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Administrivia:

VUW
Lectures:

Monday; 12:00–12:50; MYLT 102.
Tuesday; 12:00–12:50; MYLT 220.
Friday; 12:00–12:50; MYLT 220.

Tutorial:

Thursday; 12:00–12:50; MYLT 220.

Lecturers:

Part 1: Matt Visser.
Part 2: Dimitrios Mitsotakis.

VUW
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Gibbs phenomenon:

From the various Maple worksheets we have seen,
it is clear that the “squiggles”, the Gibbs phenomenon,
have to do with discontinuities in the function f (x)...

But for the Fourier theorem to apply f (x) must be piecewise
continuous...

Therefore:

f (x) = (continuous and periodic)+(finite number of finite discontinuities)

With regards to the Gibbs phenomenon we need only focus on the:

(finite number of finite discontinuities)
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Gibbs phenomenon:

But since the process of calculating the Fourier coefficients,
and summing the Fourier series is linear,
there is no loss of generality in focussing on just
a single one of these discontinuities.

In fact, there is really no loss of generality in considering a step
discontinuity:

f (x) = signum(x − a)

For simplicity, (ie, good enough for most purposes), we set a = 0,
so that we consider

f (x) = signum(x)

We saw, in one of the Maple worksheets, that a 6= 0 was qualitatively
similar to a = 0.
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Gibbs phenomenon:

The function
f (x) = signum(x)

is odd, so the natural thing to do is consider a sine series...

We might as well work on the unit interval [−1,+1].

The Fourier coefficients are

An = 2

∫ 1

0
1 · sin(nπx)dx =

2

nπ
[− cos(nπx)]10 =

2

nπ
{1− cos(nπ)}

That is

A2m = 0; A2m+1 =
4

π(2m + 1)

Therefore

signum(x) =
4

π

∞∑
m=0

sin([2m + 1]πx)

2m + 1
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Gibbs phenomenon:

Now define the finite sum

SM(x) =
4

π

M∑
m=0

sin([2m + 1]πx)

2m + 1

That is

SM(x) =
4

π

{
sin(πx) +

sin(3πx)

3
+

sin(5πx)

5
+ · · ·+ sin([2M + 1]πx)

2M + 1

}
For each fixed x we have

lim
M→∞

SM(x) = signum(x)

This is the content of the Fourier convergence theorem...
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Gibbs phenomenon:

But what else can we say about this series

SM(x) =
4

π

{
sin(πx) +

sin(3πx)

3
+

sin(5πx)

5
+ · · ·+ sin([2M + 1]πx)

2M + 1

}
Let’s evaluate this sum at the specific M-dependent point

x =
1

2[M + 1]
.

Then:

SM

(
1

2[M + 1]

)
=

4

π

M∑
m=0

sin
(
[2m+1]π
2[M+1]

)
2m + 1

That is:

SM

(
1

2[M + 1]

)
=

4

π

M∑
m=0

sin
(
[2m+1]π
2[M+1]

)
2m+1
2[M+1]

1

2[M + 1]
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Gibbs phenomenon:

That is:

SM

(
1

2[M + 1]

)
=

2

π

M∑
m=0

sin

(
[m+ 1

2
]π

M+1

)
m+ 1

2
M+1

1

M + 1

But note that the sum is just the mid-point Riemann sum for
approximating the integral

M∑
m=0

sin

(
[m+ 1

2
]π

M+1

)
m+ 1

2
M+1

1

M + 1
≈
∫ 1

0

sin(πu)

u
du

Note that sin(πu)/u is continuous...

So it is certainly Riemann integrable...
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Gibbs phenomenon:

Therefore the limit M →∞ exists, and we have:

lim
M→∞

SM

(
1

2[M + 1]

)
=

2

π

∫ 1

0

sin(πu)

u
du =

2 Si(π)

π

(There are many other ways of getting to the same conclusion.)

Numerically:

lim
M→∞

SM

(
1

2[M + 1]

)
=

2 Si(π)

π
= 1.178979744 > 1.

So there is guaranteed to be an overshoot...

Since the gap from –1 to +1 is 2, the fractional overshoot is

∆ =
2 Si(π)

π − 1

2
=

Si(π)

π
− 1

2
= 0.0894898720 ≈ 9%
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Gibbs phenomenon:

This 9% overshoot is the Gibbs phenomenon...

(It should really be called the Wilbraham phenomenon.)

Let us now consider a slightly more general idea:

SM

(
w

2[M + 1]

)
=

4

π

M∑
m=0

sin
(
w [2m+1]π
2[M+1]

)
2m + 1

Repeating the analysis (with trivial modifications) we see:

SM

(
w

2[M + 1]

)
=

2

π

M∑
m=0

sin

(
w [m+ 1

2
]π

M+1

)
m+ 1

2
M+1

1

M + 1
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Gibbs phenomenon:

But note that the sum is just the mid-point Riemann sum for
approximating the integral

M∑
m=0

sin

(
w [m+ 1

2
]π

M+1

)
m+ 1

2
M+1

1

M + 1
≈
∫ 1

0

sin(wπu)

u
du

Therefore:

lim
M→∞

SM

(
w

2[M + 1]

)
=

2

π

∫ 1

0

sin(wπu)

u
du =

2 Si(wπ)

π

(There are many other ways of getting to the same conclusion.)
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Gibbs phenomenon:

lim
M→∞

SM

(
w

2[M + 1]

)
=

2 Si(wπ)

π
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Gibbs phenomenon:

That is, near a discontinuity we have:

SM(x) ≈ 2 Si(2πx [M + 1])

π

This is actually a reasonably good approximation,
at least as long as you are closer to the discontinuity at x = 0
than you are to the other discontinuity at x = ±1.
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Gibbs phenomenon:

We can also argue as follows:

SM(x) =
4

π

M∑
m=0

sin([2m + 1]πx)

2m + 1
= 4

∫ x

0

M∑
m=0

cos([2m + 1]πu)du

Then performing the sum

SM(x) = 2

∫ x

0

sin([2M + 2]πu)

sin(πu)
du

For |x | � 1 we have |u| < |x | � 1 so sin(πu) ≈ πu and

SM(x) ≈ 2

π

∫ x

0

sin([2M + 2]πu)

u
du
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Gibbs phenomenon:

Change variables:

SM(x) ≈ 2

π

∫ [2M+2]πx

0

sin u

u
du

That is

SM(x) ≈ 2

π
Si (2[M + 1]πx)

as before...

This is the Gibbs phenomenon, generic to discontinuous functions.

Similar things happen for the sawtooth function.
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End:

——VUW——
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