Victoria University of Wellington

Te Whare Wānanga o te Ūpoko o te Ika a Maui

- MATH 301 - PDEs Autumn 2024

Matt Visser

21 February 2024

Outline:

(1) Administrivia
(2) Euler Equation: Standard examples

- Wave equation
- Heat equation (diffusion equation)
- Laplace equation
- Review: Elliptic/ Parabolic/ Hyperbolic
(3) Other standard Euler PDEs
- Klein-Gordon equation
- Helmholtz equation
- Maxwell equations
(4) Summary

Administrivia:

Administrivia

Administrivia:

- Lectures:
- Monday; 12:00-12:50; MYLT 102.
- Tuesday; 12:00-12:50; MYLT 220.
- Friday; 12:00-12:50; MYLT 220.
- Tutorial:
- Thursday; 12:00-12:50; MYLT 220.
- Lecturers:
- Part 1: Matt Visser.
- Part 2: Dimitrios Mitsotakis.

Euler Equation: Standard examples:

Euler Equation:

Standard examples

Euler Equation: Standard examples:

I'll now give a catalogue of standard examples of Euler PDEs that you should learn to recognize.

The Wave Equation:

(Typical of a hyperbolic PDE).

$$
U_{x x}-\frac{1}{c^{2}} U_{t t}=0
$$

- Here, $U(x, t)$ represents the displacement at point x and at time t of a string from its equilibrium position.
- That is, $U(x, t)$ is the shape of the string at time t.
- The constant c is the velocity of the wave disturbance.
- The same equation can be used to describe sound waves or light waves; at least in flat spacetime.
- The generalizations to get to curved spacetime are not too onerous, but not appropriate for Math 301.

The Wave Equation:

- Usually you know:
- That the string is fixed at the origin $x=0$ and at the end-point ($x=L$, say).
- The initial shape of the string, $U(x, 0)$.
- The velocity of each point x of the string, $U_{t}(x, 0)$. [most often this will be zero, the string will start from rest].
- Conditions of this sort, where you know initial values of the function and its derivatives, are called Cauchy (initial) conditions.
- It can be shown that Cauchy initial conditions are necessary and sufficient for the existence and uniqueness of solutions.
- (This is typical of those problems that are classified as hyperbolic Cauchy conditions are enough to guarantee existence and uniqueness of solutions).

The Wave Equation:

- In terms of the Euler PDE

$$
a U_{x x}+2 h U_{x y}+b U_{y y}=0
$$

the wave equation corresponds to

$$
a \rightarrow 1 ; \quad h \rightarrow 0 ; \quad b \rightarrow-\frac{1}{c^{2}}
$$

with the notational change $y \rightarrow t$.

The Wave Equation:

- Without further calculation we can use the analysis of the Euler PDE to immediately write down the general solution of the wave equation:

$$
U(x, t)=f(x-c t)+g(x+c t)
$$

This is d'Alembert's solution, and I'll have considerably more to say about it later.

The Heat or Diffusion equation

(Typical of a parabolic PDE).

$$
U_{t}=\sigma U_{x x}
$$

- Here σ is a constant, called the thermal diffusivity (heat equation) or simply the diffusion constant.
- Such an equation often occurs in situations where diffusion occurs.
- For example, consider a heated bar of metal:
- $U(x, t)$ is the temperature at time t at a point x along the bar.

The Heat Equation:

- You might be given:
- Ohe initial distribution of temperature in the bar, $U(x, 0)$.
- Or, you might be told that the two ends of the bar are kept a fixed temperatures,

$$
\begin{aligned}
& U(0, t)=T_{1} \\
& U(L, t)=T_{2}
\end{aligned}
$$

where L is the length of the bar.
Then again you might be told:

- The initial distribution of temperature in the bar, $U(x, 0)$.
- Or, you might be told that the ends are insulated, so that no heat can pass through them:

$$
U_{x}(0, t)=0=U_{x}(L, t) \quad \text { for all } t .
$$

The Heat Equation:

- Typically, for parabolic equations, conditions of the type described above will guarantee the existence and uniqueness of a solution.
- In terms of the generalized Euler PDE

$$
a U_{x x}+2 h U_{x y}+b U_{y y}+c U_{x}+d U_{y}+e U+f=0
$$

the heat equation corresponds to

$$
\begin{aligned}
& a \rightarrow \sigma ; \quad h \rightarrow 0 ; \quad b \rightarrow 0 ; \\
& c \rightarrow 0 ; \quad d \rightarrow-1 ; \quad e \rightarrow 0 ; \quad f \rightarrow 0
\end{aligned}
$$

with the notational change $y \rightarrow t$.

The Heat Equation:

- There is no closed-form general solution in terms of algebraic combinations of arbitrary functions.
- But we will later in the course use Fourier transforms to give a general solution in terms of an infinite series of "basis functions".

The Heat Equation:

Hint:

Both

$$
u(x, t)=\cos (k x) \exp \left(-\sigma k^{2} t\right)
$$

and

$$
u(x, t)=\sin (k x) \exp \left(-\sigma k^{2} t\right)
$$

solve the heat equation for arbitrary values of k.
Then consider:
$u(x, t)=\int A(k) \cos (k x) \exp \left(-\sigma k^{2} t\right) \mathrm{d} k+\int B(k) \sin (k x) \exp \left(-\sigma k^{2} t\right) \mathrm{d} k$
There are two arbitrary functions, but now "hidden" inside the integrals...

The Laplace equation

(Typical of an elliptic PDE).

$$
U_{x x}+U_{y y}=0
$$

- Now $U(x, y)$ represents, for example,
- the electrostatic potential at the point (x, y) in a piece R of dielectric medium,
- or the Newtonian gravitational potential in empty space (outside the sources),
- or it might represent the equilibrium temperature at the point (x, y) inside a heated solid R.

The Laplace Equation:

- Typically, in problems involving Laplace's equation, boundary conditions of the following form are known:
(1) You might be given the potential (temperature) on the boundary $B=\partial R$ of the region R :

$$
U(x, y) \text { is given on } B .
$$

Such a condition is called a Dirichlet condition.
(2) You might know the flux of U, (that is, the gradient of U normal to the boundary B), into the region R :

$$
\frac{\partial U}{\partial n} \text { is given on } B .
$$

Such a condition is called a Neumann condition.
(3) Frequently, you might be given a mixture of Dirichlet and Neumann conditions. (Robin boundary conditions.)

The Laplace Equation:

- So long as the boundary shape B is "reasonable", you can be sure there will be a unique solution to Laplace's equation satisfying any of these boundary conditions.
- In terms of the Euler PDE

$$
a U_{x x}+2 h U_{x y}+b U_{y y}=0
$$

the Laplace equation corresponds to

$$
a \rightarrow 1 ; \quad h \rightarrow 0 ; \quad b \rightarrow 1
$$

The Laplace Equation:

- Without further calculation we can use the analysis of the Euler PDE to immediately write down the general solution of Laplace's equation:

$$
U(x, y)=f(x+i y)+g(x-i y)
$$

- This is Laplace's solution, which relates the solution of the Laplace PDE to the theory of functions of a complex variable.
- I'll also have more to say about this later.

Review: Elliptic/ Parabolic/ Hyperbolic

Euler PDE versus Laplace PDE:
 When is the Euler differential equation elliptic?
 When is the Euler differential equation qualitatively similar to Laplace's equation?
 When is it qualitatively different?
 Euler PDE versus Wave PDE:
 When is the Euler differential equation hyperbolic?
 When is the Euler differential equation qualitatively similar to the wave equation?
 When is it qualitatively different?

Review: Elliptic/ Parabolic/ Hyperbolic

d'Alembert's solution

What is the general solution of the wave equation

$$
U_{t t}=c^{2} U_{x x}
$$

in terms of two arbitrary functions?

Laplace's solution.

What is the general solution of Laplace's equation

$$
U_{x x}+U_{y y}=0
$$

in terms of two arbitrary functions?

Other standard Euler PDEs

Additional examples of PDEs of the generalized constant-coefficient Euler class are:

- Klein-Gordon equation:

$$
\partial_{t}^{2} \phi-\nabla^{2} \phi=-m^{2} \phi
$$

- This generalizes the wave equation.
- In particle physics, suitable for a scalar particle with mass.
(For example, the Higgs particle after spontaneous symmetry breaking. Keep your eye on the LHC in France/ Switzerland for details...)

Other standard Euler PDEs

- Klein-Gordon equation:
- Also used in plasma physics, where it is useful for describing screening effects. ($m \longleftrightarrow$ Debye screening length.)
- Also used in super-conductivity - m is then related to the London flux penetration depth.
- Also useful for a string in a valley.
- In terms of the generalized Euler PDE

$$
a U_{x x}+2 h U_{x y}+b U_{y y}+c U_{x}+d U_{y}+e U+f=0
$$

the Klein-Gordon equation corresponds to

$$
\begin{aligned}
& \quad a \rightarrow 1 ; \quad h \rightarrow 0 ; \quad b \rightarrow-1 ; \\
& c \rightarrow 0 ; \quad d \rightarrow 0 ; \quad e \rightarrow m^{2} ; \quad f \rightarrow 0
\end{aligned}
$$

with the notational change $x \rightarrow t, y \rightarrow x$.

- There is a natural generalization from $(1+1)$ to $(2+1)$ and $(3+1)$ dimensions.

Other standard Euler PDEs

- Helmholtz equation:

$$
\nabla^{2} \phi=m^{2} \phi
$$

- Generalizes Laplace's equation.
- Often results from the wave equation after "separation of variables" - lots more on this later!
- Also used in early nuclear physics - the pion potential:

$$
\phi=-\frac{\exp (-m r)}{r} ; \quad F=-\nabla \phi=-\exp (-m r) \frac{1+m r}{r^{2}} .
$$

- Note modification of "inverse square" law.

Other standard Euler PDEs

- In terms of the generalized Euler PDE

$$
a U_{x x}+2 h U_{x y}+b U_{y y}+c U_{x}+d U_{y}+e U+f=0
$$

the Helmholtz equation corresponds to

$$
\begin{aligned}
& \quad a \rightarrow 1 ; \quad h \rightarrow 0 ; \quad b \rightarrow 1 \\
& c \rightarrow 0 ; \quad d \rightarrow 0 ; \quad e \rightarrow m^{2} ; \quad f \rightarrow 0
\end{aligned}
$$

- There is a natural generalization to three space dimensions.

Other standard Euler PDEs

- Maxwell equations (source free):

$$
\begin{aligned}
& \nabla \cdot E=0 \\
& \operatorname{curl} B-\partial_{t} E=0 \\
& \nabla \cdot B=0 \\
& \operatorname{curl} E+\partial_{t} B=0
\end{aligned}
$$

- These PDEs link the space and time dependence of electric and magnetic fields.
- (Thankfully they are linear PDEs, which is why we can do such a lot with them.)
- These equations are very well understood and underly much of humanity's pre-quantum technology.

Other standard Euler PDEs

- The Maxwell equations can be put into the form of a system of Euler PDEs, with electric fields coupled to magnetic fields.
- For a small challenge, use the rules of vector calculus to derive wave equations for E and B :

$$
\begin{aligned}
& \partial_{t}^{2} E-\nabla^{2} E=0 \\
& \partial_{t}^{2} B-\nabla^{2} B=0
\end{aligned}
$$

- Note that for simplicity I have adopted units where the speed of light equals unity.

Summary

By now I hope you are convinced of the central importance of the Euler PDE, both in its original form and in the generalized constant-coefficient case.
(And later on we'll see even more generalizations.)

End:

