Notes for Assignment 2
Maths 323 fluids 2014

Continuity Equation (Sec 6-7)
Force Balance (Sec 6-8)
Stream Function (Sec 6-9)
Postglacial Rebound (Sec 6-10)
Angle of Subduction (Sec. 6-11)
Diapirs (Sec 6-12)
Stokes Flow (Sec 6-14)



Continuity Egn:
For incompressible fluids—conservation of fluid
“What goes in must come out”
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Continuity Egn:

For incompressible fluids—conservation of fluid
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Compressible fluids (3-D)
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Viscous stresses and force

balance-2D

—

F — mé =0 (Neglect

acceleration)

- _ £ _ Pressure forces +
Foy -
I

Viscous forces + gravity

forces
F=> fi=Q (Ba+(Q ay)+pgVy
i [ i

Gravity force acts only in vertical (y) direction

Force and
acceleration
are vectors

a=area,
V=volume
g=acceleration of
gravity
p=pressure
T=stress
p=density



Viscous stresses and force
balance-2D

X,=Y Book uses y=depth (2-D case)
X;=Z 2) Gravity force = p*(volume)*g
(just gravity on the element itself)

8- Pressure forces acting on an infinftesimal rectangular fiuid element.
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. &-12 Viscous forces acting on an infinitesimal two-dimensional rectangu-
1) Pressure=pos. inward lar fluid element
—perpendicular to faces- 3) Viscous forces are due to
Often assumed constant or fluid movement and are
Given by hydrostatic overburden parallel or perpendicular to

(gravity acting on whole column above) faces



Pressure Forces=>» always inward

F = Z T _(Z(plal T (Z T,J ;i ) + pgVy a=area,

V=volume

D pid; =P, (y)dXdZ+ IOX(X)dde— P, (Y+dY)dXdZ— P, (x+dx)dydz +(p,...)

Assume 3" dimension, dz =1; write out explicitly x and y components

2. Pia; =P, (y)dx+ B, (x)dy — B, (y +dy)dx — b, (x +dx)dy

. Note: Vector nature of pressure—
11 Pressure forces acing on an infiitesimal rectangular id element components in both y and x direction (z
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direction too, but is constant and

e ‘!' . j neglected)
B VP, (X) = Pe(x+dx) = 8—

Ay + 8yléx p

P, (Y)—D (y+dy)—8—
y




Viscous forces-normal stresses
act outwards here

F, (viscous) = 7, (X +dx)dydz —z,, (y)dxdz — z,, (x)dydz + 7, (y + dy)dxdz
F, (viscous) = 7, (X + dx)dy —z,, (y)dx — 7, (X)dy) + 7, (y + dy)dx

(Letting dz=1) Similar expression for F,
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6-12 Viscous forces acting on an infinitesimal two-dimensional rectangu-

lar fiuid element,



Viscous stresses and force
balance .,

2-D Pressure=p (pos. inward)

Let P=p-pgy=deviatoric stress i.e.

Stress that is different from gravity Ui~ element of
= stress tensor,

= 6-56 to 6-58
oy outwar
xz:z Book uses y=depth (2-D case) pos. outward
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Stream Function y--a potential

* Like P- and S-wave potentials in
seismology, and potentials in quantum
mechanics:

» Define v such that 3-D
* (2-D) 7 =(0.0,)
u= ., ¥ 0 =(u,v,0)
%V x 0=Vxy
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Eqgn of motion reduces to
Biharmonic Eqgn:

B
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* Volumetric flow rate between two points Is
given by the difference In the stream
function



Isostacy

» Solids floating on fluids displace their own
weight in the fluid

* E.g., Icebergs in water:

* “Airy” Isostacy:



"Alry” Isostacy (constant
pressure at a compensation

depth)

P1 h1+ P2 h — pl Zl+ P2 22 (total pgh=constant)
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Compensation depth
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mantle



Gravity anomalies

« Earth’s gravity field changes due to
presence or absence of masses (density
differences) of rock/air/water

* This iIs measurable with very sensitive
Instruments called gravimeters

* There are several types of corrections that
need to be applied to be able to convert
the gravity measurements to fields that
depend on rock density.



Free air correction

* One of most important is the “free air
correction”. It corrects for the height
difference between spots on the earth.
(Gravity decreases as 1/R? from the center
of the Earth so if you are higher, you are
further away and gravity iIs somewhat
smaller). Further details are in Turcotte &
Schubert Ch 5 or ESCI 305 class.



Free air gravity anomaly

* For the purpose of the assignment question
6-12 all you need to know is that the free air
gravity anomaly will be given by

Oa = 27806

* Where Ap=difference Iin density between
two materials (here air vs mantle)
G=universal gravitational constant

* h=distance over which density difference
OCCurs



"Alry” Isostacy
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Glacler effects

« Before glacier during glacier  after glacier

air ice

w
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ice A T,
disappears: After a time t
displacement
decreases

Note that w,,<<A: allows

At Wmo™=™- depending on
many simplifications

relaxation time r,



Solve biharmonic equation

27X R
Wy = Who COS(—7) “

mantle

 Solve Biharmonic equation V4 y=0

Use Separation of variables:

Assume solution of Eq 6-80 w=sin(27ﬂX)Y(y)
* Show that it works
* Result:6-90 to 6-92

. o
+ Surprisingly,simple result "

W = Wm eXp(— Z'_)

. 27X\ omia 27y
= Asin(—))e ¥ 1+ —=
W ( p ) ( p

Where t,=relaxation time depends on
f viscosity and other parameters



Image of postglacial rebound
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http://en.wikipedia.org/wiki/File:Rebounding_beach, among_other things (9404384
095).jpg


http://www.flickr.com/people/31856336@N03

Angle of Subduction
* Good example of using boundary
conditions for a slightly more complex
problem—now need to include gravity.

Balance of Torques from

a) Gravity

b) Flow pressure induced
by motion of
descending lithosphere
(trench suction)

Note tighter streamlines in
corner due to geometry=>»
pressure difference from bottom
to top of slab. Also note that
both top & bottom flow
pressures are in same direction.

\/ v

[+ . .
Flow Gravitational

pressura bod farca .
Y Oceanic

/ corner

6-17 Forces acting on a descending lithosphere,

Also—after calculations, top
exerts more torque than bottom
(similar to why airplanes fly)



Angle of subduction

6-18 Viscous cerner flow model for calculating induced flow pressuresﬂ;_lf;f;;
a descending lithosphere, S
. c 0 0 — X - 0 u
Solutl_on to continuity = — st
equation is the .
Biharmonic equation o S -
5
V4 y=0 y
Assume sol'n: Manle p, &
Plug into egn and show Coordinate system

that It works

* Use eqns that we v = (AX + By) + (Cx + Dy) arctan(l)
learned this week to X

QOcesanic
COrmer

take derivatives of y to u= _8_(//;\/ _o
get u and v, and oy OX
pressures t from the EQ6-1 du
flow. c = Hay



Don't forget!

 Derivatives of tan and arctan

* Torque = Force x Distance (cross
product—or take moment arm from
perpendicular)

* Too hard to do general case—book does
specific case of dip=45 degrees—you will
do dip = 60 degrees.



Diapirs (Rayleigh-Taylor
Instablilities) (not nappies)

* Driven by gravity and density
Imbalances—nhigh over low

« Examples:
— Paint dripping
— Mantle “drips”
— Start of convection, plumes, lava lamps
— Salt domes

« Could grow exponentially until it breaks
up, or could die out--returning to original
state (but not periodic—not elastic)



Basic Egn: Incompressible
continuity EQn v.g=o0or vy =0

Balance Buoyancy Forces by Pressure Forces:

VP =V(p— pgy)

P=Pressure

generated by (“p=pressure) Buoyancy=pgy
flulid flow

VP = 4V (66710668

=0 if forces are in balance (e.g., eqn 6-151)

To solve egn—introduce stream function v
Like postglacial rebound or subducting plate—but boundary
conditions differ



621 ;_'_fhE Rayleigh-Taylor instability of a depse fluid overlying a

Tuid lighter ~ In general, b,=b,
Y= ‘{“»..\R‘x‘x\\\“@f\\“{‘:\\\\\\"\\\\\\'\\\”‘Q\\\‘u y= b Disp|acement w<< bl and b2
: —-Jq . . .
P B U, -- approximation Is very

important —i.e.,
Interface shape is
w=Aco0S2nx/\

Because A is small, can treat
interface as if it were at y=0 for
the purposes of solving
boundary conditions

SRRSO y=h,
Wavelength=X\

¥

* Boundary conditions:

— 1)Rigid at top and bottom (-b, and b,)—no slip
condition (u continuous)

-.u=v=0 at y= -b, and b,
— 2) Displacements and velocities and shear stress
must be continuous across boundary between media

(.e., at interface, but since w is small, effectively y=0
here)



Guess solutions of y

* y,; Y, Separate for each of top, bottom.

* y IS similar in form to postglacial rebound,
but uses hyperbolic functions instead of
simple sines and cosines: X

—X

: e —e
sinh(Xx) =

(X) >
cosh(x) = ze

, =SIn 2772)( (A cosh 277zy + B, sinh 277zy+C1y cosh 27ﬂy + D,ysinh 27723/)(6—125)

(similar expression for )



Solve by:

Show that both v, , are solns by
substituting back into eqn,

Determine u, , and v, , from derivatives of

Y12 oWy,
U,=—""—",V, =
oy

Boundary conditions:

u=v=0 at y= -b, and b, =» u(x,y) become
u,(X,-b,)=0; v,(X,-b1)=0

Uy(X,05)=0; V,(X,b,)=0

0 Wi,
OX



621 ;_'_fhE Rayleigh-Taylor instability of a depse fluid overlying a

Tuid lighter ~ In general, b,=b,
Y= ‘{“»..\R‘x‘x\\\“@f\\“{‘:\\\\\\"\\\\\\'\\\”‘Q\\\‘u y= b Disp|acement w<< bl and b2
: —-Jq . . .
P B U, -- approximation Is very

important —i.e.,
Interface shape is
w=Aco0S2nx/\

Because A is small, can treat
interface as if it were at y=0 for
the purposes of solving
boundary conditions

SRRSO y=h,
Wavelength=X\

¥

* Boundary conditions:

— 1)Rigid at top and bottom (-b, and b,)—no slip
condition (u continuous)

-.u=v=0 at y= -b, and b,
— 2) Displacements and velocities and shear stress
must be continuous across boundary between media

(.e., at interface, but since w is small, effectively y=0
here)



2) velocities and shear stress must be continuous across
boundary between media (i.e., at y=0 here because w Is
small)

* Uy(X,0)=u,(x,0); v4(X,0)=Vv,(X,0)
= y(a—u - ?) IS same at boundary,

ou, (X, O) oV (x O)) _ (8u2(x,0) N oV, (x,0)

oy oy 8X)

£4(

* (X dependence is purely a function of
SIN(2nXx/A))

* Another key—interface is moving with the

same velocity as the fluid, so at y=0

OW
—=V(x,0
= (x,0)



Finally, balance forces--buoyancy and fluid
flow pressure

(o,

— 0,)gW =

Buoyancy

E 22 The buo i
rnterface yancy force associated with the dJSPJafement of the

R TR
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Flow pressure found from integrating 6-72

oP

OX

displaced



Final solution after much
algebra:

Solution:

w=w,e" "

Where 1, IS the growth
time of the disturbance

Is a function of sinh,
cosh(2nb/A) multiplied by

4u

(p, = p1)gb
T, deperzlds on

wavelength, but if have
displacements at multiple
wavelengths, fastest
growing wavelength will
dominate (1, is a
minimum)

248

Dimensionless growth time of disturbance

FLUID MECHANICS

1600

100

1 1
0.1 b

Y

Dimensionless wavenumber



Stokes’ Flow: How fast does a

body fall due to its own weight?
* Applies in limit of very viscous fluid, with

Re<1 (reversible flow)
* Applications: l l l

—all of pieces of slab
RIse of plumes/magma

~all of metal probe

Ball rises through

stationary fluid or
U fluid flows past

stationary ball

6~31 Steady flow of a viscous flyid past a sphere.



Fluid viscosity n




Fluid viscosity n




7

seismic
communication

mantle

\

propagating
crack

embedded probe

Fall of Iron Into
Core

Stevenson, David J. Mission to
Earth’s Core -A Modest
Proposal. Nature, 423, 239-240,
2003.

About 1 week to get to core



Balance gravity (Buoyancy) and
Viscous drag forces

Dominant equations: continuity equation and pressure
equation again, same as before but now geometry and
boundary conditions change

V-i=0 VP = VA
Where P=p-pgy

ps—=density of fluid
ps=denisty of sphere

- pU (2a)
IL[ 6~31 Steady flow of a vis

Re

cous fluid past a sphere,



Boundary Conditions

e AS =
u~>»-U Iin z direction
u~>»-Ucos6 u,=>Usind
No-slip on sphere: atr=a
u=u,=0




Spherical Coordinates:

Continuity equation becomes:

oﬁ-uzizﬁ(rzum _1 2 (u,sin @) +( - )
r or rsiné oo rSige 8¢
But since u,=0, lasttermis O
To solve equation, also need the Laplacian of u:
0=V(V-0)- Vx(qu)
= 1 [ «, Sne)__g] [ 1 ou, a(rug)]e [a(rue) Gur
rsingd o6 0P r sind o¢ or r- or

Pressure forces: Termsin P

Viscous forces: Terms in

uV*u

]¢



Solution

« Surprisingly, most terms drop out and ...
* Pressure due to fluid flow is (Eq 6-216):

p:3ya2U cos &

2r

* Integrate to get downward “drag” (force)
due to fluid pressure across sphere:
D,=2rmual



Viscous drag:

» Using 3-D formulation of stress again:
7F=u(Vi+Vi")
Integrate to get Viscous Drag D,~=4nualU

So total Drag Fp= Viscous Drag + Pressure
Drag = D,+ D,=6nuaU



Speed of rise or fall:

Balance Buoyancy Forces with Drag forces for
steady-state case (no acceleration):

Fe=(pr ps)94ma’/3= Fp = 6rual
Solve for U

For faster flow, Re>1, more difficult: use
dimensionless drag coefficient C,

—

Fi

2 6-226)

=
. Re

1 AL
— p.U 7
2Pf



Laminar Turbulent
flow flow

AN
Stoles flow N\




