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Section 3 of Maths/GPHS 323 Fluid Flow project: Numerical models for more than one 

variable. 

In your last project you solved several 1D numerical models in the steady state.  This time, we will 

add the time dimension to a 1D numerical model and investigate 2D numerical models for heat flow 

and fluid flow.   

 

Background:  Boundary Conditions 

For most of the differential equations we’ve studied, there are two types of boundary conditions. 

A) A defined value at a boundary.  An example of this type of boundary is when we set the 

temperature at the top of the lithosphere equal to zero, or we set the velocity at the top of the 

asthenosphere equal to a fixed plate velocity. 

B) A derivative is constant at a boundary.  An example of this type of boundary is the insulating 

boundary conditions for temperature problems, or the zero stress boundary conditions for 

fluid flow, where the derivative is equal to zero at a boundary. 

 

You cannot solve a numerical problem without giving a value for the boundary conditions (or else, 

the computer will set the boundary to whatever it finds in its register, which can give very weird 

results that might vary each time you run it). 

Setting the boundary conditions in the type of spreadsheets we are writing is actually quite 

straightforward.   

 

C)   Of course, defining a constant value is done just by not allowing it to vary, for example, for a 1-

D case, you would set the top and the bottom of your column of temperature or velocity values equal 

to a constant value.   

 

D) Setting a derivative equal to zero at a boundary is only slightly more complicated.  For a 1-D 

case, simply set the top two values or bottom two values in your column equal to each other (e.g., 

set E1=E2).  But unless you also have a condition on the top or bottom boundary, don’t set E1 equal 

to anything in particular.  Your previous spreadsheets have already implemented method 1) above, 

and the spreadsheet you are given here implements method 2). 

  

  



 

Assignment: 

 

For each section, include plots and print out your examples, and provide a discussion of what 

you have learned.  You may hand in spreadsheets via email as supporting material, but you 

will be marked mainly on your printed version (legible handwritten sections are fine). 

 

1. Finite difference calculations are often used to calculate the change in quantities in time, and 

1-D heat flow is a popular application.  Your notes contain an article from Thorston Becker 

that discusses how to solve the heat flow equation.  This equation is:  
pc

H

x

T

t

T


 








2

2

 

Where T is temperature, t is time,  is thermal diffusivity, H is volumetric heat production, ρ is 

density, and cp is heat capacity.   

 

a) Show that if we assume no heat production (H=0), we can rewrite the equation as 
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Note that we have assumed that T depends on a single dimension of space and on time, but 

that  is constant.  An example might be an insulated rod that is heated at one end and cooled 

at the other. [5 marks] 

 

b) Create a spreadsheet to calculate the temperature distribution in such a rod as a function of 

time.  Use an initial model with a constant temperature except that one end of the model has 

three cells with a higher temperature than those around them (e.g., you might use T=300K 

everywhere except in the 3 end cells, T=600K).  Include the boundary condition that each 

end of the model has a constant temperature.  Hint:  The main difference between this 

problem and the one for 1-D fluid flow is that you will be solving a non-steady-state 

problem, so instead of each iteration being a better estimate of the final solution, this time 

each iteration should give you a new temperature profile for a later time.  Set up one column 

as an initial temperature model similar to the initial viscosity model in previous weeks’ 

spreadsheets.  A second column will give the updated temperatures.  You will need to set up 

the temperature column so that the new temperature is equal to its previous value plus some 

other terms depending on the value of the terms around it.  (e.g., cell d10 might have the 

value =d10+(other terms in d11, d12, and d10 again)).    If you get to the point where you 

can see the temperature anomaly spread out over time with increasing numbers of iterations, 

you will have done well.  

(Hint 2:  To get the spreadsheet to work, you will need to satisfy the stability criterion:  
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 .  Physically, this means that the time step is smaller than the time it takes for 

heat to diffuse across a single block.)  Find the thermal constant for metal and determine the 

actual time expected to diffuse heat across a one meter rod.  Show the time it takes for the 

heat to get to 400 K in the middle of the rod. Show graphs of your solutions, and explain 

them. [10 marks] 

 

 

 

c) Try the spreadsheet for a typical value of  = 1e-6 for the mantle, and typical dimensions, 

for, e.g., a plug of magma that suddenly rises and heats a column of rock above it.  Suppose 

the magma is at 20 km depth.  Plot graphs of the temperature distributions at three times—

once at the start, once when the temperature change has affected about half the length of the 

material, and once when the temperature is approaching steady state. Determine what those 

times are in years.  [5 marks] 



 

d) For your spreadsheet, try a value of Δt that is too large for the stability criterion.  (Try it as two 

times too big and 10 times too big).  Discuss what happens when you iterate, showing at least one 

figure for proof.  [5 marks] 

 

2.  Now we turn to solving the diffusion equation in two dimensions. We will again start out with a 

very simple Excel spreadsheet.  It is the attached file: heatflow_truefd_toclass.xls 

 

It calculates a solution to the diffusion equation in two dimensions, neglecting transport, i.e. 
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It is also solved iteratively with the finite difference scheme.  This time there are two spatial 

dimensions, and a time derivative as well. 

 

If we set our grid such that our x and y grids have the same dimension, the finite difference 

calculation becomes, for each element Tjk and the nth time step, 
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The boundary conditions for this problem have been set so that the sides of the model are given by 

the initial model (Columns N and Y; constant in this case).  The top and bottom rows are equal to 

the third & 3rd to last rows, respectively, which is a way of setting the gradient equal to zero in 

those places, i.e., like the insulating boundary conditions we’ve seen in the analytic solution for the 

centre of the model, away from the boundaries.   

 

The spreadsheet plots the initial values, the final values, and a profile through the centre of the 

model.  It is another “brute force” solution, but is stable providing certain conditions are met.  An 

example of the kind of thing this model might represent is a metal plate onto which you put hot 

food.   

 

 

 By using the spreadsheet and plotting at several sets of times, show that the model has heat 

diffusing outward consistently with time and distance, and that the anomaly decreases over time.  

Play with the initial conditions and the parameters mesh and kappa and show what happens when 

the stability condition is not satisfied (i.e., when the parameter gamma < 2). More sophisticated 

schemes exist that use a damping parameter to help to get the program to converge, but we will not 

discuss these this year.  [5 marks] 

 

3.  Your notes contain a paper by David Eaton and Andrew Frederiksen published a few years ago in 

Nature.  They perform a finite-difference calculation of two-dimensional heat flow in response to a 

plume source.  Modify the values in the spreadsheet and show that you get a similar order of 

magnitude response when you put in a similar structure.  (Hint:  Eaton and Frederiksen include a 

temperature gradient in their model.  You should use the same gradient in your model as well.) [10 

marks] 

 

4. The steady-state solution to the heat equation is found by setting the time derivative of 

temperature to 0.  Thus, it becomes Laplace’s equation, or .02  T  This equation can also result 

from fluid flow in special circumstances.  The one we will discuss here is that of the horizontal 

velocity u(y,z) in the mantle beneath a transform (strike-slip) plate boundary, where the motion of 

the fault is in the x direction.  Beneath a very long transform, the velocity components v and w 

vanish because u is independent of x (Figure 1).  The equations of motion for three dimensional 



viscous flow therefore reduce to 0,
2

2

2

2
2 











z

u

y

u
ug

dz

dp
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in two dimensions.  If we solve for u(y,z), assuming that the viscous mantle extends to great depth (z 

) beneath the plate boundary, we find that ux = U(1-(2/)),  uy = 0; uz = 0., where  is in 

cylindrical coordinates, as shown below (x is the long axis of the cylinder). The solution only varies 

in the y-z plane.  We assume the plate is rigid, and the bottom of the plate is at the origin of the 

coordinate system.  The solution to this problem was published in a 2004 paper I wrote.  This 

provides the analytic solution for testing against the numerical solution in the next section.  The 

citation is:  Savage M.K., K.M. Fischer, and C.E. Hall (2004), Strain modelling, seismic anisotropy 

and coupling at strike-slip boundaries: application in New Zealand and the San Andreas fault, in 

Vertical Coupling and Decoupling in the Lithosphere, 227, 9-39, Geological Society, London, 

Special Publications, on p. 9. I’ve attached the paper here.  

 

Note that the solution to Laplace’s equation is a simpler version of the heat flow equation, with no 

time dependence; i.e., it is the steady state solution.  Thus, show that the new equation can be 

rewritten as: 
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Thus, the value of a point is the average of all the points around it.  Make a new spreadsheet  to 

calculate the velocity u as a function of depth, given the boundary conditions shown in the model.  

(+U and –U on either side of the fault, u=0 at the bottom of the model and stress-free boundary 

conditions on the sides).  Show that the results you get match the analytical solution.  [10 marks] 

  

5. Provide a discussion of what you have learned from the computer modeling section of the course. 

[10 marks] 

 

For each section, include plots and print out your examples, and provide a discussion of what 

you have learned.  You may hand in spreadsheets via email as supporting material, but you 

will be marked mainly on your printed version (legible handwritten sections are fine). 

 

 

 



    
Figure 1.  A diagram of the model setup for determining mantle flow due to a strike-slip fault at the 

surface.  The strike-slip fault is modeled as a break with the boundary condition that the velocities 

on either side of the fault are parallel to the fault and in opposite directions to each other. 

 

References:  

See some of the notes from previous times for explanations of diffusion equations. More details can 

be found in Chapters 5 and 6 of Mark Spiegelman’s web page: 

http://www.ldeo.columbia.edu/~mspieg/mmm  

  


