
Notes for Assignment 3, 

Maths 323 Fluids Module 2014-last 

time: 

 

 
1) Concepts from Turcotte & Schubert Ch. 4 

needed in Ch. 6 

2) Thermal expansion and Plume Heads 
and Tails (Section 6-15) 

3) Heat conduction equation in a moving 
medium:  
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This time: 

 

  

1) Check which students need Computer 
accounts on Geophysics computers 

2) Sec. 6-19 Linear Stability Analysis for 
onset of convection—heated from below 

3) Heating by Viscous Dissipation 



4 Geoscientist’s views of Earth’s Interior 



Linear Stability analysis for the 

onset of convection 
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Linear Stability analysis for the 

onset of convection 
• Buoyancy Force/Unit volume = -g0V(T-T0) 

• Similar analysis to rise of diapir except 

density diff comes from heating 

• Start with stable system (not moving) 

• Heat up gradually until just when convection 

starts—allows approximations because 

movements are very small 

• Define T’=T-TC=difference between actual 

Temp and Temp if only conduction occurred 



Mantle flow animation 

• Convection in the Earth's Mantle 

• Higher temperature convection 

• http://www.gps.caltech.edu/~gurnis/Movies/Anim
ated_GIFs/slab401_movie.gif (Superplume 
Formation Beneath An Ancient Slab) 

• Away from slab—plumes form rapidly and are 
small 

• Under slab—plume takes longer to form and is 
large 

• Slab buoyancey: Negative and blue; superplume 
buoyancy: red 

• 3D convection 

lortemp.mpeg
hirtemp.mpeg
http://www.gps.caltech.edu/~gurnis/Movies/Animated_GIFs/slab401_movie.gif
http://www.gps.caltech.edu/~gurnis/Movies/Animated_GIFs/slab401_movie.gif
Mantle Animation3 Lowman King Gable 2004.mpeg
Mantle Animation3 Lowman King Gable 2004.mpeg


Heating from below 

• T1>T0 

• Assumptions: 

• Start from T=T0 

• Gradually heat until convection starts at 

T=T1 (prime coordinates) 

So just before convection: 

 

• (TC is conduction solution) 
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Heating from below:  

Conduction before convection 

 

• (TC is conduction solution) 
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Boundary Conditions 

• For this case: 

• Fluid flow alone (as seen in diapir analysis):  

–  No-slip (Solid-Liquid)  u=fixed=0 at y=+ b/2 

– Free surface:  0-stress (=0u/y=0 1-d at y=-b/2) 

• Heat:  Isothermal:  T continuous across 

boundary : T=T0 at y=-b/2 T=T1 at y=+b/2 
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Just before convection 

• Boundary conditions: 

• T=T0 at y=-b/2 

• T=T1 at y=+b/2 

• Solution to: 

 

 

• (Linear temp. profile from 

top to bottom) 
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Just as convection starts 

 

 

• T’ is very small = departure of fluid temp. 

from conductivity profile 

• (solve for T’—easier) 

• Small things: 

• Even smaller things (products of small 

things): 
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Equations reduce to: 
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6-300 (from 6-64 & 6-67: fluid 

flow Sec. 6-8) 

 

 

6-301 (from 6-65) 

 

 

6-302 

a=0 



Introducting stream function, 

Equations to solve reduce to 

two coupled diff. eqns: 
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Solution: Use Separation of 

Variables (y, x, t independent) 
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’=growth rate.  If >0, get unstable growth convection 

If ‘<0, decays with time 

 

Substituting in values, get: 

’=Ra(function(2b/)),  where 2b/=dimensionless wavenumber and 

Ra= Rayleigh number, another dimensionless number 

 



Rayleigh Number, Ra 

• Dimensionless 

• If Ra > (some large value), material 

convects                                                              
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• Fig. 6-39  
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• RaCr 

depends on 

wavelength 
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6-23: Heating by Viscous Dissipation 

 



Rate of work 

 • Work =Force x distance 

• Rate of work = Force x distance/time 

• Stress = Force/area 

• So Rate of work/unit area = Stress x 

distance/time = stress x velocity 

• Rate of work/horiz. Area = shear stress x 

velocity 

• (Book says—work on entire layer is given 

by stress and velocity at the top layer) 

 



Another derivation 
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To get work done on the entire fluid layer per horizontal 

area—un-numbered equation on p. 283 



• So the shear heating is the volumetric heat 

production (ρH) and we get 

 

 

• Get the temperature distribution in 

dimensionless form 

 

• Depends on another dimensionless 

parameter-the Eckert number 
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Steady state: no 

change with time 

 

Also velocity grad(T) 



Eckert number 
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Where cp is specific heat at constant pressure. 

 

Final solution depends on the product of two dimensionless 

numbers, Prandtl number Pr and Eckert number E 
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Problem Hint 

• Don’t forget boundary condition 

• q=0 across boundary  T/ y=0 

• Ra<RaCr no convection 

• Ra>RaCr yes convection 

 



Problem hints 

• Some given in the assignment handout.  

Particularly, check misprints. 


