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Administrivia:

VUW
Lectures:

Monday; 12:00–12:50; MYLT 102.
Tuesday; 12:00–12:50; MYLT 220.
Friday; 12:00–12:50; MYLT 220.

Tutorial:

Thursday; 12:00–12:50; MYLT 220.

Lecturers:

Part 1: Matt Visser.
Part 2: Dimitrios Mitsotakis.

VUW
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The Euler equation:

The Euler equation is a PDE that encompasses a wide variety of
phenomena — that’s why we are going to spend quite some time
discussing both it and its general solutions.

Definition

The Euler PDE is

a Uxx + 2h Uxy + b Uyy = 0

where a, b, and h are (for the time being) constants.

[They could in general be taken as functions of x and y ,
but not just yet!].
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The Euler equation:

We shall now rewrite this equation in a form for which the general solution
will be obvious.

Warning

This is not the Euler equation of fluid mechanics.
That is a rather different beastie.
See previous chapter.

Comment

Note that this version of the Euler equation is a linear second-order PDE
with constant coefficients.

Matt Visser (VUW) Math 301 — PDEs — 2024 7 / 38



The Euler equation:

Transformation of coordinates

Consider a linear transformation of the coordinates
(that is, the independent variables x and y)
to new independent variables s, t, defined as follows:

s = x + c y

t = x + d y

We shall now rewrite the Euler equation in terms of these new
independent variables, and then cunningly choose the parameters
c and d so that the resulting equation is really easy to solve.
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The Euler equation:

Note the Jacobian determinant is

∂(s, t)

∂(x , y)
= det

[
∂s
∂x

∂s
∂y

∂t
∂x

∂s
∂y

]
= det

[
1 c
1 d

]
= d − c.

The change of coordinates is proper (non-singular) as long as the
determinant is non-zero.

The change of coordinates is proper (non-singular) as long as c 6= d .
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The Euler equation:

We have (by the multi-variable chain rule):

∂U

∂x
=

∂U

∂s

∂s

∂x
+

∂U

∂t

∂t

∂x
=

∂U

∂s
+

∂U

∂t

Equivalently,
∂

∂x
=

∂

∂s
+

∂

∂t

Similarly,
∂

∂y
= c

∂

∂s
+ d

∂

∂t
.
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The Euler equation:

Hence

Uxx =

[
∂

∂x

] [
∂

∂x

]
U

=

[
∂

∂s
+

∂

∂t

] [
∂

∂s
+

∂

∂t

]
U

= Uss + 2Ust + Utt

Similarly

Uyy = c2 Uss + 2cd Ust + d2 Utt

Uxy = c Uss + (c + d) Ust + d Utt
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The Euler equation:

Combining these results we easily see:

a Uxx + 2h Uxy + b Uyy =

(a + 2hc + bc2) Uss + 2(a + h(c + d) + bcd) Ust

+(a + 2hd + bd2) Utt .

Leading to the transformed Euler equation (TEE):

(a + 2hc + bc2) Uss + 2(a + h(c + d) + bcd) Ust + (a + 2hd + bd2) Utt = 0.
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Some very cunning choices (VCC):

To solve the TEE we will make some crafty choices for the parameters
c and d occurring in the change of variables.

The choices we shall make will depend on the solutions to the quadratic
equation

a + 2hz + bz2 = 0.

We start by supposing that b is nonzero, so this quadratic always has two
solutions.
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Distinct roots:

If this equation has two distinct solutions, say z1 and z2,
then choose the constants c and d to be these solutions:

c = z1; d = z2.

Then we plainly have:

c + d = the sum of the solutions = −2h/b.

cd = the product of solutions = ab.

The discriminant 4(h2 − ab) 6= 0.
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Distinct roots:

Note that since the roots are distinct, the transformation is proper,
(both the original x and y , and the new s and t, are independent variables).

The Euler equation becomes

2

[
a + h

(
−2h

b

)
+ b

a

b

]
Ust = 0

or

2
2ab − 2h2

b
Ust = 0

whence

Ust = 0

since by hypothesis h2 − ab is not zero.
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Distinct roots:

This transformed PDE is, of course, easy to solve.

Its general solution is

U(s, t) = F (s) + G (t)

where F and G are arbitrary functions.

Therefore, as functions of x and y :

U(x , y) = F (x + cy) + G (x + dy)
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Coincident roots:

In the coincident-root case, the discriminant 4(h2 − ab) = 0,
and the quadratic has the single solution z = −h/b.

So let us choose d to be the single root, d = −h/b.

The last term in the transformed Euler equation (TEE) then vanishes,
and the coefficient of the second term is:

a + h(c + d) + bcd = a + hc − h2

b
− bh

b
c =

ab − h2

b
= 0.

Hence the TEE reduces to

(a + 2hc + bc2) Uss = 0
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Coincident roots:

If we choose c to be different from d , (which we must do to keep the
transformation proper, and so keep the independent variables s and t
truly independent of each other), we have

Uss = 0

which has the obvious general solution

U(s, t) = sF (t) + G (t)

where F and G are arbitrary functions.

The choice of the value of c is up to you here — it can be anything
except d , the (unique) solution to the quadratic.

Therefore, as functions of x and y :

U(x , y) = (x + cy) F (x + dy) + G (x + dy); c 6= d .
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Degenerate quadratic:

When b = 0, the work above does not apply, as we no longer have a
genuine quadratic in z .

However, you can easily adapt the theory outlined above for a
transformation

s = c x + y ,

t = d x + y ,

leading to the quadratic

az2 + 2hz + b2 = 0.

Then so long as a is nonzero, the results indicated above, with the
role of x and y interchanged, apply.
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Degenerate quadratic:

If it happens that both a and b are zero, then you just have the
simple equation Uxy = 0 to solve: and this is an easy thing to do.

(In fact we have already done it.)
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Summary 1:

If b is nonzero:

If h2 − ab 6= 0:

U(x , y) = F (x + cy) + G (x + dy)

where c and d are the distinct solutions to the quadratic equation

a + 2hz + bz2 = 0.

If h2 − ab = 0:

U(x , y) = (x + cy) F (x + dy) + G (x + dy)

where d is the single solution to

a + 2hz + bz2 = 0

and c is any constant not equal to d .
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Summary 2:

If a is nonzero:

If h2 − ab 6= 0:

U(x , y) = F (cx + y) + G (dx + y)

where c and d are the distinct solutions to the quadratic equation

az2 + 2hz + b = 0.

If h2 − ab = 0:

U(x , y) = (cx + y) F (dx + y) + G (dx + y)

where d is the single solution to

az2 + 2hz + b = 0

and c is any constant not equal to d .

Matt Visser (VUW) Math 301 — PDEs — 2024 22 / 38



Summary 3:

If both a = 0 and b = 0:

The solution is
U(x , y) = F (x) + G (y)

where F and G are arbitrary.

Question

Do we have to do anything special if the roots of the quadratic are
complex?
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Euler type:

We define the “Euler type” of an Euler PDE by looking at the matrix
formed by the coefficients of the second-derivative terms

E =

[
a h
h b

]
The reason this matrix is interesting is because it can be used to re-write
the Euler equation as

[ ∂x , ∂y ]

[
a h
h b

] [
∂x
∂y

]
U = a Uxx + 2h Uxy + b Uyy = 0
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Euler type:

Now consider the determinant of this matrix and use it to classify Euler
equations into the three classes:

Elliptic: If the determinant det(E ) is positive.

Parabolic: If the determinant det(E ) is zero.

Hyperbolic: If the determinant det(E ) is negative.

The reason for the terminology will be a bit mysterious at this stage.

Note that the determinant det(E ) = ab − h2 is the negative of the
discriminant occurring in the quadratic equation we used to simplify the
Euler equation when finding the general solution.

Matt Visser (VUW) Math 301 — PDEs — 2024 25 / 38



Euler type:

Thus for Euler equations we can re-phrase the classification in terms of the
algebraic equation:

[ 1, z ]

[
a h
h b

] [
1

z

]
= a + 2h z + b z2 = 0

Elliptic: If the roots are complex.

Parabolic: If the roots are coincident.

Hyperbolic: If the roots are real.
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Euler type:

Once you go through the analysis leading to the general solution this leads
to the characterization:

Elliptic: If the general solution involves arbitrary functions of two
distinct complex variables.

Parabolic: If the general solution involves arbitrary functions of only one
real variable.

Hyperbolic: If the general solution involves arbitrary functions of two
distinct real variables.
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Euler type:

Warning

I should warn you that while the words Elliptic/ Parabolic/ Hyperbolic are
most commonly used within the context of Euler’s equation, (and its
generalization with first order and linear terms as previously discussed),
the notion is much more general.

Extending the Elliptic/ Parabolic/ Hyperbolic distinction to variable
coefficients (so that the matrix E (x , y) is position dependent) is easy.

Extending it to more dimensions is also easy.
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Euler type:

Warning

It is less straightforward, but sometimes still possible and useful, to extend
the Elliptic/ Parabolic/ Hyperbolic distinction to nonlinear PDEs and to
systems of PDEs.

See, for instance, Courant and Hilbert for details.
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Challenges:

For a challenge here’s a few questions to think about —

Question (Terminology)

What is the origin of the terminology Elliptic/ Parabolic/ Hyperbolic?

Question (Terminology)

Are the terms Elliptic/ Parabolic/ Hyperbolic exclusive?

Question (Terminology)

Are the terms Elliptic/ Parabolic/ Hyperbolic complete?
(Do they cover all the possibilities?)
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Challenges:

Question (Eikonal)

What is the meaning of the word “eikonal”?

Question (Symbol)

What is the “symbol” of a PDE?

Question (Fresnel equation)

What is the “Fresnel equation” of a PDE?

Matt Visser (VUW) Math 301 — PDEs — 2024 31 / 38



Exercises — Euler type:

Determine the Euler type (i.e., elliptic, hyperbolic, or parabolic) of each of
the following PDEs, and obtain the general solution in each case:

a. 3Uxx + 4Uxy − Uyy = 0.

b. Uxx − 2Uxy + Uyy = 0.

c. 4Uxx + Uyy = 0.

d. Uxx + 4Uxy + 4Uyy = 0.

e. Uyy + 2Uxx = 0.

f. 4Uxx + Uyy = 0.

g. 4U,xx − U,yy = 0.

h. 4U,xx + U,xy + U,yy = 0.

i. 9U,xx + 3U,xy + U,yy = 0.

j. 8U,xx + 3U,xy + U,yy = 0.

k. 4U,xx + 2U,xy + U,yy = 0.
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Generalized constant-coefficient Euler PDE: VUW

Definition

One simple way of generalizing the Euler PDE is this:

a Uxx + 2h Uxy + b Uyy + c Ux + d Uy + e U + f = 0

where a, b, h, and c , d , e, f are constants, (and at least one of the
second-order coefficients a, b, or h, is nonzero).
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Generalized constant-coefficient Euler PDE:

Comment

This is still a linear second-order PDE with constant coefficients.

This generalization is not really as painful as it looks.

If the coefficients are constants the general solution can sometimes be
found using modifications of the preceding argument.

Even then, sometimes there is no closed-form general solution, even for
this constant coefficient case.

Matt Visser (VUW) Math 301 — PDEs — 2024 34 / 38



Generalized constant-coefficient Euler PDE:

Project (Generalized constant-coefficient Euler PDE:)

Analyze this generalized constant-coefficient Euler PDE in detail.

Completely classify those situations for which closed-form general
solutions (in terms of two arbitrary functions) can be written down.

Even when completely general solutions cannot be explicitly written
down, it is often possible to find reasonably general classes of specific
solution.

Do as much as possible...
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Specific variable-coefficient extension of Euler’s equation:

As an example, show that

u(x , y) = f (2x + y2) + g(2x − y2)

is a general solution to the equation

y2uxx +
1

y
uy − uyy = 0

where f and g are arbitrary differentiable functions.

This is a specific example of a variable-coefficient extension of the Euler
equation.

Is it elliptic, parabolic, or hyperbolic?

Later on, we shall have a lot more to say about this class of PDEs.
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Tricomi’s equation: VUW
Consider Tricomi’s PDE:

y Uxx + Uyy = 0.

Is it elliptic, parabolic, or hyperbolic?

Try to find a general solution to this PDE...

(Don’t be surprised to find it’s impossible, at least at this stage of the
course.
By the end of the course you will see techniques powerful enough to write
down a general solution for this PDE.)

We will have a lot more to say about this class of PDEs later.

——VUW——
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End:

VUW
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