
Notes for Assignment 2 

Maths 323 fluids 2014 

 

 Continuity Equation (Sec 6-7) 

Force Balance (Sec 6-8) 

Stream Function (Sec 6-9) 

Postglacial Rebound (Sec 6-10) 

Angle of Subduction (Sec. 6-11) 

Diapirs (Sec 6-12) 

Stokes Flow (Sec 6-14) 



Continuity Eqn: 
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For incompressible fluids—conservation of fluid 

“What goes in must come out” 

Note:  For 2-D 

case, often y is 

used for the 

vertical 

direction—for 3-

D, usually z is 

vertical. 
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Continuity Eqn: 

2-D 3-D 
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For incompressible fluids—conservation of fluid 

Compressible fluids (3-D) 
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Or in longer form: 



Viscous stresses and force 

balance-2D 
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Pressure forces + 

Viscous forces + gravity 

forces 

=0 (Neglect 

acceleration) 

Force and 

acceleration 

are vectors 

a=area, 

V=volume 

g=acceleration of 

gravity 

p=pressure 

=stress 

=density 
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Gravity force acts only in vertical (y) direction 



Viscous stresses and force 

balance-2D 

1) Pressure=pos. inward 

—perpendicular to faces- 

Often assumed constant or 

Given by hydrostatic overburden 

(gravity acting on whole column above) 

 

x1=x 

x2=y 

x3=z 
Book uses y=depth (2-D case) 

3) Viscous forces are due to 

fluid movement and are 

parallel or perpendicular to 

faces  

2) Gravity force = *(volume)*g 

(just gravity on the element itself) 



a=area, 

V=volume 

Assume 3rd dimension, dz =1; write out explicitly x and y components 
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Note:  Vector nature of pressure—

components in both y and x direction (z 

direction too, but is constant and 

neglected) 
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Pressure Forces always inward 



Viscous forces-normal stresses 

act outwards here 
dxdzdyydydzxdxdzydydzdxxviscousF yxxxyxxxx )()()()()(  

x, u 

y, v 

(Letting dz=1)  Similar expression for Fy 

dxdyydyxdxydydxxviscousF yxxxyxxxx )())()()()(  

Use relationship  
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To get relationship in terms of 

velocities 



Viscous stresses and force 

balance 
2-D Pressure=p (pos. inward) 

x1=x 

x2=y 

x3=z 

6-56 to 6-58 

Book uses y=depth (2-D case) 
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3-D 

11= xx 

ij= element of 

stress tensor, 

pos. outward 

0 -G

Stokes-Navier gives G forcesbody  Allowing

68)-6 and 67-6  toequivalent -3D-

forcesbody  no (if 
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Let P=p-gy=deviatoric stress i.e. 

Stress that is different from gravity 

Force balance, i.e., 

equation of motion of fluid 



Stream Function --a potential 

• Like P- and S-wave potentials in 

seismology, and potentials in quantum 

mechanics: 

• Define  such that 

• (2-D) 
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3-D 
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 Substitute into previous 

equations 



Eqn of motion reduces to 

Biharmonic Eqn: 

: 
• 4 =0     

• Soln:  
 

 

 

 

• Volumetric flow rate between two points is 

given by the difference in the stream 

function 
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Isostacy 

• Solids floating on fluids displace their own 

weight in the fluid 

• E.g., icebergs in water: 

 

 

• “Airy” Isostacy:   



“Airy” Isostacy (constant 

pressure at a compensation 

depth) 

Compensation depth 

2 

1 

crust 

mantle h1 

h2 
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z2 

1 h1+ 2 h2= 1 z1+ 2 z2 
(total gh=constant) 



Gravity anomalies 

• Earth’s gravity field changes due to 

presence or absence of masses (density 

differences) of rock/air/water 

• This is measurable with very sensitive 

instruments called gravimeters 

• There are several types of corrections that 

need to be applied to be able to convert 

the gravity measurements to fields that 

depend on rock density. 



Free air correction 

• One of most important is the “free air 

correction”. It corrects for the height 

difference between spots on the earth.  

(Gravity decreases as 1/R2 from the center 

of the Earth so if you are higher, you are 

further away and gravity is somewhat 

smaller).  Further details are in Turcotte & 

Schubert Ch 5 or ESCI 305 class. 



Free air gravity anomaly 

• For the purpose of the assignment question 

6-12 all you need to know is that the free air 

gravity anomaly will be given by 

 

 

• Where ∆ρ=difference in density between 

two materials (here air vs mantle) 

G=universal gravitational constant 

• h=distance over which density difference 

occurs  

 

•   

GhgFA  2



“Airy” Isostacy 

Compensation depth 

2 

1 

crust 

mantle h1 

h2 

z1 

z2 

1 h1+ 2 h2= 1 z1+ 2 z2 



Glacier effects 

• Before glacier  during glacier after  glacier 
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many simplifications 



Solve biharmonic equation 

• Solve Biharmonic equation 4 =0     

Use Separation of variables: 

Assume solution of  Eq 6-80 

• Show that it works 

• Result:6-90 to 6-92 

• Surprisingly simple result  
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Where r=relaxation time depends on 

viscosity and other parameters 



Image of postglacial rebound 

Many Coronation Sills, part of the 723 

million year old Franklin Igneous Magmatic 

Event, slice through the Earth's crust in the 

western Arctic of Nunavut. Here at the 

entrance to Bathurst Inlet, an island-

topping sill cuts though Proterozoic rock, a 

light-coloured carbonate formation in this 

case. The beautifully layered sand beach is 

caused by glacial rebound of the Arctic 

coastline during the current glacial 

interlude. Little to no tide hereabouts 

helped to form its layercake look. Isostatic 

rebound is still underway. 

Mike Beauregard from Nunavut, Canada  

http://en.wikipedia.org/wiki/File:Rebounding_beach,_among_other_things_(9404384

095).jpg 

http://www.flickr.com/people/31856336@N03


Angle of Subduction 
• Good example of using boundary 

conditions for a slightly more complex 

problem—now need to include gravity. 

 Balance of Torques from 

a) Gravity 

b) Flow pressure induced 

by motion of 

descending lithosphere 

(trench suction) 

Note tighter streamlines in 

corner due to geometry 

pressure difference from bottom 

to top of slab.  Also note that 

both top & bottom flow 

pressures are in same direction. 

streamlines 

Oceanic 

corner 

Arc corner 

Also—after calculations, top 

exerts more torque than bottom 

(similar to why airplanes fly) 

x, u 

y, v 



Angle of subduction 

• Solution to continuity 

equation is the 

Biharmonic equation 

4 =0     

Assume sol’n:  

Plug into eqn and show 

that it works 

• Use eqns that we 

learned this week to 

take derivatives of  to 

get u and v, and 

pressures  from the 

flow.   
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Don’t forget! 

• Derivatives of tan and arctan 

• Torque = Force x Distance  (cross 

product—or take moment arm from 

perpendicular) 

• Too hard to do general case—book does 

specific case of dip=45 degrees—you will 

do dip = 60 degrees. 

 

 



Diapirs (Rayleigh-Taylor 

Instabilities) (not nappies) 
• Driven by gravity and density 

imbalances—high over low 

• Examples: 

– Paint dripping 

– Mantle “drips” 

– Start of convection, plumes, lava lamps 

– Salt domes 

• Could grow exponentially until it breaks 

up, or could die out--returning to original 

state (but not periodic—not elastic) 



Basic Eqn:  Incompressible 

continuity Eqn  0or  0 4  u


Balance Buoyancy Forces by Pressure Forces: 
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P=Pressure 

generated by 

flulid flow 
p=pressure Buoyancy=gy 

uP 2 


=0 if forces are in balance (e.g., eqn 6-151) 

(6-67 to 6-68) 

To solve eqn—introduce stream function  

Like postglacial rebound or subducting plate—but boundary 

conditions differ 



• Boundary conditions: 
– 1)Rigid at top and bottom (-b1 and b2)—no slip 

condition (u continuous) 

u=v=0 at y= -b1 and b2 

– 2) Displacements and velocities and shear stress 

must be continuous across boundary between media 

(i.e., at interface, but since w is small, effectively y=0 

here) 

 

 

y=-b1 

y=b2 

In general, b1b2 

Displacement w<< b1 and b2 

 -- approximation is very 

important –i.e.,  

Interface shape is 

w=Acos2x/ 

 

Because A is small, can treat 

interface as if it were at y=0 for 

the purposes of solving 

boundary conditions 

Wavelength= 

u1 

v1 

u2 

v2 



Guess solutions of  

• 1; 2  separate for each of top, bottom. 

•  is similar in form to postglacial rebound, 

but uses hyperbolic functions instead of 

simple sines and cosines: 
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(similar expression for 2)  



Solve by: 

• Show that both 1,2 are solns by 

substituting back into eqn, 

• Determine u1,2 and v1,2 from derivatives of 

1,2    

•   

• Boundary conditions: 

• u=v=0 at y= -b1 and b2  u(x,y) become 

 u1(x,-b1)=0; v1(x,-b1)=0 

 u2(x,b2)=0; v2(x,b2)=0 
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• Boundary conditions: 
– 1)Rigid at top and bottom (-b1 and b2)—no slip 

condition (u continuous) 

u=v=0 at y= -b1 and b2 

– 2) Displacements and velocities and shear stress 

must be continuous across boundary between media 

(i.e., at interface, but since w is small, effectively y=0 

here) 

 

 

y=-b1 

y=b2 

In general, b1b2 

Displacement w<< b1 and b2 

 -- approximation is very 

important –i.e.,  

Interface shape is 

w=Acos2x/ 

 

Because A is small, can treat 

interface as if it were at y=0 for 

the purposes of solving 

boundary conditions 

Wavelength= 

u1 

v1 

u2 

v2 



2) velocities and shear stress must be continuous across 

boundary between media (i.e., at y=0 here because w is 

small) 

• u1(x,0)=u2(x,0); v1(x,0)=v2(x,0) 

 

 

 

• (x dependence is purely a function of 

sin(2x/)) 

• Another key—interface is moving with the 

same velocity as the fluid, so at y=0 
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Finally, balance forces--buoyancy and fluid 

flow pressure 

0yat  )()( 1221  PPgw
Buoyancy 

Flow pressure found from integrating 6-72 
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Final solution after much 

algebra: 
• Solution: 

 

 

• Where a is the growth 

time of the disturbance 

• Is a function of sinh, 

cosh(2b/) multiplied by  

 
• a depends on 

wavelength, but if have 

displacements at multiple 

wavelengths,  fastest 

growing wavelength will 

dominate (a  is a 

minimum) Dimensionless wavenumber 
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Stokes’ Flow: How fast does a 

body fall due to its own weight? 
• Applies in limit of very viscous fluid, with 

Re<1 (reversible flow)  

• Applications: 

– Fall of pieces of slab 

– Rise of plumes/magma bubbles 

– Fall of metal probe 

U 

Ball rises through 

stationary fluid or 

fluid flows past 

stationary  ball 



Sphere Falling in a Fluid 

a 

v 

Fluid viscosity η 



Sphere Falling in a Fluid 

a 

v 

Fluid viscosity η 

Fg 

FB 
FD Fg+ FB+ FD=0 

 



Fall of Iron into 

Core 

Stevenson, David J. Mission to 

Earth’s Core -A Modest 

Proposal. Nature, 423, 239-240, 

2003. 

 

 About 1 week to get to core 



Balance gravity (Buoyancy) and 

Viscous drag forces 
• Dominant equations:  continuity equation and pressure 

equation again, same as before but now geometry and 

boundary conditions change 

 

• Where P=p-gy 

 

• f=density of fluid 

• s=denisty of sphere 

uP 2 


 0 u




 )2(
Re

aUf




Boundary Conditions 

• As r  

 ur-U in z direction 

 ur-Ucos  u  Usin 

No-slip on sphere:  at r=a 

  ur=u  =0 

 



Spherical Coordinates: 
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Continuity equation becomes: 

But since u=0, last term is 0 

To solve equation, also need the Laplacian of u: 
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Pressure forces:  Terms in P 

 

Viscous forces:  Terms in  u2



Solution 

• Surprisingly, most terms drop out and … 

• Pressure due to fluid flow is (Eq 6-216):  

 

 

• Integrate to get downward “drag” (force) 

due to fluid pressure across sphere: 

Dp=2aU 




cos
2

3
2r

aU
p 



Viscous drag: 

• Using 3-D formulation of stress again: 

 

Integrate to get Viscous Drag Dv=4aU 

So total Drag FD= Viscous Drag + Pressure 

Drag = Dp+ Dv=6aU 
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Speed of rise or fall: 

• Balance Buoyancy Forces with Drag forces for 

steady-state case (no acceleration): 

• FB=(f- s)g4a3/3= FD = 6aU 

• Solve for U 

• For  faster flow, Re>1, more difficult: use 

dimensionless drag coefficient CD 
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Pressure due to vel.  Sphere x-sec area (shadow) 



• Stokes 

flow: 

 

 

• Re>1: 
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Note—units work out in both cases 

Turbulent 

flow 

 

Laminar 

flow 

 


