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Administrivia
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Administrivia:

VUW
Lectures:

Monday; 12:00–12:50; MYLT 102.
Tuesday; 12:00–12:50; MYLT 220.
Friday; 12:00–12:50; MYLT 220.

Tutorial:

Thursday; 12:00–12:50; MYLT 220.

Lecturers:

Part 1: Matt Visser.
Part 2: Dimitrios Mitsotakis.

VUW

Matt Visser (VUW) Math 301 — PDEs — 2024 4 / 30



General solutions:

General solutions
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General solutions:

Two absolutely essential general solutions to memorize:

Laplace’s equation:
Uxx + Uyy = 0.

General solution:
U(x , y) = F (x + iy) + G (x − iy).

Wave equation:

c2 Uxx − Utt = 0.
General solution:

U(x , t) = F (x + ct) + G (x − ct).

Related issues: the Euler PDE...
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d’Alembert’s solution:

d’Alembert’s solution
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d’Alembert’s solution to the wave equation:

Wave equation:

c2 Uxx − Utt = 0.

Boundary conditions:

∀x U(x , 0) = f (x),

∀x Ut(x , 0) = g(x).

General solution:
U(x , t) = F (x + ct) + G (x − ct).

Specific solution:

U(x , t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct
g(s) ds.
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Variable-coefficient Euler PDE:

Variable-coefficient Euler PDE
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Variable-coefficient Euler PDE:

Definition

The generalized (2-dimensional) variable-coefficient Euler PDE is

a(x , y) Uxx +2h(x , y) Uxy +b(x , y) Uyy +c(x , y) Ux +d(x , y) Uy

+e(x , y) U + f (x , y) = 0,

where a, b, h, and c , d , e, f are functions of x and y .

(And at least one of the second-order coefficients a(x , y), b(x , y), or
h(x , y), is not identically zero.)
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Variable-coefficient Euler PDE:

Definition

The generalized (2-dimensional) variable-coefficient Euler PDE
(with non-linear source) is

a(x , y) Uxx + 2h(x , y) Uxy + b(x , y) Uyy = F (x , y ,U,Ux ,Uy ),

where a, b, are functions of x and y , and F is a function of its indicated
arguments.

(And at least one of the second-order coefficients a(x , y), b(x , y), or
h(x , y), is not identically zero.)
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Variable-coefficient Euler PDE:

Theorem

In 2 dimensions, as long as the 2nd -order coefficients a(x , y), h(x , y),
and b(x , y) are not all zero, then you can always divide the plane into
disjoint regions in each of which you can, by change of independent
variables, bring the generalized variable-coefficient Euler PDE

a(x , y) Uxx + 2h(x , y) Uxy + b(x , y) Uyy = F (x , y ,U,Ux ,Uy ),

into the form
Ux̄ x̄ + ε Uȳ ȳ = F̃ (x̄ , ȳ ,U,Ux̄ ,Uȳ ),

where ε = ±1 or 0, and F̃ is a function of its indicated arguments.
Furthermore

ε = sign
[
a(x , y) b(x , y)− h(x , y)2

]
.
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Variable-coefficient Euler PDE:

Theorem

If you want to consider a two dimensional region where (ab − h2) changes
sign, the trick is to use (ab − h2) as one of your new coordinates, say x̄ .
Then

Ux̄ x̄ + x̄ Uȳ ȳ = F̃ (x̄ , ȳ ,U,Ux̄ ,Uȳ ),

which is Tricomi’s equation with a nonlinear source.

Thus in two dimensions the second-derivative part of the general
variable-coefficient Euler equation has been reduced to a very small
number of standard cases:

— Wave equation (with nonlinear source).

— Laplace’s equation (with nonlinear source).

— Parabolic equation (with nonlinear source).

— Tricomi’s equation (with nonlinear source).
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Separation of Variables:

Separation of variables
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Separation of Variables:

Basis functions:

Name Wave Heat Laplace

Equation uxx = utt uxx = ut uxx + uyy = 0

Ansatz X (x)T (t) X (x)T (t) X (x)Y (y)

X ′′T = XT ′′ X ′′T = XT ′ X ′′Y + XY ′′ = 0

SOV X ′′

X = T ′′

T = −k2 X ′′

X = T ′

T = −k2 X ′′

X = −Y ′′

Y = −k2

X = cos(kx + φ) X = cos(kx + φ) X = cos(kx + φ)
T = cos(kt + χ) T = exp(−k2t) Y = cosh(ky + χ)

(For generality, k is either pure real or pure imaginary.)
General solutions:

Wave u(x , t) =
∑

n An cos(knx + φn) cos(knt + χn)

Heat u(x , t) =
∑

n An cos(knx + φn) exp(−k2
n t)

Laplace u(x , y) =
∑

n An cos(knx + φn) cosh(knt + χn)

(No boundary conditions have yet been used.)
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Separation of Variables:

It is only once you add some of the BCs/ICs that the kn are determined.
For example:

Dirichlet conditions in the x direction:

u(0, •) = 0 = u(L, •) ⇒ X (0) = 0 = X (L)

⇒ cos(φ) = 0 = cos(knL + φ) ⇒ φ =
π

2
; knL = nπ;

⇒ kn =
nπ

L
; X (x) = sin

(nπx
L

)
Wave u(x , t) =

∑
n sin

(
nπx
L

) {
An cos

(
nπt
L

)
+ Bn sin

(
nπt
L

)}
Heat u(x , t) =

∑
n An sin

(
nπx
L

)
exp(−n2π2

L2 t)

Laplace u(x , y) =
∑

n sin
(
nπx
L

) {
An cosh

(nπy
L

)
+ Bn sinh

(nπy
L

)}
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Separation of Variables:

Remaining BC (some examples):

Wave u(x , 0) =
∑

n An sin
(
nπx
L

)
Wave ut(x , 0) =

∑
n

nπBn
L sin

(
nπx
L

)
Heat u(x , 0) =

∑
n An sin

(
nπx
L

)
Laplace u(x , 0) =

∑
n An sin

(
nπx
L

)
Laplace uy (x , 0) =

∑
n

nπBn
L sin

(
nπx
L

)
Apply Fourier sine series...

(Could also apply 2-point BCs in y direction.)
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Separation of Variables:

It is only once you add some of the BCs/ICs that the kn are determined.
For example:

Neumann conditions in the x direction:

ux(0, •) = 0 = ux(L, •) ⇒ X ′(0) = 0 = X ′(L)

⇒ sin(φ) = 0 = sin(knL + φ) ⇒ φ = 0; knL = nπ;

⇒ kn =
nπ

L
; X (x) = cos

(nπx
L

)
.

Wave u(x , t) =
∑

n cos
(
nπx
L

) {
An cos

(
nπt
L

)
+ Bn sin

(
nπt
L

)}
Heat u(x , t) =

∑
n An cos

(
nπx
L

)
exp(−n2π2

L2 t)

Laplace u(x , y) =
∑

n cos
(
nπx
L

) {
An cosh

(nπy
L

)
+ Bn sinh

(nπy
L

)}
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Separation of Variables:

Remaining BC (some examples):

Wave u(x , 0) =
∑

n An cos
(
nπx
L

)
Wave ut(x , 0) =

∑
n

nπBn
L cos

(
nπx
L

)
Heat u(x , 0) =

∑
n An cos

(
nπx
L

)
Laplace u(x , 0) =

∑
n An cos

(
nπx
L

)
Laplace uy (x , 0) =

∑
n

nπBn
L cos

(
nπx
L

)
Apply Fourier cosine series...

(Could also apply 2-point BCs in y direction.)
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Separation of Variables:

It is only once you add some of the BCs/ICs that the kn are determined.
For example:

Mixed conditions in the x direction:

ux(0, •) = 0 = u(L, •) ⇒ X ′(0) = 0 = X (L)

⇒ sin(φ) = 0 = cos(knL + φ) ⇒ φ = 0; knL =

(
n +

1

2

)
π;

⇒ kn =
(2n + 1)π

2L
; X (x) = cos

(
(2n + 1)πx

2L

)

W u =
∑

n cos
(

(2n+1)πx
2L

){
An cos

(
(2n+1)πt

2L

)
+ Bn sin

(
(2n+1)πt

2L

)}
H u =

∑
n An cos

(
(2n+1)πx

2L

)
exp(− (n+ 1

2
)2π2

L2 t)

L u =
∑

n cos
(

(2n+1)πx
2L

){
An cosh

(
(2n+1)πy

2L

)
+ Bn sinh

(
(2n+1)πy

2L

)}
Matt Visser (VUW) Math 301 — PDEs — 2024 20 / 30



Separation of Variables:

Remaining BC (some examples):

Wave u(x , 0) =
∑

n An cos
(

(2n+1)πx
2L

)
Wave ut(x , 0) =

∑
n

(2n+1)πBn

2L cos
(

(2n+1)πx
2L

)
Heat u(x , 0) =

∑
n An cos

(
(2n+1)πx

2L

)
Laplace u(x , 0) =

∑
n An cos

(
(2n+1)πx

2L

)
Laplace uy (x , 0) =

∑
n

(2n+1)πBn

2L cos
(

(2n+1)πx
2L

)
Apply Fourier cosine series...

(Could apply 2-point BCs in y direction.)

(Could apply even messier 2-point Robin BCs in y direction.)
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Fourier series:

Fourier series
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Fourier series:

General Fourier series:

f (x) =
∞∑
n=0

[An cos(πnx/L) + Bn sin(πnx/L)] .

A0 =
1

2L

∫ +L

−L
f (x) dx .

An>0 =
1

L

∫ +L

−L
cos(πnx/L) f (x) dx .

B0 = 0.

Bn>0 =
1

L

∫ +L

−L
sin(πnx/L) f (x) dx .

Periodic on [−L, L].
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Fourier series:

Orthogonality:

∫ +L

−L
cos(πnx/L) cos(πmx/L) dx = L (δmn + δm0 δn0)

∫ +L

−L
sin(πnx/L) sin(πmx/L) dx = L (δmn − δm0 δn0)

∫ +L

−L
sin(πnx/L) cos(πmx/L) dx = 0

∫ +L

−L
cos(πnx/L) sin(πmx/L) dx = 0

Kronecker delta: δmn =

{
1 if m = n;

0 if m 6= n.
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Fourier series:

Theorem (Fourier’s general theorem:)

Suppose that the functions f (x) and f ′(x) are both piecewise continuous
on the interval −L ≤ 0 ≤ L, then:

f (x) has a Fourier series whose coefficients are determined by the
Euler–Fourier formulae above.

The Fourier series converges to f (x) at all points where f (x) is
continuous.

The Fourier series converges to 1
2 [f (x+) + f (x−)] at points of

discontinuity.
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Fourier series:

Theorem (Fourier sine theorem)

If f (x) is piecewise continuous, with piecewise continuous derivatives,
then the Fourier sine series

f (x) =
∞∑
n=1

[Bn sin(πnx/L)] ; Bn =
2

L

∫ +L

0
sin(πnx/L) f (x) dx ;

converges for all values of x in the interval [0, L]. Furthermore:

i. If x is a point in (0, L) where f (x) is continuous, then the series
converges to f (x).

ii. If x is a point in (0, L) where f has a discontinuity, then the series
converges to

1

2
[f (x+) + f (x−)].

iii. At the points x = 0 and x = L, the series converges to 0.
[Not to f (0) and f (L).]
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Fourier series:

Theorem (Fourier cosine theorem)

If f (x) is piecewise continuous, with piecewise continuous derivatives,
then the Fourier cosine series

f (x) =
∞∑
n=0

[An cos(πnx/L)] ; An>0 =
2

L

∫ +L

0
cos(πnx/L) f (x) dx ;

A0 =
1

L

∫ +L

0
f (x) dx ;

converges for all values of x in the interval [0, L]. Furthermore:

i. If x is a point in (0, L) where f (x) is continuous, then the series
converges to f (x).

ii. If x is a point in (0, L) where f has a discontinuity, then the series
converges to 1

2 [f (x+) + f (x−)].

iii. At x = 0 and x = L, the series converges to f (0) and f (L).
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Fourier series:

In lectures we proved (Kreyzig) that if f (x) is C 2 and periodic with
period 2L then there is a constant K such that

|An| ≤
K

n2
; |Bn| ≤

K

n2
.

In tutorials we proved that if f (x) is C 0 then there is a constant K
such that

|An| ≤ K ; |Bn| ≤ K .

(Yes, we did prove this, think about it.)

In homework you will (hopefully) have proved that if f (x) is C k

and periodic with period 2L then there is a constant K such that

|An| ≤
K

nk
; |Bn| ≤

K

nk
.
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Fourier series:

In homework you will (hopefully) have proved that if P(x) is a
polynomial in x then the Fourier coefficients

An(P) and Bn(P) are polynomial in 1/n.

It is extremely common for the Fourier coefficients An and Bn to be
ratios of polynomials (rational polynomials) in n.

——VUW——
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End:

——VUW——
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