1. Identify the dependent and independent variables, and give the order of the following equations:
(a) $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}$
(b) $u_{x x} v_{y y}=\cos (x+y)$
(c) $\frac{\partial u}{\partial t}=\frac{\partial v}{\partial x}, \frac{\partial^{2} v}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}$
(d) $u_{t}=v_{x x x}+v(1-v), v_{t}=u_{x x y}+v w, w_{t}=u_{x}+v_{y}$

## Solution:

(a) (Dependent; independent; order) $u, v ; x, y ; 1$
(b) $u, v ; x, y ; 2$
(c) $u, v ; t, x ; 2$
(d) $u, v, w ; t, x, y ; 3$
2. Give the order and classify the following equations as (i) homogeneous linear, (ii) inhomogeneous linear, or (iii) nonlinear:
(a) $u_{t}=x^{2} u_{x x}+2 x u_{x}$
(b) $e^{y} u_{x}=e^{x} u_{y}$
(c) $u_{x}+e^{y} u_{y}=0$
(d) $u_{x x}+\cos (x y) u_{x x y}=u+\ln \left(x^{2}+y^{2}\right)$
(e) $x^{2} u_{y y}-y u u_{x}=u$

## Solution:

(a) 2; homogeneous linear
(b) 1; homogeneous linear
(c) 1; homogeneous linear
(d) 3; inhomogeneous linear
(e) 2; homogeneous nonlinear
3. Solve the PDE $4 u_{t}-3 u_{x}=0$ with initial condition $u(x, 0)=x^{3}$.

Solution: Based on directional derivative, $u(t, x)=f(-3 t-4 x)$. IC gives $x^{3}=f(-4 x)$. So $f(x)=-x^{3} / 64$, and therefore $u(t, x)=(3 t+4 x)^{3} / 64$.
4. Find the general solution to the initial value problem $u_{t}+u_{x}=0, u(1, x)=x /\left(1+x^{2}\right)$

Solution: $u(t, x)=\frac{1-t+x}{(t-x)(2-t-x)}$. If you are feeling masochistic, differentiate it wrt $t$ and $x$ to check that it works.
5. Solve the equation $\left(1+t^{2}\right) u_{t}+u_{x}=0$.

Solution: Characteristics are $d x / d t=1 /\left(1+t^{2}\right)$ (after rewriting the equation). Hence $x=\tan ^{-1} t+\xi$ and so $u=f\left(x-\tan ^{-1} t\right)$
6. Consider the equation $u_{x}+y u_{y}=0, u(x, 0)=f(x)$. Show that there is no solution for $f(x) \equiv x$, but many for $f(x) \equiv 1$.

Solution: Characteristic curves are $d y / d x=y$, which (by separation of variables) is $y=\xi e^{x}$, so $u=f\left(y e^{-x}\right)$. When $f(x) \equiv x u(x, 0)=f(x)=x$. But $u=x$ doesn't solve the PDE, so there are no solutions. For the second part $u=1$ does solve the PDE, but it doesn't help us specify what the function $f$ is anywhere else.
7. Apply the method of characteristics to the problem $u_{t}+c(u) u_{x}=0$ for $x \in(-\infty,+\infty)$ and $t \geq 0$, where $c^{\prime}(u)>0$ and $u(0, x)=f(x)$. Find a formula for the breaking time.

Solution: The characteristic lines will be $x=c(f(\xi)) t+\xi$. The breaking time is given by the formula

$$
t_{b}=\min _{\xi} \frac{-1}{f^{\prime}(\xi) c^{\prime}(f(\xi))}, \quad t_{b}>0 .
$$

8. Consider the wave equation

$$
u_{t t}=c^{2} u_{x x} .
$$

First observe that the wave equation is a linear equation. Prove that if $u_{1}(t, x)$ and $u_{2}(t, x)$ are two solutions of the wave equation then $u_{3}(x, t)=u_{1}(x, t)+u_{2}(x, t)$ is also a solution of the wave equation. This is known as superposition principle and applies to all linear differential equations.

Solution: Since $u_{1}$ and $u_{2}$ are solution to the wave equation they satisfy

$$
\left(u_{1}\right)_{t t}=c^{2}\left(u_{1}\right)_{x x},
$$

and

$$
\left(u_{2}\right)_{t t}=c^{2}\left(u_{2}\right)_{x x} .
$$

Then we show that $u_{3}$ satisfies also the same equation:

$$
\begin{aligned}
\left(u_{3}\right)_{t t} & =\left(u_{1}+u_{2}\right)_{t t} \\
& =\left(u_{1}\right)_{t t}+\left(u_{2}\right)_{t t} \\
& =c^{2}\left(u_{1}\right)_{x x}+c^{2}\left(u_{2}\right)_{x x} \\
& =c^{2}\left(u_{1}+u_{2}\right)_{x x} \\
& =c^{2}\left(u_{3}\right)_{x x}
\end{aligned}
$$

9. Consider the equation $u_{t}+u u_{x}=0$ for $x \in[0, \infty)$ and $t \geq 0$. Assume that the initial condition is $u(0, x)=f(x)>0$ is very smooth with $f^{\prime}(x)<0$ and $\lim _{x \rightarrow \infty} f(x)=0$ exponentially fast.
(a) How many boundary condition we need in order to determine a solution in $[0, \infty)$.
(b) Will the solution be unique and up to what time can you guarantee the existence of a unique continuous solution?
(c) What happens if $f(x)<0$ and $f^{\prime}(x)>0$ with $\lim _{x \rightarrow \infty} f(x)=0$ ?

Solution: Because the characteristics start from $x=0$ we will need one boundary condition $u(0, t)$ for $t \geq 0$. The solution will be unique and continuous until the breaking time $t_{b}$. This is because $f^{\prime}(x)<0$ and thus $x_{1}^{\prime}(t)=u\left(0, \xi_{1}\right)<u\left(0, \xi_{2}\right)=x_{2}^{\prime}(t)$ where $x_{1}(t)$ and $x_{2}(t)$ are two characteristic lines starting at $\xi_{1}<\xi_{2}$, respectively. To prove uniqueness assume for contradiction that there are two solutions $u_{1}, u_{2}$ and use the energy method for the difference $U=u_{1}-u_{2}$ : Note that $U(0, t)=0$ and also $U(x, 0)=0$. You will have

$$
\begin{gathered}
U_{t}+\left[U\left(u_{1}+u_{2}\right)\right]_{x}=0 \\
\text { (multiply by } U) \int_{0}^{\infty} U U_{t} d x-\int_{0}^{\infty} U U_{x}\left(u_{1}+u_{2}\right) d x=0 \\
\frac{1}{2} \frac{d}{d t} \int_{0}^{\infty} U^{2} d x=\frac{1}{2} \int_{0}^{\infty}\left(U^{2}\right)_{x}\left(u_{1}+u_{2}\right) d x \\
\left(u_{1}+u_{2} \leq C\right) \frac{d}{d t} \int_{0}^{\infty} U^{2} d x \leq C \int_{0}^{\infty}\left(U^{2}\right)_{x} d x \\
\frac{d}{d t} \int_{0}^{\infty} U^{2} d x \leq 0 \\
\frac{d}{d t} \int_{0}^{\infty} U^{2} d x=0
\end{gathered}
$$

Therefore $U \equiv 0$ and thus $u_{1}=u_{2}$.

