Notes for Assignment 1 Gphs/Maths 3232014
 Fluid Flow in Earth Systems Last time:

1) Definitions of fluid
2) Equivalence of strain rate and velocity gradient
3) Dimensional inconsistencies
4) Dimensionless numbers: Prandtl number
5) Boundary conditions:

- Free surface ($\tau=0$)
- No-slip surface (velocity constant at boundary)

This time:

- Review quiz
- See me if you are enrolled in this as part of a 400-level course
- Detailed examples
- Definition of volumetric flow rate
- Asthenospheric counterflow
- Pipe flow
- Reynold's number

Quiz review

- What is a fluid?
- What is a dimensionless number and why are they important in fluid mechanics?
-What are boundary conditions?

Boundary Conditions

- The set of conditions specified for behavior of the solution to a set of differential equations at

Fourth Edition copyright ©2000 by Houghton Mifflin Company)
- Physical laws usually govern what happens at the boundary between two media.
- Differ from initial conditions in that boundary conditions are usually set from physical principles and initial conditions are assumed or measured, and only used for time.

Example-last slide shown 1-D

fluid flow

$$
\begin{aligned}
& \frac{d \tau}{d y}=\frac{d p}{d x}(6-8) \\
& \tau=\mu \frac{d u}{d y}(6-1)
\end{aligned}
$$

$$
\frac{d \tau}{d y}=\mu \frac{d^{2} u}{d y^{2}}=\frac{d p}{d x}
$$

$$
\underline{d u}=\underline{1} \underline{d p} y+C \quad \text { If there is a free surface: Use this }
$$

$$
\frac{d y}{d y}=\frac{P}{d x} y+C_{1} \quad \text { eqn to evaluate } \mathrm{C}_{1}
$$

$$
u=\frac{1}{2 \mu} \frac{d p}{d x} y^{2}+C_{1} y+C_{2}
$$

Starting Equations (pressure gradient causes gradient in shear stress); Stress is viscosity times strain rate or velocity gradient

Differentiate wrt y and substitute $\boldsymbol{\rightarrow}$
Integrate once \rightarrow

$$
\left(\frac{d u}{d y}=\frac{\tau}{\mu}=\frac{1}{\mu} \frac{d p}{d x} y+C_{1}(\tau=0 \text { at some y position })\right.
$$

Integrate twice: Use no-slip condition here ($u=\mathrm{u}_{0}$ at some y position)

Example: free surface at $\mathrm{y}=0$ and no-slip at $\mathrm{y}=\mathrm{y}_{0}$

$$
\begin{aligned}
& \frac{d \tau}{d y}=\mu \frac{d^{2} u}{d y^{2}}=\frac{d p}{d x} \\
& \frac{d u}{d y}=\frac{1}{\mu} \frac{d p}{d x} y+C_{1} \\
& u=\frac{1}{2 \mu} \frac{d p}{d x} y^{2}+C_{1} y+C_{2}
\end{aligned}
$$

Integrate once \rightarrow
If there is a free surface: Use this eqn to evaluate C_{1}-example, if have free surface at $y=0$, then $\mathrm{du} / \mathrm{dy}=\tau / \mu=0$ at $\mathrm{y}=0$, so $\mathrm{C}_{1}=0$

Integrate twice: Use no-slip condition here Example: $\mathrm{C}_{1}=0$ and $u=u_{0}$ at $\mathrm{y}=\mathrm{y}_{0}$ then

$$
\begin{aligned}
& u_{0}=\frac{1}{2 \mu} \frac{d p}{d x} y_{0}{ }^{2}+C_{2} \\
& C_{2}=u_{0}-\frac{1}{2 \mu} \frac{d p}{d x} y_{0}{ }^{2}
\end{aligned}
$$

(This assumes that $\mathrm{dp} / \mathrm{dx}$ is a known constant)

General solution for 1-D flow

- Equation 6-12: $u=\frac{1}{2 \mu} \frac{d p}{d x}\left(y^{2}-h y\right)-\frac{u_{0} y}{h}+u_{0}$
- If $d p / d x=0$; Couette Flow
- If $u=0, d p / d x \neq 0$ no special name-just stationary boundary condition.

Example

-Also, get intermediate Solution: $\Delta \mathrm{P}=\rho \mathrm{gH}$
-Where $\mathrm{H}=\mathrm{Hydraulic}$ head and $\Delta \mathrm{P}=$ pressure difference:
-Difference in pressure depends only on height difference
-True for tubes-e.g., siphons, and also for reservoirs and
water tanks.

Problem hints:

- What is the most important first step in solving an applied mathematics problem?
- Draw pictures!
- (first step is actually understanding the problem-drawing a picture helps enormously)
- Consider boundary conditions!

Problem hints

- Remember $1^{\text {st }}$ year calculus-how do you get the average of a function?

$$
\bar{f}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

- How do you get the maximum and minimum of a function?

Set derivative equal to zero and check either side or look at second derivative (curvature) to see if positive (minimum) or negative (maximum) or-"cheat" by solving numerically and looking at graph.

Hydraulic Head

-Pressure drops often defined by hydraulic head:

- $\Delta \mathrm{P}=\rho g \mathrm{H}$
-Where $\mathrm{H}=$ Hydraulic head and $\Delta \mathrm{P}=$ pressure difference:
-Height H is the height of fluid required to provide the applied pressure difference purely hydrostatically.
-In the absence of outside forces, difference in pressure depends only on height difference (so if height is x, then $d p / d x=\rho g$)
-True for tubes-e.g., siphons, and also for reservoirs and water tanks and pressure inside the Earth

Volumetric flow rate

- $Q=$ volumetric flow rate=total volume of fluid passing a cross-section per unit time.
- Examples: River, pipe

$$
Q=\int_{\text {surface }} u d S
$$

- (u is component perp. to surface)

Asthenospheric Counterflow

Asthenospheric counterflow

- People originally thought it might exist

6-4 Velocity profile associated with the asthenospheric counterflow model.

But-model prediction of sea floor topography is opposite to what is observed

Model Prediction

Darker blue = deeper ocean
Lighter blue=shallower

So Theory is wrong

6-4 Pipe Flow

3-D view

- Poiseuille flow through a circular pipe
- Fig. 6-6
- Force balance works if flow is *steady*--i.e., laminar
r pipe.

Equations :

$$
\tau=\frac{r}{2} \frac{d p}{d x}=\mu \frac{d u}{d r}
$$

Integrate to get:

$$
u=-\frac{1}{4 \mu} \frac{d p}{d x}\left(R^{2}-r^{2}\right)
$$

Can also calculate average velocity $\overline{\boldsymbol{U}}$

But if flow is not steady, can't solve analytically

Depends on dimensionless variables: Friction factor f and Reynolds number Re

$$
f \equiv \frac{-4 R}{\rho \bar{u}^{2}} \frac{d p}{d x}
$$

Reynold's Number Re: dimensionless

- D=dimension of problem (e.g., pipe diameter)
- $\mu=$ dynamic viscosity
- v=kinematic viscosity
$\bar{u}=\operatorname{avg}$ speed
$\begin{aligned} & \operatorname{Re}=\frac{\rho \bar{u} D}{\mu}=\frac{\bar{u} D}{\nu} \\ & \text { Re }>2200 \rightarrow \text { turbulent flow }\end{aligned}$
- Re<2200 \rightarrow laminar flow
- $\mathrm{Re}<1 \rightarrow$ Stokes flow $=$ reversible—movie

- http://web.mit.edu/fluids/www/Shapiro/ncf mf.html

- Low-Reynolds-Number Flows
- You-tube version has full movie on it.

But if flow is not steady, can't solve analytically

laminar
turbulent
Depends on dimensionless variables: Friction factor f and Reynolds number Re

$$
f \equiv \frac{-4 R}{\rho \bar{u}^{2}} \frac{d p}{d x}
$$

6-7 Dependence of the friction factor f on the Reynolds number Re for laminar flow, from Equation ($0-41$), and for turbulent flow, from Equation (6-42).

Example: Artesian Aquifer

- Model acquifer basically by a pipe that is bent into a semicircle.
- Pressure difference $\rho g b$ drives flow through pipe of length $\pi \mathrm{R}^{\prime}$

6-5 ARIESIAN AQUIFER FLOWS
233

6-9 A semicircular aquifer with a circular cross section (a toroid). A hydrostatic head b is available to drive the flow.

Example: Flow through volcanic pipes

Formation of a Lava Tube

Most lava tubes form in molten pahoehce lava flows.

As eruptive activity diminishes, the supply of new lava stops.

Exposed to air, the top portion of a lava stream often solidifies and insulates the underlying fluid lava, which continues flowing beneath its hardened crust.

The molten lava then drains out like water from a shut off hose, leaving behind a hollow tube.

But most lava movement is

 vertical—vertical magma pipe- Driving force is buoyancy
$\rho_{\mathrm{s}}=$ density of solid
$\rho_{l}=$ density of liquid
$-g\left(\rho_{s}-\rho_{\mathrm{I}}\right)$ pressure that drives magma to surface (negative for upward flow)

