Victoria University of Wellington

Te Whare Wānanga o te Ūpoko o te Ika a Maui

— MATH 301 — PDEs — Autumn 2024

Matt Visser

21 February 2024

Outline:

Administrivia

2

Euler Equation: Standard examples

- Wave equation
- Heat equation (diffusion equation)
- Laplace equation
- Review: Elliptic/ Parabolic/ Hyperbolic

3 Other standard Euler PDEs

- Klein–Gordon equation
- Helmholtz equation
- Maxwell equations

Summary

Administrivia

• Lectures:

- Monday; 12:00-12:50; MYLT 102.
- Tuesday; 12:00-12:50; MYLT 220.
- Friday; 12:00–12:50; MYLT 220.
- Tutorial:
 - Thursday; 12:00–12:50; MYLT 220.
- Lecturers:
 - Part 1: Matt Visser.
 - Part 2: Dimitrios Mitsotakis.

Euler Equation: Standard examples

I'll now give a catalogue of standard examples of Euler PDEs that you should learn to recognize.

(Typical of a hyperbolic PDE).

$$U_{xx}-\frac{1}{c^2} U_{tt}=0.$$

- Here, U(x, t) represents the displacement at point x and at time t of a string from its equilibrium position.
- That is, U(x, t) is the shape of the string at time t.
- The constant *c* is the velocity of the wave disturbance.
- The same equation can be used to describe sound waves or light waves; at least in flat spacetime.
- The generalizations to get to curved spacetime are not too onerous, but not appropriate for Math 301.

The Wave Equation:

• Usually you know:

- That the string is fixed at the origin x = 0 and at the end-point (x = L, say).
- The initial shape of the string, U(x, 0).
- The velocity of each point x of the string, U_t(x, 0). [most often this will be zero, the string will start from rest].
- Conditions of this sort, where you know initial values of the function and its derivatives, are called Cauchy (initial) conditions.
- It can be shown that Cauchy initial conditions are necessary and sufficient for the existence and uniqueness of solutions.
- (This is typical of those problems that are classified as hyperbolic Cauchy conditions are enough to guarantee existence and uniqueness of solutions).

• In terms of the Euler PDE

$$a U_{xx} + 2h U_{xy} + b U_{yy} = 0$$

the wave equation corresponds to

$$a
ightarrow 1; \quad h
ightarrow 0; \quad b
ightarrow -rac{1}{c^2}$$

with the notational change $y \rightarrow t$.

• Without further calculation we can use the analysis of the Euler PDE to immediately write down the general solution of the wave equation:

$$U(x,t) = f(x-ct) + g(x+ct)$$

This is d'Alembert's solution, and I'll have considerably more to say about it later.

(Typical of a parabolic PDE).

$$U_t = \sigma U_{xx}.$$

- Here σ is a constant, called the thermal diffusivity (heat equation) or simply the diffusion constant.
- Such an equation often occurs in situations where diffusion occurs.
- For example, consider a heated bar of metal:
- U(x, t) is the temperature at time t at a point x along the bar.

The Heat Equation:

- You might be given:
 - Ohe initial distribution of temperature in the bar, U(x, 0).
 - Or, you might be told that the two ends of the bar are kept a fixed temperatures,

$$U(0,t) = T_1$$
$$U(L,t) = T_2$$

where L is the length of the bar.

Then again you might be told:

- The initial distribution of temperature in the bar, U(x, 0).
- Or, you might be told that the ends are insulated, so that no heat can pass through them:

$$U_x(0,t) = 0 = U_x(L,t) \quad \text{for all } t.$$

- Typically, for parabolic equations, conditions of the type described above will guarantee the existence and uniqueness of a solution.
- In terms of the generalized Euler PDE

$$a U_{xx} + 2h U_{xy} + b U_{yy} + c U_x + d U_y + e U + f = 0$$

the heat equation corresponds to

$$egin{array}{cccc} a
ightarrow \sigma; & h
ightarrow 0; & b
ightarrow 0; \ c
ightarrow 0; & d
ightarrow -1; & e
ightarrow 0; & f
ightarrow 0 \end{array}$$

with the notational change $y \rightarrow t$.

- There is no closed-form general solution in terms of algebraic combinations of arbitrary functions.
- But we will later in the course use Fourier transforms to give a general solution in terms of an infinite series of "basis functions".

Hint:

Both

$$u(x,t) = \cos(kx)\exp(-\sigma k^2 t)$$

and

$$u(x,t) = \sin(kx)\exp(-\sigma k^2 t)$$

solve the heat equation for arbitrary values of k.

Then consider:

$$u(x,t) = \int A(k) \cos(kx) \exp(-\sigma k^2 t) \, \mathrm{d}k + \int B(k) \sin(kx) \exp(-\sigma k^2 t) \, \mathrm{d}k$$

There are two arbitrary functions, but now "hidden" inside the integrals...

(Typical of an elliptic PDE).

$$U_{xx}+U_{yy}=0.$$

- Now U(x, y) represents, for example,
 - the electrostatic potential at the point (x, y) in a piece R of dielectric medium,
 - or the Newtonian gravitational potential in empty space (outside the sources),
 - or it might represent the equilibrium temperature at the point (x, y) inside a heated solid R.

The Laplace Equation:

- Typically, in problems involving Laplace's equation, boundary conditions of the following form are known:
 - You might be given the potential (temperature) on the boundary $B = \partial R$ of the region R:

U(x, y) is given on B.

Such a condition is called a Dirichlet condition.

② You might know the flux of U, (that is, the gradient of U normal to the boundary B), into the region R:

$$\frac{\partial U}{\partial n}$$
 is given on *B*.

Such a condition is called a Neumann condition.

Frequently, you might be given a mixture of Dirichlet and Neumann conditions. (Robin boundary conditions.)

- So long as the boundary shape *B* is "reasonable", you can be sure there will be a unique solution to Laplace's equation satisfying any of these boundary conditions.
- In terms of the Euler PDE

$$a U_{xx} + 2h U_{xy} + b U_{yy} = 0$$

the Laplace equation corresponds to

$$a \rightarrow 1; \quad h \rightarrow 0; \quad b \rightarrow 1.$$

• Without further calculation we can use the analysis of the Euler PDE to immediately write down the general solution of Laplace's equation:

$$U(x,y) = f(x+iy) + g(x-iy)$$

- This is Laplace's solution, which relates the solution of the Laplace PDE to the theory of functions of a complex variable.
- I'll also have more to say about this later.

Euler PDE versus Laplace PDE:

When is the Euler differential equation elliptic? When is the Euler differential equation qualitatively similar to Laplace's equation?

When is it qualitatively different?

Euler PDE versus Wave PDE:

When is the Euler differential equation hyperbolic?

When is the Euler differential equation qualitatively similar to the wave equation?

When is it qualitatively different?

d'Alembert's solution

What is the general solution of the wave equation

$$U_{tt} = c^2 U_{xx}$$

in terms of two arbitrary functions?

Laplace's solution.

What is the general solution of Laplace's equation

$$U_{xx} + U_{yy} = 0$$

in terms of two arbitrary functions?

Additional examples of PDEs of the generalized constant-coefficient Euler class are:

• Klein–Gordon equation:

$$\partial_t^2 \phi - \nabla^2 \phi = -m^2 \phi$$

- This generalizes the wave equation.
- In particle physics, suitable for a scalar particle with mass. (For example, the Higgs particle after spontaneous symmetry breaking. Keep your eye on the LHC in France/ Switzerland for details...)

Other standard Euler PDEs

• Klein–Gordon equation:

- Also used in plasma physics, where it is useful for describing screening effects. (m ←→ Debye screening length.)
- Also used in super-conductivity *m* is then related to the London flux penetration depth.
- Also useful for a string in a valley.
- In terms of the generalized Euler PDE

 $a U_{xx} + 2h U_{xy} + b U_{yy} + c U_x + d U_y + e U + f = 0$

the Klein-Gordon equation corresponds to

 $a \rightarrow 1; \quad h \rightarrow 0; \quad b \rightarrow -1;$ $c \rightarrow 0; \quad d \rightarrow 0; \quad e \rightarrow m^2; \quad f \rightarrow 0$

with the notational change $x \to t$, $y \to x$.

• There is a natural generalization from (1+1) to (2+1) and (3+1) dimensions.

Helmholtz equation:

$$\nabla^2 \phi = m^2 \phi.$$

- Generalizes Laplace's equation.
- Often results from the wave equation after "separation of variables"
 lots more on this later!
- Also used in early nuclear physics the pion potential:

$$\phi = -\frac{\exp(-mr)}{r};$$
 $F = -\nabla\phi = -\exp(-mr)\frac{1+mr}{r^2}.$

• Note modification of "inverse square" law.

• In terms of the generalized Euler PDE

$$a U_{xx} + 2h U_{xy} + b U_{yy} + c U_x + d U_y + e U + f = 0$$

the Helmholtz equation corresponds to

$$a \rightarrow 1; \quad h \rightarrow 0; \quad b \rightarrow 1;$$

$$c
ightarrow 0; \quad d
ightarrow 0; \quad e
ightarrow m^2; \quad f
ightarrow 0.$$

• There is a natural generalization to three space dimensions.

• Maxwell equations (source free):

 $\nabla \cdot E = 0$ $curl B - \partial_t E = 0$ $\nabla \cdot B = 0$ $curl E + \partial_t B = 0$

- These PDEs link the space and time dependence of electric and magnetic fields.
- (Thankfully they are linear PDEs, which is why we can do such a lot with them.)
- These equations are very well understood and underly much of humanity's pre-quantum technology.

- The Maxwell equations can be put into the form of a system of Euler PDEs, with electric fields coupled to magnetic fields.
- For a small challenge, use the rules of vector calculus to derive wave equations for *E* and *B*:

$$\partial_t^2 E - \nabla^2 E = 0$$

 $\partial_t^2 B - \nabla^2 B = 0$

• Note that for simplicity I have adopted units where the speed of light equals unity.

By now I hope you are convinced of the central importance of the Euler PDE, both in its original form and in the generalized constant-coefficient case.

(And later on we'll see even more generalizations.)

