
Notes for Assignment 1 

Gphs/Maths 323 2014 

Fluid Flow in Earth Systems 

Last time:  

 

 
1) Definitions of fluid 

2) Equivalence of strain rate and velocity 

gradient 

3) Dimensional inconsistencies 

4) Dimensionless numbers: Prandtl number 

5) Boundary conditions: 

- Free surface (=0) 

- No-slip surface (velocity constant at boundary) 



This time: 

• Review quiz 

• See me if you are enrolled in this as part 

of a 400-level course 

• Detailed examples 

• Definition of volumetric flow rate 

• Asthenospheric counterflow 

• Pipe flow 

• Reynold’s number 

 

 



Quiz review 

• What is a fluid?  

• What is a dimensionless number and why 

are they important in fluid mechanics?   

• What are boundary conditions?  

•   



Boundary Conditions 

• The set of conditions specified for behavior of 

the solution to a set of differential equations at 

the boundary of its domain. (American Heritage® Dictionary of the English Language, 

Fourth Edition copyright ©2000 by Houghton Mifflin Company) 

• Physical laws usually govern what happens at 

the boundary between two media. 

• Differ from initial conditions in that boundary 

conditions are usually set from physical 

principles and initial conditions are assumed or 

measured, and only used for time. 



Example-last slide shown 1-D 

fluid flow 
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Starting Equations (pressure gradient 

causes gradient in shear stress); Stress is 

viscosity times strain rate or velocity gradient 

Integrate once 

Differentiate wrt y and substitute  

If there is a free surface:  Use this 

eqn to evaluate C1 

Integrate twice:  Use no-slip condition here 

(u=u0 at some y position) 
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Example: free surface at y=0 

and no-slip at y=y0 
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 Integrate once 

If there is a free surface:  Use this 

eqn to evaluate C1—example, if 

have free surface at y=0, then 

du/dy=/=0 at y=0, so C1=0 

Integrate twice:  Use no-slip condition here 

Example: C1=0 and u=u0 at y=y0 then 
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(This assumes that dp/dx is a known 

constant) 



General solution for 1-D flow 

• Equation 6-12: 

• If dp/dx=0; Couette Flow 

• If u=0, dp/dx0 no special name-just 

stationary boundary condition. 
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Example 

•Also, get intermediate Solution:  ΔP=gH 

•Where H=Hydraulic head and ΔP=pressure difference: 

•Difference in pressure depends only on height difference 

•True for tubes—e.g., siphons, and also for reservoirs and 

water tanks. 



Problem hints: 

• What is the most important first step in 

solving an applied mathematics problem? 

 

• Draw pictures! 

• (first step is actually understanding the 

problem—drawing a picture helps 

enormously) 

• Consider boundary conditions! 



Problem hints 

• Remember 1st year calculus—how do you 

get the average of a function? 

 

 

• How do you get the maximum and 

minimum of a function? 
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Set derivative equal to zero and check either side or look at 

second derivative (curvature) to see if positive (minimum) or 

negative (maximum)  or—”cheat” by solving numerically and 

looking at graph. 



Hydraulic Head 

•Pressure drops often defined by hydraulic head: 

•ΔP=gH 

•Where H=Hydraulic head and ΔP=pressure difference: 

•Height H is the height of fluid required to provide the 

applied pressure difference purely hydrostatically. 

•In the absence of outside forces, difference in pressure 

depends only on height difference  (so if height is x, then 

dp/dx= g) 

•True for tubes—e.g., siphons, and also for reservoirs and 

water tanks and pressure inside the Earth 



Volumetric flow rate 

• Q = volumetric flow rate=total volume of 

fluid passing a cross-section per unit time. 

• Examples:  River, pipe 

 

 

 

• (u is component perp. 

to surface) 
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??? 

mantle 
crust 

Asthenospheric Counterflow 

??? 



Asthenospheric counterflow 

• People originally thought it might exist 



But—model prediction of sea 

floor topography is opposite to 

what is observed 

Darker blue = deeper ocean 

Lighter blue=shallower 

Model Prediction 



So Theory is wrong 

 



6-4 Pipe Flow 
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3-D view 

p1 

p0 

p0+dp • Poiseuille flow through a circular 

pipe 

• Fig. 6-6 

• Force balance works if flow is 

*steady*--i.e., laminar 

 



Equations : 
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Integrate to get: 

Can also calculate average velocity u



But if flow is not steady, can’t 

solve analytically 

laminar turbulent 

Depends on dimensionless 

variables:  Friction  factor f and 

Reynolds number Re 
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Reynold’s Number Re:  

dimensionless 
• D=dimension of problem (e.g., pipe 

diameter) 

• =dynamic viscosity 

• =kinematic viscosity 

 

 

  Re>2200turbulent flow 

• Re<2200laminar flow 

• Re<1 Stokes flow = reversible—movie 
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• http://web.mit.edu/fluids/www/Shapiro/ncf

mf.html 

 

• Low-Reynolds-Number Flows 

• You-tube version has full movie on it. 

 

http://web.mit.edu/fluids/www/Shapiro/ncfmf.html
http://web.mit.edu/fluids/www/Shapiro/ncfmf.html


But if flow is not steady, can’t 

solve analytically 

laminar turbulent 

Depends on dimensionless 

variables:  Friction  factor f and 

Reynolds number Re 
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Example:  Artesian Aquifer 

• Model acquifer 

basically by a 

pipe that is 

bent into a 

semicircle. 

• Pressure 

difference gb 

drives flow 

through pipe 

of length R’ 



Example:  Flow through 

volcanic pipes 



http://1.bp.blogspot.com/-7UyN-

xvzQYY/UbvmLdtXhsI/AAAAAAAATeM/mczCzjeMYo8/s1600/y03+Information+on+the

+formation+of+lava+tube.jpg 



But most lava movement is 

vertical—vertical magma pipe 
• Driving force is buoyancy 
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s = density of solid 

l = density of liquid 

-g(s - l )pressure that drives 

magma to surface (negative for 

upward flow) 


