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Administrivia:

VUW
Lectures:

Monday; 12:00–12:50; MYLT 102.
Tuesday; 12:00–12:50; MYLT 220.
Friday; 12:00–12:50; MYLT 220.

Tutorial:

Thursday; 12:00–12:50; MYLT 220.

Lecturers:

Part 1: Matt Visser.
Part 2: Dimitrios Mitsotakis.

VUW
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Euler equation with variable coefficients: VUW

Euler equation with

variable coefficients
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Euler equation with variable coefficients:

It is often useful to consider a further extension of the definition of the
Euler PDE:

Definition

The generalized variable-coefficient Euler PDE is

a(x , y) Uxx +2h(x , y) Uxy +b(x , y) Uyy +c(x , y) Ux +d(x , y) Uy

+e(x , y) U + f (x , y) = 0,

where a, b, h, and c , d , e, f are functions of x and y .

(And at least one of the second-order coefficients, (a, b, or h),
is not identically zero.)

(And we are explicitly staying in 2 dimensions.)
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Euler equation with variable coefficients:

This is not really as painful as it looks.

Note that this is simply another name for the most general linear
second-order PDE.

First let’s simultaneously focus attention on the second-order
derivatives, and generalize the Euler equation even further by allowing
for a nonlinear source term.

Consider the form below.
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Euler equation with variable coefficients:

Definition

The generalized variable-coefficient Euler PDE (with non-linear source) is

a(x , y) Uxx + 2h(x , y) Uxy + b(x , y) Uyy = F (x , y ,U,Ux ,Uy ),

where a, b, are functions of x and y , and F is a function of its indicated
arguments.

(And at least one of the second-order coefficients, (a, b, or h),
is not identically zero.)

(And we are explicitly staying in 2 dimensions.)

This is still less general than the class of quasi-linear Euler PDEs,
see below.
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Canonical form:

A remarkable result, in 2-dimensions, is that by a change of coordinates
the variable coefficients of the second-order terms can always be made
constant, and the Euler equation can always be brought into a simple
canonical form.
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Canonical form:

Theorem

In 2 dimensions, as long as a(x , y), h(x , y), and b(x , y) are not all zero, you can
always divide the plane into disjoint regions in each of which you can, by change
of independent variables, bring the generalized variable-coefficient Euler PDE

a(x , y) Uxx + 2h(x , y) Uxy + b(x , y) Uyy = F (x , y ,U,Ux ,Uy ),

into the form
Ux̄ x̄ + ε Uȳ ȳ = F̃ (x̄ , ȳ ,U,Ux̄ ,Uȳ ),

where ε = ±1 or 0, and F̃ is a function of its indicated arguments.

Furthermore
ε = sign

[
a(x , y) b(x , y)− h(x , y)2

]
.
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Canonical form:

This theorem generalizes what we were already able to do with the
constant-coefficient case.

The existence of this theorem is one of the reasons the 2-dimensional
Laplace and wave equations are of such fundamental importance.

Note that

det

[
a(x , y) h(x , y)
h(x , y) b(x , y)

]
= a(x , y) b(x , y)− h(x , y)2

can still be used to classify the PDE as elliptic, parabolic, or
hyperbolic, but that this is now a position-dependent classification —
the Euler type of the PDE can change from one part of the plane to
another.
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Canonical form:

Proof of the canonical form theorem:

Consider a change of variables from x , y to x̄ , ȳ .
Let

x̄ = φ(x , y); ȳ = ψ(x , y).

Assume the change of variables is invertible (at least locally) so that

x = Φ(x̄ , ȳ); y = Ψ(x̄ , ȳ).

By the inverse function theorem this will be true as long as the Jacobian is
nonzero.
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Canonical form:

That is, as long as

∂(x̄ , ȳ)

∂(x , y)
=

∣∣∣∣ φx φy
ψx ψy

∣∣∣∣ = φxψy − φyψx 6= 0.

Then
U(x , y) = U(Φ(x̄ , ȳ),Ψ(x̄ , ȳ)) = Ū(x̄ , ȳ).

Applying the (multi-variable) chain rule:

Ux = Ūx̄ φx + Ūȳ ψx ;

Uy = Ūx̄ φy + Ūȳ ψy .
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Canonical form:

Differentiating a second time,
(and applying the [multi-variable] chain rule a second time),
we see:

Uxx = Ūx̄ x̄ φ
2
x + 2Ūx̄ ȳ φxψx + Ūȳ ȳ ψ

2
x + Ūx̄ φxx + Ūȳ ψxx ;

Uxy = Ūx̄ x̄ φxφy + Ūx̄ ȳ (φx ψy + ψx φy ) + Ūȳ ȳ ψxψy + Ūx̄ φxy + Ūȳ ψxy ;

Uyy = Ūx̄ x̄ φ
2
y + 2Ūx̄ ȳ φyψy + Ūȳ ȳ ψ

2
y + Ūx̄ φyy + Ūȳ ψyy .
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Canonical form:

Now add and collect terms to obtain

a Uxx + 2h Uxy + b Uyy = ā Ūx̄ x̄ + 2h̄ Ūx̄ ȳ + b̄ Ūȳ ȳ + ē Ūx̄ + f̄ Ūȳ ,

where now
ā = a φ2

x + 2h φxφy + b φ2
y ;

h̄ = a φx ψx + h (φxψy + ψxφy ) + b φyψy ;

b̄ = a ψ2
x + 2h ψxψy + b ψ2

y ;

ē = a φxx + 2h φxy + c φyy ;

f̄ = a ψxx + 2h ψxy + c ψyy .
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Canonical form:

This turns the original PDE

a Uxx + 2h Uxy + b Uyy = F (x , y ,U,Ux ,Uy ),

into the form

ā Ūx̄ x̄ + 2h̄ Ūx̄ ȳ + b̄ Ūȳ ȳ = F2(x̄ , ȳ , Ū, Ūx̄ , Ūȳ ),

But we now have the freedom to choose φ and ψ to make the transformed
coefficients ā, h̄, and c̄ , as simple as possible.
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Canonical form:

Start by choosing φx and φy so that a φx + h φy 6= 0;
this can always be done.

Then choose ψy 6= 0, and solve for h̄ = 0.

Check that ā 6= 0.

Now h̄ = 0 requires

ψx = −ψy
hφx + bφy
aφx + hφy

.

We can check that these choices make sense by computing the Jacobian

∂(x̄ , ȳ)

∂(x , y)
= φxψy − φyψx =

ψy

aφx + hφy
(a φ2

x + 2h φxφy + b φ2
y )

=
ψy

aφx + hφy
ā,

which is nonzero by hypothesis. (Thence implying ā 6= 0.)
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Canonical form:

But then b̄ is easily computed to be

b̄ =
ψ2
y

(aφx + hφy )2
(ab − h2) ā.

So at this stage we have h̄ = 0 and we certainly know

sign(b̄) = sign(ab − h2) sign(ā).

But the only thing we have used (so far) about ψy is that it is
nonzero, so (provided ab − h2 6= 0) we are still free to pick

ψy =
aφx + hφy√
|ab − h2|

.
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Canonical form:

But then we have both h̄ = 0 and

b̄ = sign(ab − h2) ā.

But this final result works even if ab − h2 = 0.

So in this particular coordinate system the PDE is

ā(x̄ , ȳ)
{
Ūx̄ x̄ + sign(ab − h2) Ūȳ ȳ

}
= F2(x̄ , ȳ , Ū, Ūx̄ , Ūȳ ).

Dividing through by ā now yields

Ūx̄ x̄ + sign(ab − h2) Ūȳ ȳ = F3(x̄ , ȳ , Ū, Ūx̄ , Ūȳ ).
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Canonical form:

Now adopt the notation

ε = sign(ab − h2),

then
Ux̄ x̄ + ε Uȳ ȳ = F̃ (x̄ , ȳ ,U,Ux̄ ,Uȳ ),

and we are done.

QED!
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Canonical form:

Note that this works in any two dimensional region where (ab − h2)
is of constant sign.

This includes two dimensional regions where (ab − h2) is identically
zero.

Note that this is a “straightforward” extension of what we did for the
constant-coefficient Euler equation.
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Canonical form:

If you want to consider a two dimensional region where (ab − h2) changes
sign, the trick is to use (ab − h2) as one of your new coordinates, say x̄ .

You can still eliminate h̄ in the same way, but now

b̄ =
ψ2
y

(aφx + hφy )2
(ab − h2) ā→

ψ2
y

(aφx + hφy )2
x̄ ā.

The further choice
ψy = aφx + hφy

now leads to

ā(x̄ , ȳ)
{
Ūx̄ x̄ + x̄ Ūȳ ȳ

}
= F2(x̄ , ȳ , Ū, Ūx̄ , Ūȳ ).

We now rewrite this as

Ux̄ x̄ + x̄ Uȳ ȳ = F̃ (x̄ , ȳ ,U,Ux̄ ,Uȳ ),

which is Tricomi’s equation with a nonlinear source.
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Canonical form:

Note what we have done — in two dimensions the second-derivative
part of the general variable-coefficient Euler equation has been
reduced to a very small number of standard cases:

— Wave equation (with nonlinear source),
— Laplace’s equation (with nonlinear source),
— Parabolic equation (with nonlinear source),
— Tricomi’s equation (with nonlinear source).

This is a tremendous simplification.
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Canonical form:

This whole discussion can be given a “geometrical” interpretation
which will not make any sense until know some differential geometry:

Any two-dimensional manifold with a non-singular metric tensor is
locally conformally flat.
Any two-dimensional manifold with a Euclidean metric tensor is locally
conformal to two-dimensional Euclidean space.
Any two-dimensional manifold with a Lorentzian metric tensor is locally
conformal to two-dimensional Minkowski space.
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Canonical form:

Unfortunately if you go beyond 2 dimensions things get a whole lot
more complicated.

In 3 dimensions you can at least diagonalize the matrix of coefficients
of the second-order terms, but you cannot make the coefficients
piecewise constant.
(Darboux’s theorem for 3-manifolds — proving this is not easy.)
See for instance:
http://www.u-gakugei.ac.jp/~sekizawa/diagonal.pdf.
Note the appeal to the Cauchy–Kowalevski Theorem...
The situation in 4 dimensions is even worse...

The elliptic/ parabolic/ hyperbolic distinction requires more
information than just the determinant of the matrix of second order
coefficients — you now need to know the signature of that matrix,
the number of positive, negative, and zero eigenvalues.
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Canonical form:

Elliptic/ parabolic/ hyperbolic:

If all the eigenvalues of the matrix of second-order coefficients are
nonzero and have the same sign, then the PDE is elliptic.
If all the eigenvalues of the matrix of second-order coefficients are
nonzero and some have differing sign, then the PDE is hyperbolic.
If all the eigenvalues of the matrix of second-order coefficients are
nonzero and exactly one has a different sign from all the others,
then the PDE is strictly hyperbolic.
If all the eigenvalues of the matrix of second-order coefficients are
nonzero and at least two are positive while at least two are negative,
(which can only happen in four or more dimensions), then the PDE is
ultra-hyperbolic.
(This is bad; effectively it means you have two time directions;
very not good...)
If some of the eigenvalues of the matrix of second-order coefficients are
zero, then the PDE is parabolic.
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Examples — variable coefficient Euler:

Here are some examples of standard PDEs of considerable importance that
fall under the heading of variable-coefficient Euler type.
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Examples — variable coefficient Euler:

Poisson:
∇2φ = ρ

Laplace’s equation with a position-dependent source.
Electrostatic potential in the presence of electric charge.
Gravitational potential in the presence of matter.
Equilibrium temperature in the presence of heat sources.
Now also defined for curved space.

In terms of the generalized Euler PDE

a Uxx + 2h Uxy + b Uyy + c Ux + d Uy + e U + f = 0

the Poisson equation corresponds to

a→ 1; h→ 0; b → 1;

c → 0; d → 0; e → 0; f → ρ(x , y).

There is a natural generalization to three space dimensions.
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Examples — variable coefficient Euler:

Maxwell (now with sources):
Adding charges and currents to the Maxwell equations

div E = ρ

curl B − ∂t E = j

div B = 0

curl E + ∂t B = 0

In the presence of sources (and/ or curved space-time) the Maxwell
equations can be put into the form of a system of generalized
variable-coefficient Euler PDEs, with electric fields coupled to
magnetic fields, charges, and currents.
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Examples — variable coefficient Euler:

Maxwell (now with sources):
You can use the rules of vector calculus to derive wave equations for
E and B:

∂2
t E −∇2E = gradρ− ∂t j

∂2
t B −∇2B = −curl j

Note that for simplicity I have again adopted units where the speed of
light equals unity, and that we are now dealing with wave equations
with sources.
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Examples — variable coefficient Euler:

Schroedinger equation:

−i~ ∂
∂t
ψ(t, ~x) =

{
− ~2

2m
∇2 + V (t, ~x)

}
ψ(t, ~x)

This PDE links the space and time dependence of the probability
amplitude for finding a particle at a particular point.

(Thankfully a linear PDE, which is why we can do such a lot with it.)

This equation is very well understood and underlies much of
humanity’s quantum technology.
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Examples — variable coefficient Euler:

In terms of the generalized Euler PDE

a Uxx + 2h Uxy + b Uyy + c Ux + d Uy + e U + f = 0

the Schroedinger equation corresponds to

a→ 0; h→ 0; b → +
~2

2m
;

c → −i~; d → 0; e → −V (t, x); f → 0

with the notational change x → t, y → x .

There is a natural generalization from (1+1) to (2+1) and (3+1)
dimensions.
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Examples — variable coefficient Euler:

Continuity equation:
∂tρ+ ~∇ · (ρ~v) = 0

Recall that this is a quasi-linear first order PDE.
Because there are no second-order derivatives, the continuity equation
cannot be put into Euler form.
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Examples — variable coefficient Euler:

Euler (hydrodynamics):

∂t~v + (~v · ~∇)~v = −
~∇p
ρ

+
~B

ρ

Recall that this is a quasi-linear first order PDE.
Because there are no second-order derivatives, the hydrodynamic
Euler equation cannot be put into Euler form.
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Quasi-linear Euler PDE:

Definition

The generalized quasi-linear Euler PDE is

a(x , y ,U,Ux ,Uy ) Uxx + 2h(x , y ,U,Ux ,Uy ) Uxy + b(x , y ,U,Ux ,Uy ) Uyy

= F (x , y ,U,Ux ,Uy ),

where a, h, and b, are functions of x , y , U and its first derivatives,
and F is a function of its indicated arguments.

(And at least one of the second-order coefficients a, b, or h, is not
identically zero.)
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Quasi-linear Euler PDE:

Note that the quasi-linear Euler equation is simply another name for
the general quasi-linear second order PDE.

Note that if you classify the quasi-linear Euler equations into elliptic,
parabolic, hyperbolic by looking at the sign of ab − h2, then the Euler
type can depend not only on where you are in space, but also on the
value of the dependent variable and its derivatives at that point.
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Quasi-linear Euler PDE:

Here are some examples of standard PDEs of considerable importance that
fall under the heading of quasi-linear Euler type.

(Though the interpretation might sometimes be considered a bit strained.)

Matt Visser (VUW) Math 301 — PDEs — 2024 37 / 50



Quasi-linear Euler PDE:

Navier–Stokes equation:

∂t~v + (~v · ~∇)~v = −
~∇p
ρ

+
~B

ρ
+ ν∇2~v

~∇ · ~v = 0

This is Euler’s fluid dynamic equation (Newton’s second law), plus
incompressibility, plus conservation of mass, plus a particular model for
viscosity.
Because of the viscosity term there is now at least one second-order
term in the PDE — and because this second-order derivative occurs
linearly the first of the two PDEs can be viewed as a quasi-linear Euler
PDE.
Indeed this is a parabolic PDE.
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Quasi-linear Euler PDE:

These equations look innocent; they are very difficult to analyze.

The fact that they are nonlinear in the velocity field ~v is the ultimate
source of all the difficulty.

Remember I told you that EUS is extremely difficult to prove for
generic PDEs?
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Quasi-linear Euler PDE:

There is currently a US$1,000,000 prize from the Clay Mathematics
institute for “substantial progress towards proving existence and
smoothness” of the solutions:
Waves follow our boat as we meander across the lake, and turbulent air
currents follow our flight in a modern jet. Mathematicians and physicists
believe that an explanation for and the prediction of both the breeze and
the turbulence can be found through an understanding of solutions to the
Navier–Stokes equations. Although these equations were written down
in the 19th Century, our understanding of them remains minimal. The
challenge is to make substantial progress toward a mathematical theory
which will unlock the secrets hidden in the Navier-Stokes equations.
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Quasi-linear Euler PDE:

For the details of the challenge, see:
http://www.claymath.org/millennium-problems

Please do not present me with any prize claims;
see the rules as given on the website.
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Exercises on Euler PDEs:

Classify the following PDEs according to whether or not they are:

Euler (simple, constant coefficient).

Euler (generalized, constant coefficient).

Euler (variable coefficient, possibly with nonlinear source).

Euler (quasi-linear).

Non-Euler.

Whenever they fall into one of the many Euler classes above, further
classify them according to whether they are elliptic, parabolic, hyperbolic.

(For some of these PDEs it will simply be a matter of reading the notes
and copying the answers I’ve already given.)
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Exercises on Euler PDEs:

a. V 2 Vxy + Vx Vy + (x2 − y2)V = 3xy .

b. Uxxz − 2(x + z)Uxyz − Uxx + sin(xyz)Uxx = cos(U)

c. Ut − UUxx + 12xUx = U.

d. Yxxx − cosY = Yt .

e. Vxt − sinV = exp(x + t).

f. Yxx + cos(xy)Yyxy = Y + ln(x2 + y3).

g. Ut = Uxx − 12U Ux .

h. Vyx + Vx + Vy = Vxyy .

i. Utt − cos(Ux) = U.

j. cos x · Ux + sin t · Ut = U.
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Exercises on Euler PDEs:

k. Schrodinger equation (with potential):

−i∂tψ =
1

2m
∇2ψ + V (x)ψ.

l. Monge–Ampere equation (2 variable):

uxxuyy − u2
xy = f (x , y , u, ux , uy ).

m. Monge–Ampere equation (multi-variable):

det

[
∂2u

∂x i ∂x j

]
= f

(
x i , u,

∂u

∂x i

)
.

n. Navier–Stokes equation:

∂t~v + (~v · ~∇)~v =
~∇p
ρ

+ ν∇2~v .
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Exercises on Euler PDEs:

o. Tricomi equation:
y Uxx + Uyy = 0.

p. Frobenius–Mayer equation (special case, one dependent variable):

∂U

∂x i
= Fi (x ,U).

q. Biharmonic equation:
∇4Ψ = 0.

That is, (∇2)2 Ψ = 0, or more explicitly:[
∂2
x + ∂2

y + ∂2
z

]2
Ψ = 0.
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Exercises on Euler PDEs:

r. Benjamin–Bona–Mahony equation:

ut + ux + uux − uxxt = 0.

s. Chaplygin equation:

uxx +
c2 y2

c2 − y2
uyy + y uy = 0.

t. Boussinesq equation:

utt − α2uxx = β2uxxtt .

u. Euler–Darboux equation:

uxy +
α ux − β uy

x − y
= 0.
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Exercises on Euler PDEs:

v. Korteweg–deVries–Burger:

ut + 2uux − ν uxx + µ uxxx = 0.

w. Kirchever–Novikov equation:

ut
ux

=
1

4

uxxx
ux
− 3

8

u2
xx

u2
x

+
3

8

4u3 − g2u − g3

u2
x

.

(Start by simplifying this a little.)

x. Lin–Tsien equation:

2utx + ux uxx − uyy = 0.
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Exercises on Euler PDEs:

y. Monge–Ampere equation (generalized):

E (x , y ,U,Ux ,Uy )
[
UxxUyy − U2

xy

]
+A(x , y ,U,Ux ,Uy ) Uxx + B(x , y ,U,Ux ,Uy ) Uxy + C (x , y ,U,Ux ,Uy ) Uyy

+D(x , y ,U,Ux ,Uy ) = 0

or even more generally (multi variable case):

E (x i ,U, ∂iU) det

[
∂2u

∂x i ∂x j

]
+
∑
ij

Aij(x i ,U, ∂iU) U,ij + D(x i ,U, ∂iU) = 0.
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Exercises on Euler PDEs:

z. Cauchy–Riemann system of PDEs:

∂u

∂x
=
∂v

∂y
;

∂v

∂x
= −∂u

∂y
.

After answering the question for the Cauchy–Riemann system itself,
iterate these Cauchy–Riemann equations to find a pair of PDEs that
decouple — they depend only on u, and only on v , but not both.

——VUW——
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End:

——VUW——
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