Notes for Assignment 3,

Maths 323 Fluids Module 2014-last

 time:1) Concepts from Turcotte \& Schubert Ch. 4 needed in Ch. 6
2) Thermal expansion and Plume Heads and Tails (Section 6-15)
3) Heat conduction equation in a moving medium:

$$
\frac{\partial T}{\partial t}+\vec{u} \cdot \vec{\nabla} T=\kappa \nabla^{2} T+a
$$

This time:

1) Check which students need Computer accounts on Geophysics computers
2) Sec. 6-19 Linear Stability Analysis for onset of convection-heated from below
3) Heating by Viscous Dissipation

4 Geoscientist's views of Earth's Interior

Linear Stability analysis for the onset of convection

6-38 Two-dimensional cellular convection in a fluid layer heated from below.

Linear Stability analysis for the onset of convection

- Buoyancy Force/Unit volume $=-g \rho_{0} \alpha_{V}\left(T-T_{0}\right)$
- Similar analysis to rise of diapir except density diff comes from heating \rightarrow
- Start with stable system (not moving)
- Heat up gradually until just when convection starts-allows approximations because movements are very small
- Define $T^{\prime}=T-T_{C}=$ difference between actual Temp and Temp if only conduction occurred

Mantle flow animation

- Convection in the Earth's Mantle
- Higher temperature convection
- http://www.gps.caltech.edu/~gurnis/Movies/Anim ated GIFs/slab401 movie.gif (Superplume Formation Beneath An Ancient Slab)
- Away from slab—plumes form rapidly and are small
- Under slab—plume takes longer to form and is large
- Slab buoyancey: Negative and blue; superplume buoyancy: red
- 3D convection

Heating from below

6-38 Two-dimensional cellular convection in a fluid layer heated from below.

- $T_{1}>T_{0}$
- Assumptions:
- Start from $\boldsymbol{T}=\boldsymbol{T}_{0}$

- Gradually heat until convection starts at $T=T_{1}$ (prime coordinates)
$u^{\prime}=v^{\prime}=0$
So just before convection:
$\frac{\partial T_{C}}{\partial t}=0$
- (T_{C} is conduction solution)

$$
\frac{\partial T_{C}}{\partial x}=0
$$

Heating from below:

$$
u^{\prime}=v^{\prime}=0
$$

Conduction before convection

$\frac{\partial T_{C}}{\partial t}=0$

$\frac{\partial T_{C}}{\partial t}+\vec{u}^{\prime} \cdot \vec{\nabla} T_{C}=\kappa \nabla^{2} T_{C}+a$

$$
\frac{\partial T_{C}}{\partial x}=0
$$

- (T_{C} is conduction solution)

$$
\frac{\partial T_{C}}{\partial t}+u^{\prime} \frac{\partial T_{C}}{\partial x}+v^{\prime} \frac{\partial T_{C}}{\partial y}=\kappa\left(\frac{\partial^{2} T_{C}}{\partial x^{2}}+\frac{\partial^{2} T_{C}}{\partial y^{2}}\right)(6-293)
$$

6-38 Two-dimensional cellular convection in a fluid layer heated from below.

Boundary Conditions

- For this case:
- Fluid flow alone (as seen in diapir analysis):
- No-slip (Solid-Liquid) $u=$ fixed=0 at $y=+b / 2$
- Free surface: 0 -stress ($\tau=0 \rightarrow \delta u / \delta y=01-d$ at $y=-b / 2$)
- Heat: Isothermal: T continuous across boundary: $T=T_{0}$ at $y=-b / 2 T=T_{1}$ at $y=+b / 2$

Just before convection

- Boundary conditions:

$$
u^{\prime}=v^{\prime}=0
$$

- $T=T_{0}$ at $y=-b / 2$
- $T=T_{1}$ at $y=+b / 2$

$$
\frac{\partial}{\partial t}=0 \quad\left(\frac{\partial T}{\partial t}=0\right)
$$

- Solution to: $\frac{\partial^{2} T_{C}}{\partial y^{2}}=0$

$$
T_{c}=\frac{T_{1}+T_{0}}{2}+\frac{T_{1}-T_{0}}{b} y
$$

$$
\frac{\partial}{\partial x}=0 \quad\left(\frac{\partial T}{\partial x}=0\right)
$$

6-38 Two-dimensional cellular convection in a fluid layer heated from below.

- (Linear temp. profile from top to bottom)

Just as convection starts

$$
\mathrm{T}^{\prime}=T-T_{C}=T-\left(\frac{T_{1}+T_{0}}{2}-\frac{T_{1}-T_{0}}{b}\right) y
$$

- T^{\prime} is very small = departure of fluid temp. from conductivity profile $T^{\prime} \approx u^{\prime} \approx v^{\prime} \approx 0$
- (solve for T '-easier)
- Small things:

$$
\frac{\partial T^{\prime}}{\partial t} \approx 0 \approx \frac{\partial T^{\prime}}{\partial x}
$$

- Even smaller things (products of small things):

$$
u^{\prime} \frac{\partial T^{\prime}}{\partial x} \approx v^{\prime} \frac{\partial T^{\prime}}{\partial y}
$$

Equations reduce to:

∂T
$\frac{\partial T}{\partial}+\vec{u} \cdot \vec{\nabla} T=\kappa \nabla^{2} T+a \quad a$ ∂t

$$
\frac{\partial u^{\prime}}{\partial x}+\frac{\partial v^{\prime}}{\partial y}=0
$$

$$
0=-\frac{\partial P^{\prime}}{\partial x}+\mu\left(\frac{\partial^{2} u^{\prime}}{\partial x^{2}}+\frac{\partial^{2} u^{\prime}}{\partial y^{2}}\right)
$$

6-300 (from 6-64 \& 6-67: fluid flow Sec. 6-8)

$$
0=-\frac{\partial P^{\prime}}{\partial y}-\rho_{0} \alpha_{v} g T^{\prime}+\mu\left(\frac{\partial^{2} v^{\prime}}{\partial x^{2}}+\frac{\partial^{2} v^{\prime}}{\partial y^{2}}\right)
$$

6-301 (from 6-65)

$$
\frac{\partial T^{\prime}}{\partial t}+\frac{v^{\prime}}{b}\left(T_{1}-T_{0}\right)=\kappa\left(\frac{\partial^{2} T^{\prime}}{\partial x^{2}}+\frac{\partial^{2} T^{\prime}}{\partial y^{2}}\right)
$$

6-302

Introducting stream function,

 Equations to solve reduce to two coupled diff. eqns:$$
u=-\frac{\partial \psi}{\partial y} ; v=\frac{\partial \psi}{\partial x}
$$

$\frac{\partial T^{\prime}}{\partial t}+\frac{1}{b}\left(T_{1}-T_{0}\right) \frac{\partial \psi^{\prime}}{\partial x}=\kappa\left(\frac{\partial^{2} T^{\prime}}{\partial x^{2}}+\frac{\partial^{2} T^{\prime}}{\partial y^{2}}\right)(6-309)$
$0=\mu\left(\frac{\partial^{4} \psi^{\prime}}{\partial x^{4}}+2 \frac{\partial^{4} \psi^{\prime}}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} \psi^{\prime}}{\partial y^{4}}\right)-\rho_{0} g \alpha_{v} \frac{\partial T^{\prime}}{\partial x}(6-310)$
$\frac{\partial T}{\partial t}+\vec{u} \cdot \vec{\nabla} T=\kappa \nabla^{2} T+a$

Abducted by an alien circus company, Professor Doyle is forced to write calculus equations in center ring.

$$
\begin{aligned}
& \text { Solution: Use Separation of } \\
& \text { Variables }(\mathrm{y}, \mathrm{x}, \text { t independent }) \\
& \psi^{\prime}=\psi_{0}^{\prime} \cos \frac{(\pi y)}{b} \sin \left(\frac{2 \pi x}{\lambda}\right) e^{\alpha^{\prime} t}(6-311) \\
& T^{\prime}=T_{0}^{\prime} \cos \frac{(\pi y)}{b} \cos \left(\frac{2 \pi x}{\lambda}\right) e^{\alpha^{\prime t}}(6-312) \\
& u^{\prime}=-\frac{\partial \psi^{\prime}}{\partial y} ; v^{\prime}=\frac{\partial \psi^{\prime}}{\partial x}
\end{aligned}
$$

$\alpha^{\prime}=$ growth rate. If >0, get unstable growth \rightarrow convection If $\alpha^{i}<0$, decays with time

Substituting in values, get:
$\alpha^{\prime}=R a($ function $(2 \pi b / \lambda)$), where $2 \pi b / \lambda=$ dimensionless wavenumber and $R a=$ Rayleigh number, another dimensionless number

Rayleigh Number, Ra

- Dimensionless
- If $R a>$ (some large value), material convects
$R a=\underline{g \rho \alpha_{V}\left(T_{1}-T_{0}\right) b^{3}}$
-(factors aiding convection)
$\kappa \mu$

-Factors inhibiting convection

- Fig. 6-39 critical Rayleigh Number
- $R a_{C r}$ depends on wavelength

6-23: Heating by Viscous Dissipation

6-45 Frictional heating in Couette flow.

Rate of work

- Work =Force x distance
- Rate of work = Force \times distance/time
- Stress = Force/area
- So Rate of work/unit area = Stress x distance/time = stress x velocity
- Rate of work/horiz. Area = shear stress x velocity
- (Book says-work on entire layer is given by stress and velocity at the top layer)

Another derivation

To get work done on the entire fluid layer per horizontal area-un-numbered equation on p. 283

$$
\begin{aligned}
& \text { work }=\int_{i j} \sigma_{i j} d \tau \\
& =\int_{h}^{0} \frac{\mu u_{0}}{h}\left(\frac{d u}{d y}\right) d y=\int_{h}^{0} \frac{\mu u_{0}}{h} d u \\
& =\left.\frac{\mu u_{0}}{h} u\right|_{u_{0}} ^{0} \\
& =\frac{-\mu u_{0}^{2}}{h}
\end{aligned}
$$

∂T
 Steady state: no change with time
 Also velocity $\perp \operatorname{grad}(\mathrm{T})$
 ∂t

- So the shear heating is the volumetric heat production (ρH) and we get

$$
k \frac{d^{2} T}{d y^{2}}=\rho H=-\frac{\mu u_{0}^{2}}{h^{2}}
$$

- Get the temperature distribution in dimensionless form

$$
\theta=\frac{T-T_{0}}{T_{1}-T_{0}}
$$

- Depends on another dimensionless parameter-the Eckert number

Eckert number

$$
E \equiv \frac{u_{0}^{2}}{c_{p}\left(T_{1}-T_{0}\right)}
$$

Where c_{p} is specific heat at constant pressure.
Final solution depends on the product of two dimensionless numbers, Prandtl number Pr and Eckert number E
PrE

Problem Hint

- Don't forget boundary condition
- $q=0$ across boundary $\rightarrow \delta T / \delta y=0$
- $R a<R a_{C r} \rightarrow$ no convection
- $R a>R a_{C r} \rightarrow$ yes convection

Problem hints

- Some given in the assignment handout. Particularly, check misprints.

