 1]πx)

2M + 1

}
For each fixed x we have

lim
M→∞

SM(x) = signum(x)

This is the content of the Fourier convergence theorem...
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But what else can we say about this series

SM(x) =
4

π

{
sin(πx) +

sin(3πx)

3
+

sin(5πx)

5
+ . . .+

sin([2M + 1]πx)

2M + 1

}
Let’s evaluate this sum at the specific M -dependent point

x =
1

2[M + 1]
.

Then:

SM

(
1

2[M + 1]

)
=

4

π

M∑
m=0

sin
(

[2m+1]π
2[M+1]

)
2m+ 1

That is:

SM

(
1

2[M + 1]

)
=

4

π

M∑
m=0

sin
(

[2m+1]π
2[M+1]

)
2m+1

2[M+1]

1

2[M + 1]

That is:

SM

(
1

2[M + 1]

)
=

2

π

M∑
m=0

sin
(

[m+ 1
2

]π

M+1

)
m+ 1

2

M+1

1

M + 1

But note that the sum is just the mid-point Riemann sum for approximating
the integral

M∑
m=0

sin
(

[m+ 1
2

]π

M+1

)
m+ 1

2

M+1

1

M + 1
≈
∫ 1

0

sin(πu)

u
du

Note that sin(πu)/u is continuous... So it is certainly Riemann integrable...
Therefore the limit M →∞ exists, and we have:

lim
M→∞

SM

(
1

2[M + 1]

)
=

2

π

∫ 1

0

sin(πu)

u
du =

2 Si(π)

π

(There are many other ways of getting to the same conclusion.) Numerically:

lim
M→∞

SM

(
1

2[M + 1]

)
=

2 Si(π)

π
= 1.178979744 > 1.
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So there is guaranteed to be an overshoot... Since the gap from –1 to +1 is
2, the fractional overshoot is

∆ =
2 Si(π)

π
− 1

2
=

Si(π)

π
− 1

2
= 0.0894898720 ≈ 9%

This 9% overshoot is the Gibbs phenomenon...
(Though it should really be called the Wilbraham phenomenon.)

Let us now consider a slightly more general idea:

SM

(
w

2[M + 1]

)
=

4

π

M∑
m=0

sin
(
w[2m+1]π

2[M+1]

)
2m+ 1

Repeating the analysis (with trivial modifications) we see:

SM

(
w

2[M + 1]

)
=

2

π

M∑
m=0

sin
(
w[m+ 1

2
]π

M+1

)
m+ 1

2

M+1

1

M + 1

But note that the sum is just the mid-point Riemann sum for approximating
the integral

M∑
m=0

sin
(
w[m+ 1

2
]π

M+1

)
m+ 1

2

M+1

1

M + 1
≈
∫ 1

0

sin(wπu)

u
du

Therefore:

lim
M→∞

SM

(
w

2[M + 1]

)
=

2

π

∫ 1

0

sin(wπu)

u
du =

2 Si(wπ)

π

(There are many other ways of getting to the same conclusion.)
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lim
M→∞

SM

(
w

2[M + 1]

)
=

2 Si(wπ)

π

That is, near a discontinuity we have:

SM(x) ≈ 2 Si(2πx[M + 1])

π

This is actually a reasonably good approximation, at least as long as you are
closer to the discontinuity at x = 0 than you are to the other discontinuity
at x = ±1.

We can also argue as follows. Consider

SM(x) =
4

π

M∑
m=0

sin([2m+ 1]πx)

2m+ 1
= 4

∫ x

0

M∑
m=0

cos([2m+ 1]πu)du

Then performing the sum

SM(x) = 2

∫ x

0

sin([2M + 2]πu)

sin(πu)
du

For |x| � 1 we have |u| < |x| � 1 so sin(πu) ≈ πu and

SM(x) ≈ 2

π

∫ x

0

sin([2M + 2]πu)

u
du
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Change variables:

SM(x) ≈ 2

π

∫ [2M+2]πx

0

sinu

u
du

That is

SM(x) ≈ 2

π
Si (2[M + 1]πx)

as before...
This is the Gibbs phenomenon, generic to discontinuous functions.
Similar things happen for the sawtooth function.

——VUW——
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Chapter 13

Eigenfunction expansions

Some brief comments to give you a flavour of what can be done.

13.1 Basics

I will not prove any of this but I will simply assert that Fourier series are a
very special case of the sort of things that happen with linear ODEs (and
linear PDEs that are separable).

Any time you have a linear ODE of the form

DU = λ U, (13.1)

with suitable boundary conditions, the solutions of this eigenvalue problem

{Uα(x); λα} (13.2)

form a complete basis for a large set of functions defined on the domain of
the ODE. Generically sums like

U(x) =
∑
α

Aα Uα(x) (13.3)

can be used to construct all interesting functions on the domain of the ODE.
In particular, working with the 2-dimensional Laplacian in polar coor-

dinates leads (after separation of variables) to Bessel’s differential equation,
the solutions of which (naturally enough) are Bessel functions. But this then
suggests that we should be able to write Bessel series of the form

f(x) =
∑
α

Aα Jm(λαx). (13.4)

140



Here m, the index of the Bessel function, is related to the number of dimen-
sions of space, while the eigenvalues α are determined by boundary conditions
such as (for example)

Jm(λαR) = 0. (13.5)

Convergence and orthogonality properties for these Bessel series (some-
times called Fourier–Bessel series) can be proved by techniques analogous to
this used for the ordinary Fourier series.

Similar games can then be played with the Laplacian in 3 dimensions,
leading to spherical harmonics and spherical Bessel functions.

Ditto for the Schroedinger equation for the simple harmonic oscillator
which leads to Hermite polynomials.

Eigenfunction expansions are ubiquitous.
They underlie much of “special function theory” as the special functions

are typically defined in terms of the PDE/ ODE you are trying to solve.

——VUW——
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Appendix A

Localized waves

I will discuss this topic only if there is still time.
Localized waves are classical solutions of the wave equation that are

partially localized in space or time, this localization generally coming at
a cost such as infinite total energy and/or instability (leading to dispersion
or diffraction). The catalogue of known localized waves is large and growing,
but most of the known examples are not in an easy to digest form.

In this chapter I will exhibit a particularly simple “physical wavelet”. It
satisfies the properties that:

• It is a localized wave that solves the wave equation.

• The field is everywhere finite and nonsingular, and has quadratic falloff
in both space and time.

These physical wavelets can be constructed for both complex and real scalar
fields. The simplest case is that of the complex scalar field.

A.1 Complex scalar field

The field configuration is

φ(x) = − φ0 a
2

[t− ia]2 − x2 − y2 − z2
. (A.1)

That is

φ(x) =
φ0 a

2

r2 − t2 + a2 + 2iat
. (A.2)
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It is a straightforward exercise to verify that the wave equation is satisfied.
To see that the field is everywhere bounded note

|φ|2 =
|φ0|2 a4

(r2 − t2 + a2)2 + 4a2t2
=

|φ0|2 a4

(r2 + t2 + a2)2 − 4r2t2

≤ |φ0|2 a4

(r2 + t2 + a2)2 − (r2 + t2)2
=

|φ0|2 a4

a4 + 2a2(r2 + t2)
≤ |φ0|2. (A.3)

From the penultimate inequality we also derive

|φ|2 ≤ 1

2
|φ0|2

a2

r2 + t2
, (A.4)

demonstrating the promised quadratic falloff in both space and time. Indeed
for fixed t the magnitude of the field is maximized when

r2 = max{t2 − a2, 0}, (A.5)

showing that the configuration disperses to spatial infinity at both t→ ±∞.
In summary, what we have is a singularity-free exact localized solution to
the d’Alembertian equation.

One way of guessing that the field configuration above is worth investi-
gating is the following: It is easy to convince oneself that in 4 Euclidean
dimensions the solution to Laplace’s equation with a delta function source
at the origin is

φ(x) ∝ 1

x2 + y2 + z2 + t2
. (A.6)

Thus in (3+1) Lorentzian dimensions the [singular] solution to the wave
equation is

φ(x) ∝ 1

x2 + y2 + z2 − t2
. (A.7)

If the center of the pulse is now moved to a complex position (0, 0, 0, 0) →
(−ia, 0, 0, 0) we have

φ(x) ∝ 1

x2 + y2 + z2 − (t− ia)2
. (A.8)

which is still a singular field configuration. This style of approach has been
particularly advocated by Lekner.
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A.2 Real scalar field

By taking real and imaginary parts of the complex solution above we can
write down two solutions for the real scalar field. Namely

φ1 =
φ0 a

2 {t2 − r2 − a2}
(t2 − r2 − a2)2 + 4a2t2

; (A.9)

φ2 =
φ0 a

2 2at

(t2 − r2 − a2)2 + 4a2t2
. (A.10)

The physical wavelet discussed in this chapter is important because it
represents a qualitatively different extended field configuration of a type not
normally encountered in mathematical physics.

——VUW——
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Appendix B

More examples of named PDEs

• Inviscid Burger’s equation:

UUx + Uy = 0. (B.1)

• Telegraphers’ equation:

utt = uxx + α ux + β u. (B.2)

• Clairaut’s equation:

U = xUx + yUy + f(Ux, Uy). (B.3)

• Minimal surface equation:

∂x

[
ux√

1 + u2
x + u2

y

]
+ ∂y

[
uy√

1 + u2
x + u2

y

]
= 0. (B.4)

Study these equations and classify then as to order, linearity, quasi-linearity,
whether or not they are (generalized) Euler equations, Euler type, etcetera.

Whenever possible, find general solutions.

——VUW——
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