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Administrivia:

VUW
Lectures:

Monday; 12:00–12:50; MYLT 102.
Tuesday; 12:00–12:50; MYLT 220.
Friday; 12:00–12:50; MYLT 220.

Tutorial:

Thursday; 12:00–12:50; MYLT 220.

Lecturers:

Part 1: Matt Visser.
Part 2: Dimitrios Mitsotakis.

VUW

Matt Visser (VUW) Math 301 — PDEs — 2024 4 / 53



Frobenius–Mayer systems: VUW

Frobenius–Mayer systems
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Frobenius–Mayer systems:

Frobenius–Mayer systems are a specific example of a system of PDEs that
is sufficiently simple to enable us to obtain a EUS theorem without having
to make analyticity assumptions.
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Frobenius–Mayer systems:

Definition

Frobenius/Mayer system:

One special case that is very important is the Frobenius
or Mayer system

∂UA

∂x i
= FA

i (x
1, . . . , xn,U1, . . . ,Um) (F )

A = 1, 2, . . . ,m, i = 1, 2, . . . , n

where the m dependent variables {UA} depend on the
n independent variables {x i}.
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Frobenius–Mayer systems:

Definition (continued)

Frobenius/Mayer system:

All these equations are of first order.

In such a system there are as many PDEs as there are
first-order derivatives of the dependent functions (i.e., nm of them).
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Frobenius–Mayer systems:

Notes:

We see that the Frobenius–Mayer PDE systems are examples of
first-order quasi-linear PDE systems.

The superscripts now tell you which of the U’s you are dealing with;
not the order of the derivative.

The only derivatives occurring above are first-order on the LHS.
(And they occur linearly with coefficient unity.)

The RHS of the system does not involve any derivatives.
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Frobenius–Mayer systems:

Just because it’s important does not mean it’s easy to find any
explicit discussion of this system.

You can find a discussion in Volume 1 of Spivak, chapter 6.
See especially pages 254–257.
(The notation is slightly different).

You can find a discussion in Volume 5 of Forsyth, chapter 4.
See especially pages 100 ff.
(The notation is, unfortunately, seriously archaic).
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Frobenius–Mayer systems:

Courant R., and D. Hilbert, Methods of Mathematical Physics
Vols 1 and 2, Interscience 1966.

Forsyth R., Differential Equations, in six volumes,
Oxford University Press, (1906 onwards).

Spivak, M., A comprehensive introduction to differential geometry,
in six volumes, (Publish or Perish, Berkeley, 1979).
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Integrability theorem:

Theorem (Frobenius Complete Integrability Theorem)

Suppose the functions FA
i (•, . . . ) are smooth C 1 functions of all their

variables in a neighbourhood of the origin, for A = 1, 2, . . . ,m,
and i = 1, 2, . . . , n.
Then the Frobenius system (F) has a unique solution satisfying the IC

UA(0, 0, . . . , 0) = bA (A = 1, 2, . . . ,m)

for arbitrary given bA, if and only if

∂FA
i

∂x j
+

m∑
B=1

FB
j
∂FA

i

∂UB
=
∂FA

j

∂x i
+

m∑
B=1

FB
i
∂FA

j

∂UB
(C )

for all i , j , and A in their respective ranges.
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Integrability theorem:

Note that we only require F to be C 1 instead of Cω.

That C 1 is a necessary condition is obvious — it is required so that
the relevant derivatives in the compatibility condition (C ) exist.

This Frobenius integrability theorem is an extremely important result.

The condition (C ) is effectively the requirement that the second
partial derivatives should all commute:

∂2UA

∂x i ∂x j
=

∂2UA

∂x j ∂x i
.
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Integrability theorem:

To see necessity (not sufficiency) note that if the PDE defining the
Frobenius–Mayer system is satisfied, then

∂2UA

∂x i ∂x j
=

d

dx i
FA
j (x ,U(x))

Then by applying the chain rule

∂2UA

∂x i ∂x j
=

∂

∂x i
FA
j +

m∑
B=1

∂FA
j

∂UB

∂UB

∂x i
.

Now use the Frobenius–Mayer PDE again, we see

∂2UA

∂x i ∂x j
=

∂

∂x i
FA
j +

m∑
B=1

∂FA
j

∂UB
FB
i .

But the LHS is symmetric under interchange i ←→ j .
This leads to the consistency condition (C ).
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Integrability theorem:

Consistency condition:

∂FA
i

∂x j
+

m∑
B=1

FB
j
∂FA

i

∂UB
=
∂FA

j

∂x i
+

m∑
B=1

FB
i
∂FA

j

∂UB
(C )

You can find a full proof, [both necessity and sufficiency],
in Volume 1 of Spivak, chapter 6, pages 254–257.

Note that Spivak’s notation is slightly different.
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Integrability theorem:

You can get a feel for how important the Frobenius integrability
theorem is from Spivak’s comment:

The Frobenius theorem (which represents everything
we know about partial differential equations)
was used in [...long list of topics...].

(See Spivak, volume 5, page 1).
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Integrability theorem:

This should be balanced against his further comment:

Now it’s really rather laughable to call these things
partial differential equations at all. True ... partial derivatives
are involved, but we do not posit any relationship between
different partial derivatives; this comes out quite clearly
in the proof [of the integrability theorem] where the equations
are reduced to ordinary differential equations.
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Proof of integrability theorem:

Proof (not examinable).

Consider, in the specified coordinate chart, the “straight line”

x i (t) = t x i

and on this “straight line” for fixed x solve (with respect to t) the ODE:

dW A(x ; t)

dt
= x i FA

i (t x
i ;W B(x ; t)); W A(x ; 0) = bA. (1)

Since this is simply an ODE, (albeit a non-autonomous coupled ODE in m
variables), it will have unique solutions, at least on some finite interval.
Now use the W A(x ; t) to define quantities UA(x i ) as follows

UA(x i ) = W A(x i , 1) = bA +
∑
j

x j
∫ 1

0
FA

j(t x
i ;W A(x ; t)) dt. (2)

These UA(x i ) certainly exist, but what PDEs do they satisfy?
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Proof of integrability theorem:

Proof (continued):

From

UA(x i ) = bA +
∑
j

x j
∫ 1

0
FA

j(t x
i ;W A(x ; t)) dt, (3)

let us compute

∂iU
A(x) =

∫ 1

0
FA

i (t x ;W (x ; t)) dt

+
∑
j

x j
∫ 1

0
t{∂iFA

j(t x ;W (x ; t))

+∂BF
A
j(t x ;W (x ; t)) ∂iW

B(x ; t)} dt.
(4)
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Proof of integrability theorem:

Proof (continued):

But that first term can be integrated by parts as∫ 1

0

FA
i (t x ;W (x ; t)) dt = [tFA

i (t x ;W (x ; t))]10 (5)

−
∫

t
d

dt
[FA

i (t x ;W (x ; t))]dt

(6)

= FA
i (x ;W (x , 1))

−
∫ 1

0

t
{
FA

i,j(t x ;W (x , t))x j + ∂BF
A
iẆ

B
}
dt

(7)

= FA
i (x ;U(x))

−
∫ 1

0

t
{
FA

i,j(t x ;W (x , t)) x j + ∂BF
A
iF

B
j x j

}
dt.

(8)
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Proof of integrability theorem:

Proof (continued):

Combining

∂iU
A(x) =

∫ 1

0
FA

i (t x ;W (x ; t)) dt + x j
∫ 1

0
t{∂iF

A
j (t x ;W (x ; t)) + ∂BFA

j (t x ;W (x ; t)) ∂iW
B (x ; t)} dt,

and

∫ 1

0
FA

i (t x ;W (x ; t)) dt = FA
i (x ;U(x))−

∫ 1

0
t
{
FA

i,j (t x ;W (x, t)) x j + ∂BFA
iF

B
j x j

}
dt,

we have:

∂iU
a(x) = FA

i (x ;U(x))+
∑
j

x j
∫ 1

0

t{FA
i,j−FA

j,i+∂BF
A
j ∂iU

B−∂BFA
i F

B
j }dt.

Now apply the consistency condition.
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Proof of integrability theorem:

Proof (continued):

Now apply the consistency condition.
Thence

∂iU
a(x)− FA

i (x ;U(x)) =

∫ 1

0

t
∑
j

x j∂BF
A
j

{
∂iU

B(tx)− FB
i (tx ,U(tx))

}
dt.

This is an integral equation.

One solution is clearly ∂iU
a(x) = FA

i (x ;U(x)).
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Proof of integrability theorem:

Proof (continued):

As long as the integral transform does not have eigenvalue unity,
this will be the only solution.

(And for sufficiently small x , where the integral transform is guaranteed
to be small, this will certainly be the unique solution.)

So under the stated consistency condition we have established the
existence of a set of fields UA(x i ) such that ∂iU

a(x) = FA
i (t x ;U(x)).

(This proof is slightly different from other presentations you might
eventually track down, either on the internet or in various older texts.
I feel the present discussion is pedagogically simpler.)
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Integrability theorem:

Comments:

Clearly if n = 1 [only one independent variable, one dimension]
then condition (C ) is always satisfied.

But this just means that if we have one independent variable
then the 1-dimensional Frobenius equation

∂UA

∂x
= FA(x ,U1, . . . ,Um) A = 1, 2, . . . ,m, (1d F )

is always integrable.

This will be less of a surprise if we realise this is now an ODE, and
change variables (x → t, UA → xA) to rewrite it in the more usual
form

dxA

dt
= FA(t, xB) A = 1, 2, . . . ,m.

We already know, by elementary means, that this simple ODE is
integrable.
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Integrability theorem:

A second important case is m = 1 [only one dependent variable, one
“field” but many dimensions] then condition (C ) reduces to

∂F i

∂x j
+ F j

∂F i

∂U
=
∂F j

∂x i
+ F i

∂F j

∂U
(1 variable C )

That is

∂F i

∂x j
−
∂F j

∂x i
+ F j

∂F i

∂U
− F i

∂F j

∂U
= 0 (1 variable C )

Alternatively

∂jF i − ∂iF j + F j
∂F i

∂U
− F i

∂F j

∂U
= 0 (1 variable C )

This is one of the most common cases to arise in practice.
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Integrability theorem:

It is sometimes useful to rewrite condition (C ) in the equivalent form

∂FA
i

∂x j
−
∂FA

j

∂x i
=

m∑
B=1

{
FB

i
∂FA

j

∂UB
− FB

j
∂FA

i

∂UB

}
(C )

Alternatively

∂jF
A
i − ∂iFA

j =
m∑

B=1

{
FB

i
∂FA

j

∂UB
− FB

j
∂FA

i

∂UB

}
(C )

Doing this should focus your attention on conservative vector fields as
a possible way of satisfying the integrability constraints.
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Integrability theorem:

A sufficient condition for condition (C ) to hold in general is that

FA
i (x ,U) =

∂Φ(x)

∂x i
JA(U); (C2)

Try it and see. (I do not claim this condition is necessary.)

If this sufficient condition holds then the Frobenius/ Mayer system
reduces to

∂UA

∂x i
=
∂Φ(x)

∂x i
JA(U).

But now we can solve this by reducing it to an ODE. (continued)
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Integrability theorem:

(continued) Note that each of the UA, considered as a function of
the x i , can change only in the direction parallel to

∂iΦ(x) =
∂Φ(x)

∂x i
.

But this means that for some set of functions ŨA(Φ) we have

UA(x) = ŨA(Φ(x)),

with the PDE reducing to

dŨA(Φ)

dΦ
= JA(Ũ).

This reduces the Frobenius/ Mayer system,
[subject to this sufficient condition (C2)], to an ODE.

In fact it is an autonomous ODE, which we already know to be
integrable.
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Integrability theorem:

There is an even more special case, obvious given the above
discussion, that I will belabour because of its importance:

— the autonomous Frobenius/ Mayer system. —
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Autonomous Frobenius–Mayer systems: VUW

Autonomous Frobenius–Mayer

systems

Matt Visser (VUW) Math 301 — PDEs — 2024 30 / 53



Autonomous Frobenius–Mayer systems:

Definition

The autonomous Frobenius/ Mayer system is

∂UA

∂x i
= FA

i (U
1, . . . ,Um)

A = 1, 2, . . . ,m, i = 1, 2, . . . , n (AF )
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Autonomous Frobenius–Mayer systems:

Note: The key feature is that there is now no explicit x dependence
on the RHS.

The class of autonomous Frobenius/ Mayer systems can be
characterized as a particular sub-class of autonomous first-order
quasi-linear PDEs.

The m dependent variables {UA} again depend on the n independent
variables {x i}.
All these equations are again of first order.

There are again as many PDEs as there are first-order derivatives.

That is, nm of them.
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Autonomous Frobenius–Mayer systems:

The RHS now depends only on the dependent variables, the U’s.

There is no explicit x dependence on the RHS.

The equations are “autonomous” in the sense that the “driving term”
does not pay any attention to the independent variables, the x ’s.

The “driving term” or “source term” now depends only on the
“current state” of the system — the U’s.
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The Autonomous Frobenius Integrability Theorem:

Theorem (Autonomous Frobenius Integrability)

Suppose the functions FA
i (U

A) are smooth C 1 functions of all their
variables in a neighbourhood of the origin, for A = 1, 2, . . . ,m.

Then the autonomous Frobenius system (AF ) has a unique solution,
satisfying the IC

UA(0, 0, . . . , 0) = bA (k = 1, 2, . . . ,m)

for arbitrary given bA, if and only if

m∑
B=1

FB
i
∂FA

j

∂UB
=

m∑
B=1

FB
j
∂FA

i

∂UB
(AC )

for all i , j , and A in their respective ranges.
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The Autonomous Frobenius Integrability Theorem:

But now let’s take a more careful look at the condition (AC ).

If n = 1, [so that we are working in one dimension],
condition (AC ) is always satisfied.
But this is just the autonomous version of our previous discussion.
After a change in notation (x → t, UA → xA) the 1-d autonomous
Frobenius equation becomes

dxA

dt
= FA(xB) A = 1, 2, . . . ,m.

This always has a solution...
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The Autonomous Frobenius Integrability Theorem:

Suppose in contrast that m = 1 so there is only one dependent
variable U, only a single “field”.
Then condition (AC) reduces to

F i
∂F j

∂U
= F j

∂F i

∂U
(1 variable AC )

But this is satisfied iff (if and only if) Fi/Fj = ki/kj for some set of
constants ki independent of U.
That implies

F i (U) = ki f (U)

for some constant vector ki .
(continued)
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The Autonomous Frobenius Integrability Theorem:

(continued)
But this now lets us write the 1-variable integrable autonomous
Frobenius system as

∂U

∂x i
= ki f (U) i = 1, 2, . . . ,m.

Thus the system (if it satisfies condition (AC) so that it is integrable)
can be reduced to an ODE in a single variable, call it ξ:

U(x) = Ũ (k · x) ;
dŨ(ξ)

dξ
= f (Ũ)

Note that this is all a special case of condition (C2) above.
This now always has a solution...
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The Autonomous Frobenius Integrability Theorem:

In fact for any n and m, a sufficient condition for condition (AC) to
hold is that

FA
i (x ,U) = ki J

A(U); (AC2)

Try it and see. (I do not claim this condition is necessary.)

If this sufficient condition holds then the autonomous
Frobenius–Mayer system reduces to

∂UA

∂x i
= ki J

A(U).

But we can again solve this by reducing it to an ODE.

Note that each of the UA, considered as a function of the x i , can
change only in the direction parallel to ki .

(continued)
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The Autonomous Frobenius Integrability Theorem:

(continued)
But this means that for some set of functions ŨA(ξ) we have

UA(x) = ŨA(ξ); ξ = ξ0 +
m∑
i=1

ki x
i

with the PDE reducing to

dŨA(ξ)

dξ
= JA(Ũ).

This again reduces the autonomous Frobenius–Mayer system [subject
to this sufficient condition (AC2)] to an ODE.
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The Autonomous Frobenius Integrability Theorem:

Clearly the most “interesting” cases are n > 1 and m > 1.

You can have some fun exploring necessary and sufficient conditions,
and digging deep into the bowels of the library.
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Conservative vector fields:

A vector field V is called conservative if curl V = 0.
It is a well known fact that if V is conservative on a (topologically trivial)
open subset W of IR3, then there is a function U(x , y , z) such that

~V = −grad U

on W .

We now want to relate this to the concept of a Frobenius–Mayer system.
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Conservative vector fields:

Exercise:

a. Show that the system of PDEs

grad U = − ~V

is a Frobenius system, (a particularly simple Frobenius system).
Furthermore, show that it can be made to satisfy the conditions of
the Frobenius Complete Integrability theorem.
Explicitly find the consistency condition.

b. Find the function U if:

i. ~V = xyz ~i + (x2z/2− z sin(yz))~j + (x2y/2− y sin(yz)) ~k.

ii. ~V = (A/r3)~r .

Here A is a constant, ~r = x ~i + y ~j + z ~k is the usual radius vector ~r ,
and r = |r |.
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Exercises and examples: VUW

Exercises and examples
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Height-slope relations:

Exercise:
(A slightly more complicated example; essentially two-dimensional)

Consider now a specific Frobenius theorem with m = 1 (so there is only
one dependent variable, which I will call h) and n = 2 (so there are two
independent variables, two dimensions, which I shall call x and y).

Then the Frobenius system is

∂h(x , y)

∂x
= Fx(x , y , h)

∂h(x , y)

∂y
= Fy (x , y , h)
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Height-slope relations:

Exercise (continued):

You can interpret this, for instance, as the equation for the height of a hill
as a function of x and y , given that there is a PDE controlling the height
of the hill which makes the slope of the hill depend on its height,
(a self-referential height-slope function).
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Height-slope relations:

Exercise (continued):

a. Explicitly write out the set of consistency conditions required for this
Frobenius system to have a solution.

b. Ignoring trivial re-labellings, how many non-trivial consistency
conditions are there?
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Height-slope relations:

Exercise (continued):

c. Now consider the three-dimensional vector

~v(x , y , z) =

(
Fx(x , y , z), Fy (x , y , z), 1

)
where now I have relabelled h→ z .

d. Calculate the “vorticity”:

~ω = curl ~v = ∇× ~v .

e. Calculate the “helicity”:

H = ~v · (curl ~v) = ~v · (∇× ~v).
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Height-slope relations:

Exercise (continued):

f. Show that the condition that the helicity vanishes,

H = ~v · (curl ~v) = 0,

is equivalent to the Frobenius consistency condition in part [a].

This implies that if the helicity H of ~v(x , y , z) is zero then it is
possible to self-consistently find a height function z(x , y) with

∂iz(x , y) = vi (x , y , z).

(This result as given is special to m = 1, n = 2; there is a
generalization of this result to m = 1, n ≥ 3 which is a little tricker to
formulate nicely.)

Matt Visser (VUW) Math 301 — PDEs — 2024 48 / 53



Autonomous example:

Exercise:

(Fully three-dimensional example)

Consider the system of PDEs

∂xU = hx(U(x , y , z))

∂yU = hy (U(x , y , z))

∂zU = hz(U(x , y , z))
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Autonomous example:

(Fully three-dimensional example)

1 Write down all the Frobenius integrability conditions for this system.
How many of the constraints are nontrivial?

2 By adopting the notation

~H = (hx , hy , hz)

show that the integrability conditions are equivalent to

~H × d ~H

dU
= 0

3 Hence show that this system satisfies the integrability conditions iff

~H = ~k f (U)

where ~k is a constant vector.
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Autonomous example:

4 Finally, show that in this situation the solution of the Frobenius
system is given by the implicit equation∫ U

U0

dŪ

f (Ū)

= ~k · ~x .

5 That is, show that there exists an invertible function g(U) such that

g(U) = ~k · ~x ,

and so
U(x) = g−1

(
~k · ~x

)
.

6 Indeed, show that
dg

dU
=

1

f (U)
.
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Challenges:

Challenge:
Look up, read, and understand, various other versions of the proof of
the Frobenius–Meyer integrability theorem.

Challenge:
Look up, read, and understand, the connection between the
Frobenius–Meyer integrability theorem for PDEs and the “Frobenius
theorem” of differential geometry.

——VUW——
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End: VUW

——VUW——
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