Victoria University of Wellington

Te Whare Wānanga o te Ūpoko o te Ika a Maui

- MATH 301 - PDEs Autumn 2024

Matt Visser

21 February 2024

Topics:

(1) Administrivia
(2) General solutions
(3) d'Alembert's solution
(4) Variable-coefficient Euler PDE
(5) Separation of Variables
(6) Fourier series

Administrivia:

Administrivia

Administrivia:

- Lectures:
- Monday; 12:00-12:50; MYLT 102.
- Tuesday; 12:00-12:50; MYLT 220.
- Friday; 12:00-12:50; MYLT 220.
- Tutorial:
- Thursday; 12:00-12:50; MYLT 220.
- Lecturers:
- Part 1: Matt Visser.
- Part 2: Dimitrios Mitsotakis.

General solutions:

General solutions

General solutions:

Two absolutely essential general solutions to memorize:

- Laplace's equation:

$$
U_{x x}+U_{y y}=0
$$

General solution:

$$
U(x, y)=F(x+i y)+G(x-i y)
$$

- Wave equation:

$$
c^{2} U_{x x}-U_{t t}=0
$$

General solution:

$$
U(x, t)=F(x+c t)+G(x-c t)
$$

Related issues: the Euler PDE...

d'Alembert's solution:

d'Alembert's solution

d'Alembert's solution to the wave equation:

- Wave equation:

$$
c^{2} U_{x x}-U_{t t}=0
$$

- Boundary conditions:

$$
\forall x \quad U(x, 0)=f(x)
$$

$$
\forall x \quad U_{t}(x, 0)=g(x)
$$

- General solution:

$$
U(x, t)=F(x+c t)+G(x-c t)
$$

- Specific solution:

$$
U(x, t)=\frac{1}{2}[f(x+c t)+f(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
$$

Variable-coefficient Euler PDE:

Variable-coefficient Euler PDE

Variable-coefficient Euler PDE:

Definition

The generalized (2-dimensional) variable-coefficient Euler PDE is

$$
\begin{gathered}
a(x, y) U_{x x}+2 h(x, y) U_{x y}+b(x, y) U_{y y}+c(x, y) U_{x}+d(x, y) U_{y} \\
+e(x, y) U+f(x, y)=0
\end{gathered}
$$

where a, b, h, and c, d, e, f are functions of x and y.
(And at least one of the second-order coefficients $a(x, y), b(x, y)$, or $h(x, y)$, is not identically zero.)

Variable-coefficient Euler PDE:

Definition

The generalized (2-dimensional) variable-coefficient Euler PDE (with non-linear source) is

$$
a(x, y) U_{x x}+2 h(x, y) U_{x y}+b(x, y) U_{y y}=F\left(x, y, U, U_{x}, U_{y}\right)
$$

where a, b, are functions of x and y, and F is a function of its indicated arguments.
(And at least one of the second-order coefficients $a(x, y), b(x, y)$, or $h(x, y)$, is not identically zero.)

Variable-coefficient Euler PDE:

Theorem

In 2 dimensions, as long as the $2^{\text {nd }}$-order coefficients $a(x, y), h(x, y)$, and $b(x, y)$ are not all zero, then you can always divide the plane into disjoint regions in each of which you can, by change of independent variables, bring the generalized variable-coefficient Euler PDE

$$
a(x, y) U_{x x}+2 h(x, y) U_{x y}+b(x, y) U_{y y}=F\left(x, y, U, U_{x}, U_{y}\right)
$$

into the form

$$
U_{\bar{x} \bar{x}}+\epsilon U_{\bar{y} \bar{y}}=\tilde{F}\left(\bar{x}, \bar{y}, U, U_{\bar{x}}, U_{\bar{y}}\right),
$$

where $\epsilon= \pm 1$ or 0 , and \tilde{F} is a function of its indicated arguments. Furthermore

$$
\epsilon=\operatorname{sign}\left[a(x, y) b(x, y)-h(x, y)^{2}\right] .
$$

Variable-coefficient Euler PDE:

Theorem

If you want to consider a two dimensional region where $\left(a b-h^{2}\right)$ changes sign, the trick is to use $\left(a b-h^{2}\right)$ as one of your new coordinates, say \bar{x}. Then

$$
U_{\bar{x} \bar{x}}+\bar{x} U_{\bar{y} \bar{y}}=\tilde{F}\left(\bar{x}, \bar{y}, U, U_{\bar{x}}, U_{\bar{y}}\right),
$$

which is Tricomi's equation with a nonlinear source.
Thus in two dimensions the second-derivative part of the general variable-coefficient Euler equation has been reduced to a very small number of standard cases:

- Wave equation (with nonlinear source).
- - Laplace's equation (with nonlinear source).
- - Parabolic equation (with nonlinear source).
- - Tricomi's equation (with nonlinear source).

Separation of Variables:

Separation of variables

Separation of Variables:

Basis functions:

Name	Wave	Heat	Laplace
Equation	$u_{x x}=u_{t t}$	$u_{x x}=u_{t}$	$u_{x x}+u_{y y}=0$
Ansatz	$X(x) T(t)$	$X(x) T(t)$	$X(x) Y(y)$
	$X^{\prime \prime} T=X T^{\prime \prime}$	$X^{\prime \prime} T=X T^{\prime}$	$X^{\prime \prime} Y+X Y^{\prime \prime}=0$
SOV	$\frac{X^{\prime \prime}}{X}=\frac{T^{\prime \prime}}{T}=-k^{2}$	$\frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{T}=-k^{2}$	$\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=-k^{2}$
	$X=\cos (k x+\phi)$	$X=\cos (k x+\phi)$	$X=\cos (k x+\phi)$
	$T=\cos (k t+\chi)$	$T=\exp \left(-k^{2} t\right)$	$Y=\cosh (k y+\chi)$

(For generality, k is either pure real or pure imaginary.)
General solutions:

Wave	$u(x, t)=\sum_{n} A_{n} \cos \left(k_{n} x+\phi_{n}\right) \cos \left(k_{n} t+\chi_{n}\right)$
Heat	$u(x, t)=\sum_{n} A_{n} \cos \left(k_{n} x+\phi_{n}\right) \exp \left(-k_{n}^{2} t\right)$
Laplace	$u(x, y)=\sum_{n} A_{n} \cos \left(k_{n} x+\phi_{n}\right) \cosh \left(k_{n} t+\chi_{n}\right)$

(No boundary conditions have yet been used.)

Separation of Variables:

It is only once you add some of the BCs/ICs that the k_{n} are determined.
For example:

- Dirichlet conditions in the x direction:

$$
\begin{gathered}
u(0, \bullet)=0=u(L, \bullet) \quad \Rightarrow \quad X(0)=0=X(L) \\
\Rightarrow \quad \cos (\phi)=0=\cos \left(k_{n} L+\phi\right) \quad \Rightarrow \quad \phi=\frac{\pi}{2} ; \quad k_{n} L=n \pi ; \\
\Rightarrow \quad k_{n}=\frac{n \pi}{L} ; \quad X(x)=\sin \left(\frac{n \pi x}{L}\right)
\end{gathered}
$$

Wave	$u(x, t)=\sum_{n} \sin \left(\frac{n \pi x}{L}\right)\left\{A_{n} \cos \left(\frac{n \pi t}{L}\right)+B_{n} \sin \left(\frac{n \pi t}{L}\right)\right\}$
Heat	$u(x, t)=\sum_{n} A_{n} \sin \left(\frac{n \pi x}{L}\right) \exp \left(-\frac{n^{2} \pi^{2}}{L^{2}} t\right)$
Laplace	$u(x, y)=\sum_{n} \sin \left(\frac{n \pi x}{L}\right)\left\{A_{n} \cosh \left(\frac{n \pi y}{L}\right)+B_{n} \sinh \left(\frac{n \pi y}{L}\right)\right\}$

Separation of Variables:

Remaining BC (some examples):

Wave	$u(x, 0)=\sum_{n} A_{n} \sin \left(\frac{n \pi x}{L}\right)$
Wave	$u_{t}(x, 0)=\sum_{n} \frac{n \pi B_{n}}{L} \sin \left(\frac{n \pi x}{L}\right)$
Heat	$u(x, 0)=\sum_{n} A_{n} \sin \left(\frac{n \pi x}{L}\right)$
Laplace	$u(x, 0)=\sum_{n} A_{n} \sin \left(\frac{n \pi x}{L}\right)$
Laplace	$u_{y}(x, 0)=\sum_{n} \frac{n \pi B_{n}}{L} \sin \left(\frac{n \pi x}{L}\right)$

Apply Fourier sine series...
(Could also apply 2-point BCs in y direction.)

Separation of Variables:

It is only once you add some of the BCs/ICs that the k_{n} are determined.
For example:

- Neumann conditions in the x direction:

$$
\begin{gathered}
u_{x}(0, \bullet)=0=u_{x}(L, \bullet) \quad \Rightarrow \quad X^{\prime}(0)=0=X^{\prime}(L) \\
\Rightarrow \quad \sin (\phi)=0=\sin \left(k_{n} L+\phi\right) \quad \Rightarrow \quad \phi=0 ; \quad k_{n} L=n \pi ; \\
\Rightarrow \quad k_{n}=\frac{n \pi}{L} ; \quad X(x)=\cos \left(\frac{n \pi x}{L}\right) .
\end{gathered}
$$

Wave	$u(x, t)=\sum_{n} \cos \left(\frac{n \pi x}{L}\right)\left\{A_{n} \cos \left(\frac{n \pi t}{L}\right)+B_{n} \sin \left(\frac{n \pi t}{L}\right)\right\}$
Heat	$u(x, t)=\sum_{n} A_{n} \cos \left(\frac{n \pi x}{L}\right) \exp \left(-\frac{n^{2} \pi^{2}}{L^{2}} t\right)$
Laplace	$u(x, y)=\sum_{n} \cos \left(\frac{n \pi x}{L}\right)\left\{A_{n} \cosh \left(\frac{n \pi y}{L}\right)+B_{n} \sinh \left(\frac{n \pi y}{L}\right)\right\}$

Separation of Variables:

Remaining BC (some examples):

Wave	$u(x, 0)=\sum_{n} A_{n} \cos \left(\frac{n \pi x}{L}\right)$
Wave	$u_{t}(x, 0)=\sum_{n} \frac{n \pi B_{n}}{L} \cos \left(\frac{n \pi x}{L}\right)$
Heat	$u(x, 0)=\sum_{n} A_{n} \cos \left(\frac{n \pi x}{L}\right)$
Laplace	$u(x, 0)=\sum_{n} A_{n} \cos \left(\frac{n \pi x}{L}\right)$
Laplace	$u_{y}(x, 0)=\sum_{n} \frac{n \pi B_{n}}{L} \cos \left(\frac{n \pi x}{L}\right)$

Apply Fourier cosine series...
(Could also apply 2-point BCs in y direction.)

Separation of Variables:

It is only once you add some of the BCs/ICs that the k_{n} are determined.
For example:

- Mixed conditions in the x direction:

$$
\begin{array}{cl}
u_{x}(0, \bullet)=0=u(L, \bullet) \quad & \Rightarrow \quad X^{\prime}(0)=0=X(L) \\
\Rightarrow \quad \sin (\phi)=0=\cos \left(k_{n} L+\phi\right) & \Rightarrow \quad \phi=0 ; \quad k_{n} L=\left(n+\frac{1}{2}\right) \pi ; \\
\Rightarrow \quad k_{n}=\frac{(2 n+1) \pi}{2 L} ; & X(x)=\cos \left(\frac{(2 n+1) \pi x}{2 L}\right)
\end{array}
$$

W	$u=\sum_{n} \cos \left(\frac{(2 n+1) \pi x}{2 L}\right)\left\{A_{n} \cos \left(\frac{(2 n+1) \pi t}{2 L}\right)+B_{n} \sin \left(\frac{(2 n+1) \pi t}{2 L}\right)\right\}$
H	$u=\sum_{n} A_{n} \cos \left(\frac{(2 n+1) \pi x}{2 L}\right) \exp \left(-\frac{\left(n+\frac{1}{2}\right)^{2} \pi^{2}}{L^{2}} t\right)$
L	$u=\sum_{n} \cos \left(\frac{(2 n+1) \pi x}{2 L}\right)\left\{A_{n} \cosh \left(\frac{(2 n+1) \pi y}{2 L}\right)+B_{n} \sinh \left(\frac{(2 n+1) \pi y}{2 L}\right)\right\}$

Separation of Variables:

Remaining BC (some examples):

Wave	$u(x, 0)=\sum_{n} A_{n} \cos \left(\frac{(2 n+1) \pi x}{2 L}\right)$
Wave	$u_{t}(x, 0)=\sum_{n} \frac{(2 n+1) \pi B_{n}}{2 L} \cos \left(\frac{(2 n+1) \pi x}{2 L}\right)$
Heat	$u(x, 0)=\sum_{n} A_{n} \cos \left(\frac{(2 n+1) \pi x}{2 L}\right)$
Laplace	$u(x, 0)=\sum_{n} A_{n} \cos \left(\frac{(2 n+1) \pi x}{2 L}\right)$
Laplace	$u_{y}(x, 0)=\sum_{n} \frac{(2 n+1) \pi B_{n}}{2 L} \cos \left(\frac{(2 n+1) \pi x}{2 L}\right)$

Apply Fourier cosine series...
(Could apply 2-point BCs in y direction.)
(Could apply even messier 2-point Robin BCs in y direction.)

Fourier series:

Fourier series

Fourier series:

General Fourier series:

$$
f(x)=\sum_{n=0}^{\infty}\left[A_{n} \cos (\pi n x / L)+B_{n} \sin (\pi n x / L)\right]
$$

$$
A_{0}=\frac{1}{2 L} \int_{-L}^{+L} f(x) \mathrm{d} x
$$

$$
A_{n>0}=\frac{1}{L} \int_{-L}^{+L} \cos (\pi n x / L) f(x) \mathrm{d} x
$$

$$
B_{n>0}=\frac{1}{L} \int_{-L}^{+L} \sin (\pi n x / L) f(x) \mathrm{d} x .
$$

Periodic on $[-L, L]$.

Fourier series:

Orthogonality:

$$
\begin{gathered}
\int_{-L}^{+L} \cos (\pi n x / L) \cos (\pi m x / L) \mathrm{d} x=L\left(\delta_{m n}+\delta_{m 0} \delta_{n 0}\right) \\
\int_{-L}^{+L} \sin (\pi n x / L) \sin (\pi m x / L) \mathrm{d} x=L\left(\delta_{m n}-\delta_{m 0} \delta_{n 0}\right) \\
\int_{-L}^{+L} \sin (\pi n x / L) \cos (\pi m x / L) \mathrm{d} x=0 \\
\int_{-L}^{+L} \cos (\pi n x / L) \sin (\pi m x / L) \mathrm{d} x=0
\end{gathered}
$$

Kronecker delta: $\quad \delta_{m n}=\left\{\begin{array}{l}1 \text { if } m=n ; \\ 0 \text { if } m \neq n .\end{array}\right.$

Fourier series:

Theorem (Fourier's general theorem:)

Suppose that the functions $f(x)$ and $f^{\prime}(x)$ are both piecewise continuous on the interval $-L \leq 0 \leq L$, then:

- $f(x)$ has a Fourier series whose coefficients are determined by the Euler-Fourier formulae above.
- The Fourier series converges to $f(x)$ at all points where $f(x)$ is continuous.
- The Fourier series converges to $\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right]$at points of discontinuity.

Fourier series:

Theorem (Fourier sine theorem)

If $f(x)$ is piecewise continuous, with piecewise continuous derivatives, then the Fourier sine series

$$
f(x)=\sum_{n=1}^{\infty}\left[B_{n} \sin (\pi n x / L)\right] ; \quad B_{n}=\frac{2}{L} \int_{0}^{+L} \sin (\pi n x / L) f(x) \mathrm{d} x
$$

converges for all values of x in the interval $[0, L]$. Furthermore:
i. If x is a point in $(0, L)$ where $f(x)$ is continuous, then the series converges to $f(x)$.
ii. If x is a point in $(0, L)$ where f has a discontinuity, then the series converges to

$$
\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right] .
$$

iii. At the points $x=0$ and $x=L$, the series converges to 0 . [Not to $f(0)$ and $f(L)$.

Fourier series:

Theorem (Fourier cosine theorem)

If $f(x)$ is piecewise continuous, with piecewise continuous derivatives, then the Fourier cosine series

$$
\begin{gathered}
f(x)=\sum_{n=0}^{\infty}\left[A_{n} \cos (\pi n x / L)\right] ; \quad A_{n>0}=\frac{2}{L} \int_{0}^{+L} \cos (\pi n x / L) f(x) \mathrm{d} x \\
A_{0}=\frac{1}{L} \int_{0}^{+L} f(x) \mathrm{d} x
\end{gathered}
$$

converges for all values of x in the interval $[0, L]$. Furthermore:
i. If x is a point in $(0, L)$ where $f(x)$ is continuous, then the series converges to $f(x)$.
ii. If x is a point in $(0, L)$ where f has a discontinuity, then the series converges to $\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right]$.
iii. At $x=0$ and $x=L$, the series converges to $f(0)$ and $f(L)$.

Fourier series:

- In lectures we proved (Kreyzig) that if $f(x)$ is C^{2} and periodic with period $2 L$ then there is a constant K such that

$$
\left|A_{n}\right| \leq \frac{K}{n^{2}} ; \quad\left|B_{n}\right| \leq \frac{K}{n^{2}}
$$

- In tutorials we proved that if $f(x)$ is C^{0} then there is a constant K such that

$$
\left|A_{n}\right| \leq K ; \quad\left|B_{n}\right| \leq K
$$

(Yes, we did prove this, think about it.)

- In homework you will (hopefully) have proved that if $f(x)$ is C^{k} and periodic with period $2 L$ then there is a constant K such that

$$
\left|A_{n}\right| \leq \frac{K}{n^{k}} ; \quad\left|B_{n}\right| \leq \frac{K}{n^{k}}
$$

Fourier series:

- In homework you will (hopefully) have proved that if $P(x)$ is a polynomial in x then the Fourier coefficients

$$
A_{n}(P) \text { and } B_{n}(P) \text { are polynomial in } 1 / n .
$$

- It is extremely common for the Fourier coefficients A_{n} and B_{n} to be ratios of polynomials (rational polynomials) in n.

End:

