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Chapter 1

Introduction to Lagrangian and
Hamiltonian mechanics

1.1 General background

Lagrangian and Hamiltonian mechanics was developed in the 1800’s in an attempt to
move classical Newtonian mechanics beyond the level of just saying “force equals mass
times acceleration”,

~F = m ~a.

Of course in a complicated system containing lots of individual bits and pieces no one can
stop you from simply adding up the forces, and masses, and calculating the accelerations
of all the individual bits and pieces — but at a certain stage this becomes both impractical
and inelegant.

In particular during the late 1700s and 1800s one of the biggest scientific questions at
the forefront of research had to do with “celestial mechanics” — this is the mechanics of
the solar system under Newton’s inverse-square law of gravitation once one takes account
of the interactions between the planets (in addition to the dominant effect due to the Sun
on the individual planets, which is easy to deal with).

Lagrangian mechanics (and later on Hamiltonian mechanics) was developed in an at-
tempt to construct a general mathematical framework for handling (in principle) arbi-
trarily complicated systems, and an attempt at extracting general mathematical theo-
rems based on Newtonian mechanics — such as statements about when exactly energy
and momentum are conserved in appropriately defined sub-systems. (As far as we can
tell, and with appropriate technical qualifications, the total energy and momentum of the
universe is conserved, but in smaller sub-systems the presence of friction can cause heat
generation, and the sub-system might lose energy to its environment.)

4
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Mathematically, the key tool used in developing this theory of “analytical mechanics” is
the so-called “calculus of variations”. The “calculus of variations’” asks questions about
certain types of integral, and asks when those integrals might take on values that are
maximum, minimum, or more generally extremal. (That is, when does the integral have
a “point of inflexion” as you vary the things that are being integrated over?) These are
purely mathematical questions with purely mathematical answers.

• Leonhard Euler (1707–1783) is generally credited with the systematic development
of the “calculus of variations”, (and in particular discovered of what are now called
the Euler–Lagrange equations circa 1750).

• The 19th, 20th, and 23rd “Hilbert problems” of 1900 were based on the “calculus
of variations” — see the appendix for details.

Physically, the question then arises as to whether or not these “extremality conditions”
derived from the “calculus of variations” have anything to do with real world mechanical
problems (and optical problems for that matter). The answer of course is yes (otherwise
I would not be putting this set of notes together):

• Joseph-Louis Lagrange, (born Giuseppe Lodovico Lagrangia), developed
what is now called “Lagrangian mechanics” during the period 1772–1788. The key
insight here was to take a quantity (now called the Lagrangian) that depends on the
positions and velocities of the particles you are interested in, integrate that quantity
with respect to time, and extremize the resulting integral (that integral now being
called the “action”). By doing this Lagrange was able to recover Newton’s equations
and so reformulate classical mechanics in a very elegant and powerful form.1

• William Rowan Hamilton developed what is now known as (classical) “Hamil-
tonian mechanics” around 1827–1833. The Hamiltonian formulation extends the
Lagrangian formulation and focuses on slightly different issues. The key insight
here was to take a different quantity (now called the Hamiltonian, and very closely
related to the energy) that depends on the positions and momenta of the particles
you are interested in, integrate that quantity with respect to time, and extremize
the resulting integral (that integral now being called the “action”). By doing this
Hamilton was again able to recover Newton’s equations and so reformulate classical
mechanics in a very elegant and powerful form.

1There are people out there who view Lagrangian mechanics as “proof” of the philosophical assertion
by Leibnitz that we live in “the best of all possible worlds”. Apart from the sheer lunacy of attempting
to use mathematics to “prove” a philosophical point, a quick glance at Lagrangian mechanics should
convince you that the very kindest philosophical interpretation (mis-interpretation) of what Lagrange
mathematically achieved is that we live in “the most extreme of all possible worlds”.
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Both of these reformulations of classical mechanics come under the rubric of “the prin-
ciple of least action” — and there had been a long tradition of ideas along these lines —
suggestions that you should be trying to maximize/ minimize/ extremize something to
give you a handle on classical mechanics and/or ray optics.

• Pierre de Fermat developed his “principle of least time” in 1662 — this should
more accurately be renamed the “principle of extremal time”. According to this
principle right rays travel through a refractive medium, and/or are reflected by
mirrors in such a way that when you fix the endpoints of the light ray, the actual
path followed by the light ray extremizes the time taken to traverse that path.

– You can use this principle of extremal time, for instance, to derive both the
standard laws of reflection (specular reflection), and Snell’s law of refraction.

– An early version of the principle of extremal time, applying only to mirrors, is
sometimes attributed to Heron of Alexandria (circa 60 CE).

– An early version of the principle of extremal time applied to refraction is some-
times attributed to Ibn al-Haytham, more commonly known in Europe as
Alhacen (circa 1021 CE) .

• Pierre Louis Maupertuis developed a (rather metaphysical and imprecise) ver-
sion of the “principle of least action” circa 1741–1746; again, from a modern perspec-
tive this should more accurately be described as a “principle of extremal action”.

(Note that at that time, even among leading experts, things were sufficiently con-
fused that the concepts of what we now call momentum ~p = m~v was often confused
with the concept of what we now call kinetic energy K = 1

2
mv2 — the Latin phrase

“vis viva” was often interchangeably used for both concepts, so in some sense it was
no wonder that it was difficult for Maupertuis to come up with a precise formulation
of his ideas — for that one had to wait another 40 years for Lagrange and then yet
another 50 years for Hamilton.)2

In modern theoretical physics:

• Emmy Noether developed a mathematical theorem in 1918 that very closely re-
lated conservation laws (for example energy conservation and momentum conserva-
tion) to symmetries (for example time translation invariance and space translation
invariance).

• More radically, essentially all of quantum field theory and classical general relativity
are based on a suitably defined “principle of extremal action”.

2Oddly enough the Maupertuis form of the variational principle has recently taken on a new life in
the form of Julian Barbour’s “shape mechanics”. This is a seriously new bleeding edge variation on the
theme of Einstein’s general relativity. You might wish to amuse yourself with a Google search.
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– Essentially you will write down some appropriate Lagrangian as the one-formula
summary of your theory. David Hilbert was able to summarize general rel-
ativity in one line — the Lagrangian for general relativity is really absurdly
simple (if you understand Riemannian differential geometry). More recently
the entire “standard model of particle physics” can be summarized in a 1

4
-page

Lagrangian.

– Once you somehow have your Lagrangian:

∗ Integrate the Lagrangian to get the action.

∗ Write down the Euler-Lagrange equations to investigate the classical limit.

∗ Perform a Feynman “integral over all possible classical configurations” to
investigate the quantum physics.
(This could be either a “path integral” for quantum mechanics, or more
generally an “integral over all possible field configurations” for quantum
filed theory)

– It can be shown, (and no, we are not about to do this), that the “stationary
phase approximation” to evaluating Richard Feynman’s quantum “integral
over all possible classical configurations” automatically leads to the “principle
of extremal action”.

– That is, from a modern perspective you can derive the “principle of extremal
action” from quantum physics.

In closing, let me point out that many of the names you have encountered above should
be recognizable to you — many of these mathematicians/physicists contributed to many
fields in both mathematics and physics, all the way from abstract number theory (and the
distribution of prime numbers) all the way to very applied questions in planetary orbits,
the motion of fluids, optics, etc, etc...

1.2 Plan of this module

• First there will be a quite general and purely mathematical chapter on the “calculus
of variations”.

• The next chapter will be devoted specifically to Lagrangian mechanics.

• I will then present a chapter specifically on Hamiltonian mechanics.

• Finally, there will be a short chapter on symmetries and conservation laws leading
up to Noether’s theorem.

Assignments based on these notes can be downloaded from the website:

http://msor.victoria.ac.nz/Courses/MATH322 2013T1/
http://msor.victoria.ac.nz/Courses/MATH322 2013T2/



Chapter 2

Elements of the calculus of variations

2.1 Euler–Lagrange equation

The “calculus of variations” has to do with the study of integrals (defined on some suitable
set of functions) and the conditions under which the integral is “extremal”; meaning that
the value of the integral is a [local] maximum, minimum, or a “point of inflexion”.

The canonical example is to suppose we have a (sufficiently smooth) function

L(·, ·, ·) (2.1)

which itself depends on a function x(t), its first derivative ẋ(t) = dx(t)/dt, and might
(possibly) also explicitly depend on the parameter t. That is:

L = L (ẋ(t), x(t), t) . (2.2)

Now consider the integral

S[a, b;x(t)] =

∫ b

a

L (ẋ(t), x(t), t) dt. (2.3)

This is a functional mapping some suitable set {x(t)} of functions x(t) into the real
numbers IR. Under what conditions is this integral extremal?

Notation: Once we get around to doing mechanics, the function L (ẋ(t), x(t), t) will
be called the Lagrangian, and the functional S[a, b;x(t)] will be called the action. The
symbols L and S have become quite standard over the last few centuries. ♦

Theorem 1 (Euler–Lagrange equation)
The integral

S[a, b;x(t)] =

∫ b

a

L (ẋ(t), x(t), t) dt (2.4)

8
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is extremal (maximum/ minimum/ point of inflexion) if and only if the function x(t)
satisfies the differential equation

d

dt

[
∂L (ẋ(t), x(t), t)

∂ẋ(t)

]
=
∂L (ẋ(t), x(t), t)

∂x(t)
. (2.5)

This equation was first derived by Euler, and is now called the Euler–Lagrange equation.
It is the basic equation of the calculus of variations.

Proof: To analyse the question of extremality, write

x(t)→ x(t) + δx(t), (2.6)

and note that by definition

S[a, b;x(t) + δx(t)] =

∫ b

a

L

(
ẋ(t) +

d

dt
[δx(t)], x(t) + δx(t), t

)
dt. (2.7)

Now expand L(·, ·, ·) as a Taylor series in its first two arguments, so that

S[a, b;x(t) + δx(t)] = S[a, b;x(t)]

+

∫ b

a

{
∂L (ẋ(t), x(t), t)

∂ẋ(t)

d

dt
[δx(t)] +

∂L (ẋ(t), x(t), t)

∂x(t)
δx(t)

}
dt

+ O
(
[δx(t)]2

)
. (2.8)

Now integrate by parts.

Then

δS[a, b;x(t)] =

[
∂L (ẋ(t), x(t), t)

∂ẋ(t)
δx(t)

]∣∣∣∣b
a

+

∫ b

a

{
− d

dt

[
∂L (ẋ(t), x(t), t)

∂ẋ(t)

]
+
∂L (ẋ(t), x(t), t)

∂x(t)

}
δx(t) dt

+ O
(
[δx(t)]2

)
. (2.9)

Now let us restrain the set of functions {x(t)} to consist only of functions x(t) that are
fixed at the end-points a and b.

That is, we consider
δx(a) ≡ 0 ≡ δx(b). (2.10)

For this set of functions the integral S[a, b;x(t)] is extremal, (meaning δS[a, b;x(t)] = 0 for
all δx(t) satisfying the endpoint constraints), if and only if for arbitrary δx(t) satisfying
the endpoint constraints we have the intermediate result∫ b

a

{
− d

dt

[
∂L (ẋ(t), x(t), t)

∂ẋ(t)

]
+
∂L (ẋ(t), x(t), t)

∂x(t)

}
δx(t) dt = 0. (2.11)

We now have to invoke the fundamental theorem of variational calculus.
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Theorem 2 (Fundamental theorem of variational calculus)
Let f(t) be a sufficiently smooth function on the closed interval [a, b]. Suppose that for
every smooth function δx(t) satisfying δx(a) = 0 = δx(b) we know∫ b

a

f(t) δx(t) dt = 0. (2.12)

Then we can conclude
f(t) = 0 (∀t ∈ [a, b]). (2.13)

Proof: Note that the function −(t−a)(t−b) is positive on (a, b) and zero at the end-points
a and b. Then let

δx(t) = −(t− a)(t− b)f(t) (2.14)

This particular δx(t) satisfies the hypotheses of the theorem. But then

0 =

∫ b

a

f(t) δx(t) dt =

∫ b

a

−(t− a)(t− b)f(t)2 dt. (2.15)

Since −(t− a)(t− b) is positive on (a, b), and f(t)2 is non-negative on (a, b), this can only
be true of f(t) = 0 on (a, b). ♦

Now applying the “fundamental theorem of variational calculus” to the intermediate
result we have already derived∫ b

a

{
− d

dt

[
∂L (ẋ(t), x(t), t)

∂ẋ(t)

]
+
∂L (ẋ(t), x(t), t)

∂x(t)

}
δx(t) dt = 0, (2.16)

we now see that we have derived the result we were aiming for:

• The Euler–Lagrange equation.

d

dt

[
∂L (ẋ(t), x(t), t)

∂ẋ(t)

]
=
∂L (ẋ(t), x(t), t)

∂x(t)
. (2.17)

• It is relatively common to suppress the argument t of the functions ẋ(t) and x(t),
and merely write

d

dt

[
∂L (ẋ, x, t)

∂ẋ

]
=
∂L (ẋ, x, t)

∂x
. (2.18)

If you ever run across this form of the equations you are supposed to be bright
enough to realize that the mathematically precise statement requires x→ x(t) and
ẋ→ ẋ(t).
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• It is also reasonably common to suppress all the arguments of the integrand L and
even more simply write:

d

dt

[
∂L

∂ẋ

]
=
∂L

∂x
. (2.19)

Note that this will only make sense if you are implicitly requiring

L↔ L(ẋ, x, t)↔ L(ẋ(t), x(t), t). (2.20)

• For the time being, I will keep all function arguments and integrand arguments
explicit ; I’ll let you know if it ever becomes useful to suppress them.

2.2 Functional derivative

It is quite common to define the notion of a functional derivative (or functional gradient)

δS

δx(t)
, (2.21)

in terms of the so-called Frechet derivative1, by the equation∫ b

a

δS

δx(t)
δx(t) dt = lim

ε→0

{
S[a, b, x(t) + εδx(t)]− S[a, b, x(t)]

ε

}
. (2.22)

This is essentially the derivative of the functional S[a, b, x(t)] in the “direction” δx(t).

Adopting this definition of functional derivative it is a brief calculation, using logic
entirely equivalent to the derivation of the Euler–Lagrange equation above, to see that

δS

δx(t)
= − d

dt

[
∂L (ẋ(t), x(t), t)

∂ẋ(t)

]
+
∂L (ẋ(t), x(t), t)

∂x(t)
, (2.23)

or equivalently
δS

δx
= − d

dt

[
∂L (ẋ, x, t)

∂ẋ

]
+
∂L (ẋ, x, t)

∂x
, (2.24)

or even
δS

δx
= − d

dt

[
∂L

∂ẋ

]
+
∂L

∂x
. (2.25)

Adopting this formalism, the Euler–Lagrange equation becomes the “obvious” statement
that at any extremal of the action we must have

δS

δx(t)
= 0. (2.26)

That is, the “functional gradient” of the action S vanishes at any extremum x(t).

1Some of you may previously have seen the Frechet derivative, most likely in Math301 (Calculus 3).
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2.3 Notes

Note: There are enormously many generalizations and applications of the Euler–
Lagrange equation — for instance:

• to functions xi(t) in IRn;

• to higher derivatives;

• and to fields φ(t, xi) defined over IRd+1.

♦

Note: The use of t as a parameter and x(t) as the function is just a convention, we
could just as well use x as the parameter and f(x) as the function, and so write

L = L (f ′(x), f(x), x) . (2.27)

Now consider the integral

S[a, b; f(x)] =

∫ b

a

L (f ′(x), f(x), x) dx, (2.28)

which would then lead to the Euler–Lagrange equation in the form

d

dx

[
∂L (f ′(x), f(x), x)

∂f ′(x)

]
=
∂L (f ′(x), f(x), x)

∂f(x)
. (2.29)

Mathematically this f(x) form of the Euler–Lagrange equation is completely equivalent
to the x(t) form.

(Physically, once we turn to applications in classical mechanics, this choice of notation
would make it more difficult to understand what is going on.) ♦

Note: In a mechanics context, the integrand L (ẋ(t), x(t), x) is typically referred to as
the Lagrangian; while the functional S[a, b;x(t)] is typically referred to as the action. ♦

Example: For our first and simplest example, consider the special case

L (ẋ(t), x(t)) =
1

2
m

[
dx

dt

]2

− V (x(t)) . (2.30)

Then
∂L (ẋ(t), x(t), t)

∂ẋ(t)
= m

dx

dt
, (2.31)
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and
∂L (ẋ(t), x(t))

∂x(t)
= −dV

dx
. (2.32)

So the Euler–Lagrange equation becomes

d

dt

[
m

dx

dt

]
= −dV

dx
. (2.33)

If m is time independent then

m
d2x

dt2
= −dV

dx
. (2.34)

If we choose to interpret m as mass, x as position, t as time, and V (x) as a potential,

then this is just Newton’s second law, ~F = m ~a for a force

~F = −dV

dx
. (2.35)

♦

2.4 Euler–Lagrange equations for a function defined

in IRn

Suppose we have a collection of functions xi(t) with i ∈ {1, 2, 3, . . . , n}, that is xi(t) ∈ IRn.
Then we are interested in the integrand

L(ẋi(t), xi(t), t), (2.36)

and are interested in extremizing the functional

S[a, b, xi(t)] =

∫ b

a

L(ẋi(t), xi(t), t) dt. (2.37)

We can now repeat exactly the same analysis as before — with the minor change that we
now need to vary all n of functions the δxi(t) independently — to do this we merely need
to add a suitable superscript (such as i) on all the x’s. The new Euler–Lagrange equation
becomes

d

dt

[
∂L (ẋj(t), xj(t), t)

∂ẋi(t)

]
=
∂L (ẋj(t), xj(t), t)

∂xi(t)
. (2.38)
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2.5 Euler–Lagrange equations for higher-derivatives

Suppose now that L(· · · ) depends not only on the function x(t) and its first derivative,
but also on second and higher derivatives up to order N . That is

L = L

(
dN

dtN
x(t), · · · , ẍ(t), ẋ(t), x(t), t

)
. (2.39)

In this case, by looking at variations δx(t) subject to the conditions that at the end points

dn[δx(t)]

dtn

∣∣∣∣
a

= 0 =
dn[δx(t)]

dtn

∣∣∣∣
b

n ∈ {0, 1, 2, . . . , N − 1}, (2.40)

the Euler–Lagrange equations generalize to

N∑
n=0

(−)n
dn

dtn

[
∂L

∂(dnx/dtn)

(
dN

dtN
x(t), · · · , ẍ(t), ẋ(t), x(t), t

)]
= 0. (2.41)

To see how this comes about we simply copy the original argument above, now noting
that in the Taylor expansion of S[a, b, δx(t)] there will be terms such as∫ b

a

∂L

∂(dnx/dtn)

dn[δx(t)]

dtn
dt n ∈ {0, 1, 2, 3, . . . , N}. (2.42)

Integrating by parts once this becomes[
∂L

∂(dnx/dtn)

dn−1[δx(t)]

dtn−1

]b
a

−
∫ b

a

d

dt

[
∂L

∂(dnx/dtn)

]
dn−1[δx(t)]

dtn−1
dt (2.43)

In order to be able to safely discard the surface term it is both necessary and sufficient
that

dn[δx(t)]

dtn

∣∣∣∣
a

= 0 =
dn[δx(t)]

dtn

∣∣∣∣
b

n ∈ {0, 1, 2, . . . , N − 1}, (2.44)

in which case we are left with terms of the form

−
∫ b

a

d

dt

[
∂L

∂(dnx/dtn)

]
dn−1[δx(t)]

dtn−1
dt. (2.45)

Now integrate by parts a second time. Again discarding the surface term (using exactly
the same boundary condition at the endpoints a and b) we have

(−)2

∫ b

a

d2

dt2

[
∂L

∂(dnx/dtn)

]
dn−2[δx(t)]

dtn−2
dt. (2.46)
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After m iterations we have terms of the form

(−)m
∫ b

a

dm

dtm

[
∂L

∂(dnx/dtn)

]
dn−m[δx(t)]

dtn−m
dt. (2.47)

The integration by parts process stops once m = n, at which stage we have

(−)n
∫ b

a

dn

dtn

[
∂L

∂(dnx/dtn)

]
[δx(t)] dt. (2.48)

Adding all such terms we see

δS =

∫ b

a

{
N∑
n=0

(−)n
dn

dtn

[
∂L

∂(dnx/dtn)

]}
[δx(t)] dt. (2.49)

If we desire S to be extremal then we must have δS = 0 for all δx(t), (subject to the
boundary conditions enunciated above), whence applying the fundamental theorem of the
variational calculus we finally have

N∑
n=0

(−)n
dn

dtn

[
∂L

∂(dnx/dtn)

]
= 0 (2.50)

as desired.

While there is no mathematical problem writing down such “higher-derivative” equa-
tions, there are significant technical problems with giving such equations a nice and clean
physical interpretation — as far as we can tell, these “higher-derivative” equations do not
seem to be fundamental to physical theory.

2.6 Euler–Lagrange equations for a field defined over

IRd+1

Notation: The symbol ∂i is an extremely common shorthand for a partial derivative:

∂i ↔ ∂

∂xi
(2.51)

This notation cuts down on a lot of writing. ♦

Suppose the integrand L(· · · ) now depends on a quantity φ(t, xj) which is a field in the
sense of analytical mechanics — that is φ(t, xj) is a function of the variables t, and xi
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(typically d-dimensional space xj and one-dimensional time t).2 The integrand L depends
on first derivatives, φ̇(t, xj) and ∂iφ(t, xj), the field itself φ(t, xj), and might also explicitly
depend on position xj and time t.3 That is

L = L
(
φ̇(t, xj), ∂iφ(t, xj), φ(t, xj), t, xj

)
. (2.52)

For simplicity assume the xj are Cartesian coordinates in a Euclidean geometry. Then
integrating over some region (d+ 1)-dimensional region Ω we can write

S[Ω;φ(t, xj)] =

∫
Ω

L
(
φ̇(t, xj), ∂iφ(t, xj), φ(t, xj), t, xj

)
ddx dt. (2.53)

Now go through the same sort of steps as previously. Taylor expand the integrand

L
(
φ̇(t, xj), ∂iφ(t, xj), φ(t, xj), t, xj

)
, now with respect to its first three arguments φ̇(t, x),

∂iφ(t, x) and φ(t, x).

δS[Ω;φ(x)] =

∫
Ω

∂L
(
φ̇(t, xj), ∂iφ(t, xj), φ(t, xj), t, xj

)
∂[φ̇(t, xj)]

 δφ̇(t, x) ddxdt

+

∫
Ω

n∑
k=1

∂L
(
φ̇(t, xi), ∂iφ(xj), φ(t, xj), t, xj

)
∂[∂kφ(xj)]

 ∂k[δφ(t, x)] ddxdt

+

∫
Ω

∂L
(
φ̇(t, xj), ∂iφ(t, xj), φ(t, xj), t, xj

)
∂φ(xj)

δφ(xj) ddxdt

+ O
(
[δφ(t, xj)]2

)
. (2.54)

Let ∂Ω denote the d-dimensional boundary of the (d+ 1)-dimensional region Ω. After an
integration by parts using the (d+ 1)-dimensional version of Gauss’ theorem, and writing

2Within the context of special relativity or general relativity one might group time and space together
as space-time, with coordinates xa = (t, xi), but we are going to keep space and time separate for now.

3For definiteness, you might think of φ(t, xi) as the electromagnetic scalar potential, or the Newtonian
gravitational potential; though with a little more work and the addition of appropriate extra indices you
could think of this φ(t, xj) as representing, for instance, electric and magnetic vector fields.
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the (d+ 1)-dimensional normal vector as n̂ = (nt;ni) we have

δS[Ω;φ(x)] =

∫
∂Ω

∂L
(
φ̇(t, xj), ∂iφ(t, xj), φ(t, xj), t, xj

)
∂[φ̇(xj)]

δφ(t, xj)

 nt dd(area)

+

∫
∂Ω

d∑
k=1

∂L
(
φ̇(t, xj), ∂iφ(t, xj), φ(t, xj), t, xj

)
∂[∂kφ(t, xj)]

δφ(t, xj)

 nk dd(area)

+

∫
Ω

− d

dt

[
∂L (∂iφ(xj), φ(xj), xj)

∂[φ̇(xj)]

]
δφ(t, xj) ddxdt

+

∫
Ω

−
d∑

k=1

d

dxk

∂L
(
φ̇(t, xj), ∂iφ(t, xj), φ(t, xj), t, xj

)
∂[∂kφ(t, xj)]

 δφ(t, xj) ddxdt

+

∫
Ω

∂L
(
φ̇(t, xj), ∂iφ(t, xj), φ(t, xj), t, xj

)
∂φ(t, xj)

 δφ(t, xj) ddxdt

+ O
(
[δφ(xj)]2

)
. (2.55)

Note that I have kept things as explicit as possible, with an exhausting listing of all the
indices and arguments to all the functions. Note that I have written d/dxk to emphasize
the fact that after the integration by parts you have to use the chain rule to differentiate
the entire contents of the square brackets [. . . ] with respect to xk — both the implicit
and explicit occurrences of xk.

Now assume that δφ(x) = 0 on the boundary ∂Ω. This simplifies things so that one has

δS[Ω;φ(x)] =

∫
Ω

{
− d

dt

∂L
(
φ̇(t, xj), ∂iφ(t, xj), φ(t, xj), t, xj

)
∂[φ̇(xj)]


−

n∑
k=1

d

dxk

∂L
(
φ̇(t, xj, ∂iφ(t, xj), φ(t, xj), t, xj

)
∂[∂kφ(xj)]


+
∂L
(
φ̇(t, xj), ∂iφ(t, xj), φ(t, xj), t, xj

)
∂φ(xj)

}
δφ(xj) ddxdt

+O
(
[δφ(xj)]2

)
. (2.56)

Now apply the obvious multi-dimensional field-theoretic version of the fundamental
theorem of variational calculus — it is now easy to see that the relevant field theoretic
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version of the Euler–Lagrange equations are

d

dt

∂L
(
φ̇(t, xj), ∂iφ(t, xj), φ(t, xj), t, xj

)
∂[φ̇(t, xj)]


+

d∑
k=1

d

dxk

∂L
(
φ̇(t, xj), ∂iφ(t, xj), φ(t, xj), t, xj

)
∂[∂kφ(t, xj)]


=
∂L
(
φ̇(t, xj, ∂iφ(t, xj), φ(t, xj), t, xj

)
∂φ(t, xj)

. (2.57)

It is common to adopt the “Einstein summation convention” whereby there is an implicit
summation whenever indices are repeated (not indices inside arguments to functions, only
repeated indices attached to the functions themselves).

The only such index occurring above is k and using the “Einstein summation conven-
tion” one writes the field-theoretic version of the Euler–Lagrange equations as

d

dt

∂L
(
φ̇(t, xj), ∂iφ(t, xj), φ(t, xj), t, xj

)
∂[φ̇(t, xj)]


+

d

dxk

∂L
(
φ̇(t, xj), ∂iφ(t, xj), φ(t, xj), t, xj

)
∂[∂kφ(t, xj)]


=
∂L
(
φ̇(t, xj, ∂iφ(t, xj), φ(t, xj), t, xj

)
∂φ(t, xj)

. (2.58)

I have kept space and time separate so far. Let is now define (d + 1)-dimensional coor-
dinates xa = (t;xi), then we can simplify this a little and write (again with an implied
summation, now on the index c):

d

dxc

[
∂L
(
∂aφ(xb), φ(xb), xb

)
∂[∂cφ(xb)]

]
=
∂L
(
∂aφ(xb), φ(xb), xb

)
∂φ(xb)

. (2.59)

It is quite common to suppress a few indices and write

d

dxc

[
∂L (∂aφ(x), φ(x), x)

∂[∂cφ(xb)]

]
=
∂L (∂aφ(x), φ(x), x)

∂φ(x)
, (2.60)

with the understanding that you mean the full version as given above, and that you put
appropriate indices back on the x as necessary.

It is also quite common to get a little “fluffy” about the partial derivative notation and
to write:

∂

∂xc

[
∂L (∂aφ(x), φ(x), x)

∂[∂cφ(xb)]

]
=
∂L (∂aφ(x), φ(x), x)

∂φ(x)
, (2.61)
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with the understanding that the partial derivative acts on all occurrences of x, both
explicit and implicit.

Note: The generalization to non–Cartesian coordinates on a Euclidean space is straight-
forward — try it. ♦

Note: The formalism can be generalized even further by developing the theory of inte-
gration on a general curved manifold (as in general relativity for instance). The Euler–
Lagrange equations can then be suitably modified to deal with not only special relativity
but general relativity as well. ♦

Note: Suppose now that L(· · · ) depends on the field φ(xa), plus its first and second
derivatives. The Euler-Lagrange equations (for Cartesian coordinates in a Euclidean
space) are now (suppressing explicit arguments of the function L)

∂L

∂φ(xc)
− d

dxa

[
∂L

∂[∂aφ(xc)]

]
+

d2

dxa dxb

[
∂2L

∂[∂a∂bφ(xc)]

]
= 0. (2.62)

Here we have again adopted the “Einstein summation convention” and there are implied
sums on the indices a and b; sums

∑d+1
a=1 and

∑d+1
b=1 . Similarly it is quite common to write

∂L

∂φ(xc)
− ∂

∂xa

[
∂L

∂[∂aφ(xc)]

]
+

∂2

∂xa ∂xb

[
∂2L

∂[∂a∂bφ(xc)]

]
= 0, (2.63)

again with the understanding that the partial derivative acts on all occurrences of x, both
explicit and implicit. Similarly it is quite common to write

∂L

∂φ(x)
− ∂

∂xa

[
∂L

∂[∂aφ(x)]

]
+

∂2

∂xa ∂xb

[
∂2L

∂[∂a∂bφ(x)]

]
= 0. (2.64)

The generalization to even higher derivatives is obvious but notationally messy. ♦

2.7 Beltrami’s identity

One version of the Beltrami identity is this:

Theorem 3 (Beltrami’s identity I)
If the function x(t) satisfies the Euler–Lagrange equation derived from the integrand
L(ẋ(t), x(t), t), then

d

dt

[
L(ẋ(t), x(t), t)− ẋ(t)

∂L(ẋ(t), x(t), t)

∂ẋ(t)

]
=
∂L(ẋ(t), x(t), t)

∂t
. (2.65)
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Proof: To prove this we first need to use the chain rule to evaluate

d

dt
[L(ẋ(t), x(t), t)] =

∂L(ẋ(t), x(t), t)

∂x(t)
ẋ(t) +

∂L(ẋ(t), x(t), t)

∂ẋ(t)
ẍ(t) +

∂L(ẋ(t), x(t), t)

∂t
.

(2.66)
Similarly, again using the chain rule

d

dt

[
ẋ(t)

∂L(ẋ(t), x(t), t)

∂ẋ(t)

]
= ẍ(t)

∂L(ẋ(t), x(t), t)

∂ẋ(t)
+ ẋ(t)

d

dt

[
∂L(ẋ(t), x(t), t)

∂ẋ(t)

]
. (2.67)

But now, using the Euler–Lagrange equation

d

dt

[
ẋ(t)

∂L(ẋ(t), x(t), t)

∂ẋ(t)

]
=
∂L(ẋ(t), x(t), t)

∂ẋ(t)
ẍ(t) +

[
∂L(ẋ(t), x(t), t)

∂x(t)

]
ẋ(t). (2.68)

Combining these two equations there is a significant cancellation and we see

d

dt

[
L(ẋ(t), x(t), t)− ẋ(t)

∂L(ẋ(t), x(t), t)

∂ẋ(t)

]
=
∂L(ẋ(t), x(t), t)

∂t
, (2.69)

as claimed.

It is common to suppress the arguments of ẋ(t) and x(t) and write

d

dt

[
L(ẋ, x, t)− ẋ ∂L(ẋ, x, t)

∂ẋ

]
=
∂L(ẋ, x, t)

∂t
, (2.70)

or even
d

dt

[
L− ẋ ∂L

∂ẋ

]
=
∂L

∂t
. (2.71)

In particular, if the integrand L(ẋ(t), x(t)) has no explicit time dependence, and x(t)
satisfies the Euler–Lagrange equation, then we have a conservation law.

Theorem 4 (Beltrami’s identity II)
If L(ẋ(t), x(t)) has no explicit time dependence, and x(t) satisfies the Euler–Lagrange
equation, then

d

dt

[
L(ẋ(t), x(t))− ẋ(t)

∂L(ẋ(t), x(t))

∂ẋ(t)

]
= 0. (2.72)

It is again common to suppress the arguments of ẋ(t) and x(t) and write

d

dt

[
L(ẋ, x, t)− ẋ ∂L(ẋ, x, t)

∂ẋ

]
= 0, (2.73)

or even
d

dt

[
L− ẋ ∂L

∂ẋ

]
= 0. (2.74)

Once we get around to explicitly discussing mechanics, we will see that Beltrami’s
identity (which at this stage is a purely mathematical result of the calculus of variations),
will turn into a physical statement regarding the conservation of energy.
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2.8 Beltrami’s identity for fields defined over IRd+1

Let’s take the Euler–Lagrange equations for fields φ(t, x) defined over IRd+1, and suppress
a few of the indices for clarity

d

dt

∂L
(
φ̇, ∂φ, φ, t, x

)
∂φ̇

+
d

dxk

∂L
(
φ̇, ∂φ, φ, t, x

)
∂[∂kφ]

 =
∂L
(
φ̇, ∂φ, φ, t, x

)
∂φ

. (2.75)

Can this be used to come up with a field theoretic version of Beltrami’s identity? Most
definitely yes.

Theorem 5 (Beltrami’s identity III)
If the field φ(t, x) satisfies the Euler–Lagrange equation derived from the field-theory in-
tegrand L(φ̇(t), ∂φ, φ, t, x), then

d

dt

[
L(φ̇, ∂φ, φ, t, x)− φ̇ ∂L(φ̇, ∂φ, φ, t, x)

∂φ̇

]
=
∂L(φ̇, ∂φ, φ, t, x)

∂t
+

d

dxk

φ̇ ∂L
(
φ̇, ∂iφ, φ, t, x

)
∂[∂kφ]

 .
(2.76)

Proof: Apply the chain rule of differentiation and the Euler–Lagrange equations of mo-
tion. ♦

Now integrate over all space — we can use Gauss’ theorem to turn the divergence into a
surface integral — under the assumption that the field φ(t, x) has nice falloff behaviour at
infinity we can then neglect the surface integral. This yields a spatially integrated version
of the Beltrami identity.

Theorem 6 (Beltrami’s identity IV)
If the field φ(t, x) satisfies the Euler–Lagrange equation derived from the field-theory in-
tegrand L(φ̇(t), ∂φ, φ, t, x), and suitable falloff conditions at spatial infinity, then

d

dt

∫ {
L(φ̇, ∂φ, φ, t, x)− φ̇ ∂L(φ̇, ∂φ, φ, t, x)

∂φ̇

}
ddx

 =

∫
∂L(φ̇, ∂φ, φ, t, x)

∂t
ddx.

(2.77)

Finally, if there is no explicit time dependence in the integrand L we have the field-
theory conservation law :
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Theorem 7 (Beltrami’s identity V)
If the field φ(t, x) satisfies the Euler–Lagrange equation derived from the field-theory inte-
grand L(φ̇(t), ∂φ, φ, x), and suitable falloff conditions at spatial infinity, and if L contains
no explicit t dependence, then

d

dt

∫ {
L(φ̇, ∂φ, φ, x)− φ̇ ∂L(φ̇, ∂φ, φ, x)

∂φ̇

}
ddx

 = 0. (2.78)

2.9 Summary

The calculus of variations is a general tool that has applications in many fields; far be-
yond the straightforward application to Lagrangian mechanics and its generalizations, the
Euler–Lagrange equations are also relevant in classical field theories [such as say Maxwell’s
electromagnetism or Einstein’s general relativity] where they are often the easiest way of
obtaining the field equations (equations of motion), and also in quantum field theories
where (semi-)classical solutions satisfying the Euler–Lagrange equation often dominate
the physics.



Chapter 3

Lagrangian mechanics

3.1 Overview

Lagrangian mechanics now takes the ideas of the calculus of variations and specifically
applies it to mechanical problems:

• The parameter t is really to be thought of as physical time (typically Newtonian
time).

• The function x(t) is to be thought of as position as a function of time — though
eventually these will become “generalized position coordinates”.

• The integrand L(x(t), ẋ(t), t) is now called the “Lagrangian”.

• The Euler–Lagrange equation

d

dt

[
∂L (ẋ(t), x(t), t)

∂ẋ(t)

]
=
∂L (ẋ(t), x(t), t)

∂x(t)
(3.1)

can, using the chain rule, be rewritten as[
∂2L (ẋ(t), x(t), t)

[∂ẋ(t)]2

]
ẍ(t) +

[
∂2L (ẋ(t), x(t), t)

[∂ẋ(t)] [∂x(t)]

]
ẋ(t) +

[
∂2L (ẋ(t), x(t), t)

[∂ẋ(t)]∂t

]
=
∂L (ẋ(t), x(t), t)

∂x(t)
. (3.2)

This is now seen to involve at most second-order time derivatives of position, and
so it is a natural generalization of Newton’s second law m ẍ = F .

23
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As our first slightly nontrivial example, consider the special case

L (ẋ(t), x(t), t) =
1

2
m(x(t), t)

[
dx

dt

]2

− V (x(t), t). (3.3)

Then
∂L (ẋ(t), x(t), t)

∂ẋ(t)
= m(x(t), t)

dx

dt
(3.4)

and
∂L (ẋ(t), x(t))

∂x(t)
=

1

2

∂m(x(t), t)

∂x

[
dx

dt

]2

− ∂V (x(t), t)

∂x
. (3.5)

So the Euler–Lagrange equation becomes

d

dt

[
m(x(t), t)

dx

dt

]
=

1

2

∂m(x(t), t)

∂x

[
dx

dt

]2

− ∂V (x(t), t)

∂x
. (3.6)

This is just Newton’s second law, in the form dp/dt = F , for a time and position-
dependent mass m(x(t), t), a momentum p = mẋ, and an explicitly time-dependent po-
tential. This is more than just a curiosity:

• Time-dependent masses occur, for instance, in the rocket equation: as the rocket
burns it loses mass in the form of exhaust gasses.

• Position-dependent “effective” masses occur, for instance in condensed matter; specif-
ically for the effective masses of electrons and holes in electronic conduction bands.

• Time-dependent potentials are even easier to set up — just apply a time dependent
voltage to a particle that has an electric charge.

• The whole point of setting up Lagrangian mechanics is to have a straightforward
formalism capable of handling situations just a little more complicated than the
easy F = ma.

Applying the chain rule to the above we have:

m(x(t), t)
d2x

dt2
+
∂m(x(t), t)

∂x

[
dx

dt

]2

+

[
∂

∂t
m(x(t), t)

]
dx

dt
=

1

2

∂m(x(t), t)

∂x

[
dx

dt

]2

−∂V (x(t), t)

∂x
.

(3.7)
We now rearrange this to:

m(x(t), t)
d2x

dt2
= −∂V (x(t), t)

∂x
−
[
∂

∂t
m(x(t), t)

]
dx

dt
− 1

2

∂m(x(t), t)

∂x

[
dx

dt

]2

. (3.8)

So far, everything has been explicit. We can get a little sloppy and suppress some of the
arguments to obtain the simpler-looking result:

m ẍ = −∂V
∂x
− ∂m

∂t
ẋ− 1

2

∂m

∂x
ẋ2. (3.9)

This is enough to tell us that time and position dependent masses effectively mimic
velocity dependent pseudo-forces.
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3.2 Momentum

Given the above, it is useful to define the (generalized) momentum as:

p(ẋ(t), x(t), t) =
∂L (ẋ(t), x(t), t)

∂ẋ(t)
, (3.10)

since the Euler–Lagrange equation is then simply

d

dt
[p(ẋ(t), x(t), t)] =

∂L (ẋ(t), x(t), t)

∂x(t)
. (3.11)

This has a nice simple interpretation in terms of a “generalized Newton’s law”.

Many people will simply write

p(ẋ, x, t) =
∂L (ẋ, x, t)

∂ẋ
, (3.12)

and
d

dt
[p(ẋ, x, t)] =

∂L (ẋ, x, t)

∂x
, (3.13)

or even

p =
∂L

∂ẋ
, (3.14)

and
dp

dt
=
∂L

∂x
, (3.15)

expecting the reader (that is, you) to apply the relevant context and “fill in the blanks”.

3.3 Effective mass

Given the above, it is (sometimes) useful to define the (generalized) effective mass as:

m(ẋ(t), x(t), t) =
∂2L (x(t), ẋ(t), t)

[∂ẋ(t)]2
, (3.16)

since the Euler–Lagrange equation can then be written as

[m(ẋ(t), x(t), t)] ẍ(t) +

[
∂p (ẋ(t), x(t), t)

∂x(t)

]
ẋ(t) +

[
∂p (ẋ(t), x(t), t)

∂t

]
=
∂L (ẋ(t), x(t), t)

∂x(t)
.

(3.17)
This again has a nice simple interpretation in terms of a “generalized Newton’s law”. As
usual, do not be surprised if you see “simplified” formulae such as

[m(ẋ, x, t)] ẍ+

[
∂p (ẋ, x, t)

∂x

]
ẋ+

[
∂p (ẋ, x, t)

∂t

]
=
∂L (ẋ, x, t)

∂x
, (3.18)
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or even the somewhat ambiguous

m ẍ+

[
∂p

∂x

]
ẋ+

[
∂p

∂t

]
=
∂L

∂x
, (3.19)

or

m ẍ =
∂L

∂x
−
[
∂p

∂t

]
−
[
∂p

∂x

]
ẋ. (3.20)

Be prepared to “fill in the blanks” as necessary.

3.4 From Beltrami’s identity to the conservation of

energy

Now consider the special case Lagrangian (suppressing arguments to the functions ẋ(t)
and x(t) when no confusion can arise):

L =
1

2
mẋ2 − V (x). (3.21)

Beltrami’s identity can be written as

d

dt

[
∂L

∂ẋ
ẋ− L

]
= 0. (3.22)

Since for this particular Lagrangian

∂L

∂ẋ
= mẋ, (3.23)

we see [
∂L

∂ẋ
ẋ− L

]
= (mẋ) ẋ−

(
1

2
mẋ2 − V (x)

)
=

1

2
mẋ2 + V (x). (3.24)

That is, Beltrami’s identity applied to this particular Lagrangian implies

d

dt

[
1

2
mẋ2 + V (x)

]
= 0. (3.25)

That is, in this system the sum of kinetic energy 1
2
mẋ2 and potential energy V (x) is

conserved; the total energy is conserved.

E =
1

2
mẋ2 + V (x) = (constant). (3.26)

Of course, there are many generalizations of this phenomenon.
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3.4.1 Motion in IRn

For motion in IRn the Euler–Lagrange equations generalize to

d

dt

[
∂L

∂ẋi

]
=
∂L

∂xi
. (3.27)

Furthermore, the Beltrami identity now generalizes to

d

dt

[
n∑
i=1

∂L

∂ẋi
ẋi − L

]
= 0. (3.28)

Now specifically consider a Lagrangian of the form

L =
1

2

n∑
i=1

n∑
j=1

mij ẋ
iẋj − V (xi). (3.29)

Then the Euler–Lagrange equations become

d

dt

[
n∑
j=1

mij ẋ
j

]
=
∂V

∂xi
, (3.30)

and so[
n∑
i=1

∂L

∂ẋi
ẋi − L

]
=

{
n∑
i=1

(
n∑
j=1

mij ẋ
j

)
ẋi

}
−

{
1

2

n∑
i=1

n∑
j=1

mij ẋ
iẋj − V (xi)

}
(3.31)

=
1

2

n∑
i=1

n∑
j=1

mij ẋ
iẋj + V (xi). (3.32)

So the Beltrami identity becomes the conservation of energy in IRn:

d

dt

[
1

2

n∑
i=1

n∑
j=1

mij ẋ
iẋj + V (xi)

]
= 0. (3.33)

• If we choose n = 3 and mij = mδij then this would correspond to a single particle
in 3-dimensional space.

d

dt

[
1

2
m

3∑
i=1

(ẋi)2 + V (xi)

]
= 0. (3.34)

You can again interpret the quantity that is conserved via Beltrami’s identity as a
sum of kinetic energy and potential energy; a total energy.
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• If we choose n = 3N and choose mij to be the diagonal matrix

mij = diag {m1,m1,m1; m2,m2,m2; . . . ; mN ,mN ,mN} , (3.35)

then we are describing N particles, of masses m1,m2, . . . ,mN respectively, each of
which is moving in 3-dimensional space, interacting through some complicated po-
tential V (xi). You can again interpret the quantity that is conserved via Beltrami’s
identity as a sum of individual kinetic energies for the N particles plus a potential
energy. Indeed, let A ∈ {1, 2, . . . , N} label the particle, and let i ∈ {1, 2, 3} label
the three dimensions of space, then

d

dt

[
1

2

N∑
A=1

3∑
i=1

mA

(
ẋiA
)2

+ V (xiA)

]
= 0. (3.36)

• For a generic system moving in IRn the xi are referred to as “generalized coordi-
nates”. They may represent positions, angles, whatever...

• The general definition of energy for motion of a system in IRn is:

E =
n∑
i=1

∂L(ẋ, x)

∂ẋi
ẋi − L(ẋ, x). (3.37)

This purely mathematical definition passes all the sanity checks to correspond to
what physicists call the energy.

3.4.2 Fields defined over IRd+1

For fields φ(t, x) defined over IRd+1 we have seen that the Euler–Lagrange equations
generalize to

d

dt

[
∂L

∂[φ̇(x)]

]
+

d∑
i=1

d

dxi

[
∂L

∂[∂iφ(x)]

]
=

∂L

∂φ(x)
. (3.38)

Furthermore, as we have also already seen, under suitable conditions the Beltrami identity
now generalizes to

d

dt

[∫ {
∂L

∂φ̇(x)
φ̇(x) − L

}
ddx

]
= 0. (3.39)

Note that the
∑n

i=1 that is present for particle motion in IRn has now been replaced by an
integral over space,

∫
(. . . ) ddx, for fields defined over IRd+1. This motivates a definition

of (total) energy as

E =

∫ {
∂L

∂φ̇(x)
φ̇(x) − L

}
ddx, (3.40)
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and strongly suggests it would be a good idea to define an energy density as:

ρ =
∂L

∂φ̇(x)
φ̇(x) − L, (3.41)

so that

E =

∫
ρ ddx. (3.42)

Some further examples along these lines will be part of the assignments.



Chapter 4

Hamiltonian mechanics

Hamiltonian mechanics can be motivated on the basis of Lagrangian mechanics; but once
you have the motivation in place one can actually discard the original Lagrangian me-
chanics, and view Hamiltonian mechanics as an independent subject in its own right.

4.1 Hamilton’s equations

Start from the Lagrangian-based definition of momentum

p(ẋ, x, t) =
∂L(ẋ, x, t)

∂ẋ
. (4.1)

In very many interesting cases,1 but certainly not always, it proves possible to invert this
relationship to find ẋ as a function of p and x (and possibly t). Let us assume such a
inverse function exists and write it as

ẋ(p, x, t). (4.2)

Now construct the quantity

H(p, x, t) = p ẋ(p, x, t)− L(ẋ(p, x, t), x, t). (4.3)

Of course this definition is ultimately motivated by the quantity that we saw occurred in
Beltrami’s identity, but now we are not (yet) demanding the Euler–Lagrange equations,
and are instead defining the new quantity H(p, x, t) for arbitrary p and x.

Now compute

∂H(p, x, t)

∂p
= ẋ+ p

∂ẋ

∂p
− ∂L

∂ẋ

∂ẋ

∂p
= ẋ+ p

∂ẋ

∂p
− p∂ẋ

∂p
= ẋ, (4.4)

1For example, whenever L is quadratic in ẋ.

30
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where at this stage all I have used is the various definitions. In counterpoint, consider

∂H(p, x, t)

∂x
= p

∂ẋ

∂x
− ∂L

∂ẋ

∂ẋ

∂x
− ∂L

∂x
= p

∂ẋ

∂x
− p∂ẋ

∂x
− ∂L

∂x
= −∂L

∂x
= −dp

dt
, (4.5)

where at the last step I have used the Euler–Lagrange equations. Rearranging we see that
we have derived Hamilton’s equations:

Theorem 8 (Hamilton’s equations for Lagragian systems)
For a Lagrangian system define an object that we will call a (classical) Hamiltonian by

H(p, x, t) = p ẋ(p, x, t)− L(ẋ(p, x, t), x, t) (4.6)

Then, if the underlying system satisfies the Euler–Lagrange equations coming from the
Lagrangian L(ẋ, x, t), we have:

dx

dt
=
∂H(p, x, t)

∂p
;

dp

dt
= −∂H(p, x, t)

∂x
. (4.7)

These are known as Hamilton’s equations.

4.2 Hamiltonian systems

It is often useful to simply forget the underlying Lagrangian and take the Hamiltonian
formalism as primary. In this case we adopt a definition:

Definition 1 (Hamiltonian system)
A Hamiltonian system is described by two functions p(t) and x(t), called the momentum
and position, and characterized by a function H(p, x, t) called the (classical) Hamiltonian,
which governs the time evolution of the system via Hamilton’s equations

dx

dt
=
∂H(p, x, t)

∂p
;

dp

dt
= −∂H(p, x, t)

∂x
. (4.8)

In either case, with or without an underlying Lagrangian, we get yet another version of
Beltrami’s identity. Let us compute:

dH(p, q, t)

dt
=

∂H(p, x, t)

∂p
ṗ+

∂H(p, x, t)

∂x
ẋ+

∂H(p, x, t)

∂t
(4.9)

= −∂H(p, x, t)

∂p

∂H(p, x, t)

∂x
+
∂H(p, x, t)

∂x

∂H(p, x, t)

∂p
+
∂H(p, x, t)

∂t
(4.10)

=
∂H(p, x, t)

∂t
. (4.11)

This gives us:
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Theorem 9 (Hamiltonian version of the Beltrami identity)
For any system satisfying Hamilton’s equations we have

dH(p, x, t)

dt
=
∂H(p, x, t)

∂t
. (4.12)

In particular if the Hamiltonian has no explicit time dependence then

dH(p, x)

dt
= 0, (4.13)

so that
H(p, x) = E. (4.14)

is a constant of the motion called the energy.

4.3 Variational principle for Hamilton’s equations

Let us now construct a suitable variational principle for Hamilton’s equations. Consider
the functional

S[a, b, p(t), x(t)] =

∫ b

a

{p(t)ẋ(t)−H(p(t), x(t), t)} dt. (4.15)

Now ask that this functional be extremal. We compute

δS[a, b, p(t), x(t)] = S[a, b, p(t) + δp(t), x(t) + δx(t)]− S[a, b, p(t), x(t)]. (4.16)

Expand as a Taylor series, then

δS[a, b, p(t), x(t)] =

∫ b

a

{
δp(t)ẋ(t) + p(t)δẋ(t)

−∂pH(p(t), x(t), t) δp(t)− ∂qH(p(t), x(t), t) δq(t)

+O[(δx)2] +O[(δp)2]

}
dt. (4.17)

Integrate by parts:

δS[a, b, p(t), x(t)] = [p(t) δx(t)]ba +

∫ b

a

{
δp(t) [ẋ(t)− ∂pH(p(t), x(t), t)]

−δq(t) [ṗ(t) + ∂qH(p(t), x(t), t)]

+O[(δx)2] +O[(δp)2]

}
dt. (4.18)

As previously, impose boundary conditions

δx(a) = 0 = δx(b), (4.19)
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so that

δS[a, b, p(t), x(t)] =

∫ b

a

{
δp(t) [ẋ(t)− ∂pH(p(t), x(t), t)]− δq(t) [ṗ(t) + ∂qH(p(t), x(t), t)]

+O[(δx)2] +O[(δp)2]

}
dt. (4.20)

Then

δS

δp(t)
= [ẋ(t)− ∂pH(p(t), x(t), t)] ;

δS

δq(t)
= − [ṗ(t) + ∂qH(p(t), x(t), t)] . (4.21)

Consequently S[a, b, p(t), q(t)] is extremal if and only if

ẋ(t) = ∂pH(p(t), x(t), t); ṗ(t) = −∂qH(p(t), x(t), t). (4.22)

But these are just another form of Hamilton’s equations.

4.4 From Hamiltonian back to Lagrangian

Now suppose someone gives you a Hamiltonian H(p, x, t) as the primary definition of your
mechanical system. Can you work backwards to find an equivalent Lagrangian? Consider
the specific Hamilton equation

ẋ(t) = ∂pH(p(t), x(t), t). (4.23)

It is relatively common to be able to invert this equation2 to find

p(ẋ, x, t). (4.24)

Let us assume such an inversion exists. Then:

Theorem 10 (Lagrangian reconstruction theorem)

L(ẋ, x, t) = p(ẋ, x, t) ẋ(t)−H(p(ẋ, x, t), x(t), t) (4.25)

is a Lagrangian that gives you back the original Euler–Lagrange equation of motion.

Proof: Compute, using Hamilton’s equations

∂L

∂ẋ
= p(ẋ, x, t) +

∂p(ẋ, x, t)

∂ẋ
ẋ− ∂H

∂p

∂p(ẋ, x, t)

∂ẋ
= p(ẋ, x, t). (4.26)

2For example, whnever the Hamiltonian H is quadratic in the momentum p.
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Similarly, again using Hamilton’s equations

∂L

∂x
=
∂p(ẋ, x, t)

∂x
ẋ− ∂H

∂p

∂p(ẋ, x, t)

∂x
− ∂H

∂x
= −∂H

∂x
. (4.27)

Thus, using Hamilton’s equations yet again, we see

d

dt

[
∂L

∂ẋ

]
− ∂L

∂x
=

dp

dt
+
∂H

∂x
= 0. (4.28)

The net result is that we have now gone back in a big (internally self-consistent) circle,
from:

Lagrangian→ Hamiltonian→ Lagrangian.



Chapter 5

Noether’s theorem

We have already seen, in the various forms of the Beltrami identity, how a symmetry
of the Lagrangian (time-independence, where by this we mean independence from any
explicit time dependence), leads to the conservation of total energy. In 1918, Emmy
Noether extended and generalized this result to raise it to a general principle:

• Each independent symmetry of the Lagrangian (or Hamiltonian) leads to an inde-
pendent conservation law.

Specifically:

• Via Beltrami’s identity we have already seen that time translation invariance leads
to conservation of total energy.

• We shall soon see that space translation invariance leads to conservation of total
momentum.

• Similarly, symmetry under rotations leads to conservation of angular momentum.

• More radically, symmetry under gauge invariance leads to conservation of electric
charge.

• Approximate symmetry under isospin leads to approximate conservation rules in
beta-decay of nuclei.

• More generally, any “internal symmetry” leads so some sort of “conserved charge”.

35
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5.1 Conservation of momentum

First, let us consider the trivial case where L(ẋ) is independent of both x and t. Then
the Euler–Lagrange equations simplify quite drastically to

d

dt

[
∂L

∂ẋ

]
= 0. (5.1)

That is:
d

dt
[p(ẋ)] = 0. (5.2)

So momentum is conserved — of course this is the trivial situation where there are no
forces at play — this is just Newton’s first law in disguise.

A more interesting situation arises when we have a number N of particles, labelled by
indices A ∈ {1, 2, . . . , N}, moving in 3-dimensional space i ∈ {1, 2, 3}, and interacting
with each other through two-body pairwise potentials that depend only on the relative
separation of the 2 particles:

VAB(xiA − xiB). (5.3)

That is, consider the Lagrangian

L(ẋ, x) =

[
1

2

N∑
A=1

3∑
i=1

mA

(
ẋiA
)2 − 1

2

∑
A,B,A 6=B

VAB(xiA − xiB)

]
. (5.4)

Now this Lagrangian has a symmetry under a simultaneous shift of all the positions:

xiA → xiA + ai; ẋiA → ẋiA. (5.5)

Under this transformation δL = 0, so according to Emmy Noether, something should be
conserved. Let’s first use the low-brow approach: Consider the Euler–Lagrange equations

d

dt

[
∂L

∂ẋ

]
=
∂L

∂x
. (5.6)

In the current situation these become1

d

dt

[
mA ẋ

i
A

]
= −1

2

∑
B,B 6=A

[
∂VAB
∂xi

(xiA − xiB)− ∂VBA
∂xi

(xiB − xiA)

]
. (5.7)

Now add up over all the particles to find the time evolution of the total momentum:

∑
A

{
d

dt

[
mA ẋ

i
A

]}
= −1

2

∑
A

{ ∑
B,B 6=A

[
∂VAB
∂xi

(xiA − xiB)− ∂VBA
∂xi

(xiB − xiA)

]}
. (5.8)

1If you have any doubt about this step, try the simplest case of just 2 particles.
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That is

d

dt

[∑
A

mA ẋ
i
A

]
= −1

2

{ ∑
A,B,B 6=A

[
∂VAB
∂xi

(xiA − xiB)− ∂VBA
∂xi

(xiB − xiA)

]}
. (5.9)

The ∂iV terms cancel in pairs2 so we deduce:

d

dt

[∑
A

mA ẋ
i
A

]
= 0. (5.10)

That is, total momentum is conserved:

P i =
∑
A

mA ẋ
i
A = (constant). (5.11)

The key point in deriving this conservation law for the total momentum was that the
potential only depends on the position differences between the individual particles, so
that the potential (and also the Lagrangian) was invariant under an overall change in the
position of the centre of mass.

This conservation law applies for instance to our solar system — the sun, planets,
moons, asteroids, etc interact via individual 2-body potentials of Newtonian gravity:

VAB(xiA − xiB) =
GNewton mAmB

||xiA − xiB||
, (5.12)

and the result follows.

5.2 Conservation of angular momentum

Conservation of angular momentum is a deeper result that requires more information
about the 2-body potentials. Suppose the individual 2-body potentials are radially sym-
metric, so that the potential energy depends only on distance but not direction:

VAB(xiA − xiB)→ VAB(||xiA − xiB||) = VAB(rAB). (5.13)

In this situation both the individual 2-body potentials and the total potential

V (x) =
1

2

∑
A,B,A 6=B

VAB(||xiA − xiB||) =
1

2

∑
A,B,A 6=B

VAB(rAB) (5.14)

are invariant under rotation around any arbitrarily chosen axis.

2If you have any doubt about this step, try the simplest case of just 2 particles.
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Via Noether’s theorem this will led to a conserved quantity of some sort.

Use the low-brow approach of explicit computation. Start with the Lagrangian

L(ẋ, x) =

[
1

2

N∑
A=1

3∑
i=1

mA

(
ẋiA
)2 − 1

2

∑
A,B,A 6=B

VAB(||xiA − xiB||)

]
. (5.15)

Note that
∂ rAB
∂xiB

= − xiA − xiB
||xiA − xiB||

, (5.16)

which is minus the unit vector from particle B to particle A. Now compute the Euler–
Lagrange equations, noting that:

∂VAB
∂xiB

= −dVAB
dr

xiA − xiB
||xiA − xiB||

. (5.17)

Therefore3

d

dt

[
mA ẋ

i
A

]
= −

∑
B,B 6=A

[
dVAB

dr

xiA − xiB
||xiA − xiB||

]
. (5.18)

Now take the cross product with xiA, we see

~xA ×
d

dt

[
mA ~̇xA

]
= −~xA ×

∑
B,B 6=A

[
dVAB

dr

~xA − ~xB
||~xA − ~xB||

]
, (5.19)

whence, using the properties of the vector cross product

d

dt

[
mA ~xA × ~̇xA

]
= −

∑
B,B 6=A

[
dVAB

dr

~xA × ~xB
rAB

]
. (5.20)

Now add over all the particles A, we see

d

dt

[∑
A

mA ~xA × ~̇xA

]
= −

∑
A,B,B 6=A

[
dVAB

dr

~xA × ~xB
rAB

]
= 0, (5.21)

where at the last stage we have used the fact that the sum is symmetric in the labels AB
while the cross product is antisymmetric in AB. That is:

d

dt

[∑
A

mA ~xA × ~̇xA

]
= 0. (5.22)

So the total angular momentum is conserved:

~J =
∑
A

mA ~xA × ~̇xA = (constant). (5.23)

3If you have any doubt about this step, try the simplest case of just 2 particles.
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Note that the key step in deriving this result is that the individual 2-body potentials
are rotationally invariant, depending only on the distance rAB between the two particles
labelled A and B. In particular, this means that the total angular momentum of the
solar system is conserved, at least as long as we are happy to use Newtonian gravity as a
good approximation, and as long as there are no significant external forces due to nearby
marauding stars (nemesis hypothesis) or black holes passing by...

5.3 Summary

We have now see three separate conservation laws, for total energy, total momentum,
and total angular momentum, and have seen how these are related to time translation
invariance, space translation invariance, and rotational invariance respectively. This is
part of a general pattern to do with Noether’s theorem:

• Each independent symmetry of the Lagrangian (or Hamiltonian) leads to an inde-
pendent conservation law.

We will not discuss this more fully in these notes, but will ask for some appropriate
computations in the assignments.



Chapter 6

Coda

At this stage let us summarize what we have done:

• We have developed a concise introduction to the mathematical formalism known as
the “calculus of variations”.

• We have then used this “calculus of variations” to address problems of advanced
classical mechanics:

– We have seen how to describe classical mechanics in terms of a Lagrangian
L(ẋ, x, t).

– We have seen how to describe classical mechanics in terms of a Hamiltonian
H(p, x, t).

– We have seen how to convert back and forth from the Lagrangian to the Hamil-
tonian formalism.

– We have seen several examples of how to relate symmetries to conservation
laws.

• For a little more background, the appendix gives you a feel for some of the deeper
mathematics associated with this class of problem.

• See also the list of books and relevant websites in the bibliography.

40



Appendix A

Hilbert’s 19th, 20th, and 23rd
problems

In the year 1900 Professor David Hilbert gave a key-note address at the International
Congress of Mathematicians which was that year held in Paris. Hilbert’s address set
out a list of 23 problems that he thought were important — and much of 20th century
mathematics was devoted to solving about half of these problems. Dr. Maby Winton
Newson translated this address into English with the author’s permission for the “Bulletin
of the American Mathematical Society” 8 (1902), 437-479. A reprint of the address
appears in “Mathematical Developments Arising from Hilbert Problems”, edited by Felix
Brouder, American Mathematical Society, 1976. Various versions are also available on
the internet; go to Google and search on “Hilbert problems”. Three of the 23 problems
directly involve the calculus of variations, the 19th, 20th, and 23rd problems. Excerpts
from the lecture are presented below. Note especially that Hilbert’s 23rd problem was
somewhat more open-ended than the others ...

41
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A.1 Introduction

Mathematical Problems

Lecture delivered before the International Congress of Mathematicians
Paris 1900

By Professor David Hilbert

... lacuna ...

It is difficult and often impossible to judge the value of a problem correctly in advance;
for the final award depends upon the gain which science obtains from the problem. Nev-
ertheless we can ask whether there are general criteria which mark a good mathematical
problem. An old French mathematician said: “A mathematical theory is not to be con-
sidered complete until you have made it so clear that you can explain it to the first man
whom you meet on the street.” This clearness and ease of comprehension, here insisted
on for a mathematical theory, I should still more demand for a mathematical problem if
it is to be perfect; for what is clear and easily comprehended attracts, the complicated
repels us.

Moreover a mathematical problem should be difficult in order to entice us, yet not
completely inaccessible, lest it mock at our efforts. It should be to us a guide post on the
mazy paths to hidden truths, and ultimately a reminder of our pleasure in the successful
solution.

... lacuna ...
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A.2 The 19th problem

19. Are the solutions of regular problems in the calculus of variations always
necessarily analytic?

One of the most remarkable facts in the elements of the theory of analytic functions
appears to me to be this: That there exist partial differential equations whose integrals are
all of necessity analytic functions of the independent variables, that is, in short, equations
susceptible of none but analytic solutions. The best known partial differential equations
of this kind are the potential equation

∂2f

∂x2
+
∂2f

∂y2
= 0

and certain linear differential equations investigated by Picard;46 also the equation

∂2f

∂x2
+
∂2f

∂y2
= ef ,

the partial differential equation of minimal surfaces, and others. Most of these partial
differential equations have the common characteristic of being the Lagrangian differential
equations of certain problems of variation, viz., of such problems of variation∫ ∫

F (p, q, z;x, y) dx dy = minimum

[
p =

∂z

∂x
, q =

∂z

∂y

]
,

as satisfy, for all values of the arguments which fall within the range of discussion, the
inequality

∂2F

∂p2
·
(
∂2F

∂p ∂q

)2

> 0,

F itself being an analytic function. We shall call this sort of problem a regular variation
problem. It is chiefly the regular variation problems that play a role in geometry, in
mechanics, and in mathematical physics; and the question naturally arises, whether all
solutions of regular variation problems must necessarily be analytic functions. In other
words, does every Lagrangian partial differential equation of a regular variation problem
have the property of admitting analytic integrals exclusively? And is this the case even
when the function is constrained to assume, as, e.g., in Dirichlet’s problem on the potential
function, boundary values which are continuous, but not analytic?

I may add that there exist surfaces of constant negative gaussian curvature which are
representable by functions that are continuous and possess indeed all the derivatives, and
yet are not analytic; while on the other hand it is probable that every surface whose
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gaussian curvature is constant and positive is necessarily an analytic surface. And we
know that the surfaces of positive constant curvature are most closely related to this
regular variation problem: To pass through a closed curve in space a surface of minimal
area which shall enclose, in connection with a fixed surface through the same closed curve,
a volume of given magnitude.
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A.3 The 20th problem

20. The general problem of boundary values

An important problem closely connected with the foregoing is the question concerning
the existence of solutions of partial differential equations when the values on the boundary
of the region are prescribed. This problem is solved in the main by the keen methods of H.
A. Schwarz, C. Neumann, and Poincare for the differential equation of the potential. These
methods, however, seem to be generally not capable of direct extension to the case where
along the boundary there are prescribed either the differential coefficients or any relations
between these and the values of the function. Nor can they be extended immediately to
the case where the inquiry is not for potential surfaces but, say, for surfaces of least area,
or surfaces of constant positive gaussian curvature, which are to pass through a prescribed
twisted curve or to stretch over a given ring surface. It is my conviction that it will be
possible to prove these existence theorems by means of a general principle whose nature
is indicated by Dirichlet’s principle. This general principle will then perhaps enable us
to approach the question: Has not every regular variation problem a solution, provided
certain assumptions regarding the given boundary conditions are satisfied (say that the
functions concerned in these boundary conditions are continuous and have in sections one
or more derivatives), and provided also if need be that the notion of a solution shall be
suitably extended? 47

... lacuna ...
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A.4 The 23rd problem

23. Further development of the methods of the calculus of variations

So far, I have generally mentioned problems as definite and special as possible, in the
opinion that it is just such definite and special problems that attract us the most and from
which the most lasting influence is often exerted upon science. Nevertheless, I should like
to close with a general problem, namely with the indication of a branch of mathematics
repeatedly mentioned in this lecture—which, in spite of the considerable advancement
lately given it by Weierstrass, does not receive the general appreciation which, in my
opinion, is its due—I mean the calculus of variations.50

The lack of interest in this is perhaps due in part to the need of reliable modern text
books. So much the more praiseworthy is it that A. Kneser in a very recently published
work has treated the calculus of variations from the modern points of view and with
regard to the modern demand for rigor.51

The calculus of variations is, in the widest sense, the theory of the variation of functions,
and as such appears as a necessary extension of the differential and integral calculus. In
this sense, Poincare’s investigations on the problem of three bodies, for example, form a
chapter in the calculus of variations, in so far as Poincare derives from known orbits by
the principle of variation new orbits of similar character.

I add here a short justification of the general remarks upon the calculus of variations
made at the beginning of my lecture.

The simplest problem in the calculus of variations proper is known to consist in finding
a function y of a variable x such that the definite integral

J =

∫ b

a

F (yx, y;x)dx,

[
yx =

dy

dx

]
assumes a minimum value as compared with the values it takes when y is replaced by
other functions of x with the same initial and final values.

The vanishing of the first variation in the usual sense

δJ = 0

gives for the desired function y the well-known differential equation

dFyx

dx
− Fy = 0,

[
Fyx =

∂F

∂yx
, Fy =

∂F

∂y

]
(1)

In order to investigate more closely the necessary and sufficient criteria for the occur-
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rence of the required minimum, we consider the integral

J∗ =

∫ b

a

{F (yx, y;x) + (yx − p)Fp} dx,

[
F = F (p, y;x), Fp =

∂F (p, y;x)

∂p

]
.

Now we inquire how p is to be chosen as function of x, y in order that the value of
this integral J∗ shall be independent of the path of integration, i.e., of the choice of the
function y of the variable x. The integral J∗ has the form

J∗ =

∫ b

a

{A yx −B} dx,

where A and B do not contain yx, and the vanishing of the first variation

δJ∗ = 0

in the sense which the new question requires gives the equation

∂A

∂x
+
∂B

∂y
= 0,

i.e., we obtain for the function p of the two variables x, y the partial differential equation
of the first order

∂Fp
∂x

+
∂(pFp − F )

∂y
= 0. (1∗)

The ordinary differential equation of the second order (1) and the partial differential
equation (1*) stand in the closest relation to each other. This relation becomes immedi-
ately clear to us by the following simple transformation

δJ∗ =

∫ b

a

{Fy δy + Fp δp+ (δyx − δp)Fp + (yx − p) δFp} dx

=

∫ b

a

{Fy δy + δyx Fp + (yx − p) δFp} dx

= δJ +

∫ b

a

(yx − p) δFp dx

We derive from this, namely, the following facts: If we construct any simple family of
integral curves of the ordinary differential equation (l) of the second order and then form
an ordinary differential equation of the first order

yx = p(x, y) (2)
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which also admits these integral curves as solutions, then the function p(x, y) is always
an integral of the partial differential equation (1*) of the first order; and conversely, if
p(x, y) denotes any solution of the partial differential equation (1*) of the first order, all
the non-singular integrals of the ordinary differential equation (2) of the first order are at
the same time integrals of the differential equation (l) of the second order, or in short if
yx = p(x, y) is an integral equation of the first order of the differential equation (l) of the
second order, p(x, y) represents an integral of the partial differential equation (1*) and
conversely; the integral curves of the ordinary differential equation of the second order
are therefore, at the same time, the characteristics of the partial differential equation (1*)
of the first order.

In the present case we may find the same result by means of a simple calculation; for
this gives us the differential equations (1) and (1*) in question in the form

yxxFyxyx + yxFyxy + Fyxx − Fy = 0, (1)

(px + ppx)Fpp + pFpy + Fpx − Fy = 0, (1∗)

where the lower indices indicate the partial derivatives with respect to x, y, p, yx. The
correctness of the affirmed relation is clear from this.

The close relation derived before and just proved between the ordinary differential
equation (1) of the second order and the partial differential equation (1*) of the first
order, is, as it seems to me, of fundamental significance for the calculus of variations. For,
from the fact that the integral J∗is independent of the path of integration it follows that∫ b

a

{F (p) + (yx − p)Fp(p)} dx =

∫ b

a

F (ȳx) dx, (3)

if we think of the left hand integral as taken along any path y and the right hand integral
along an integral curve of the differential equation

ȳx = p(x, ȳ).

With the help of equation (3) we arrive at Weierstrass’s formula∫ b

a

F (yx) dx−
∫ b

a

F (ȳx) dx =

∫ b

a

E(yx, p) dx, (4)

where E designates Weierstrass’s expression, depending upon yx, p, y, x,

E(yx, p) = F (yx)− F (p)− (yx − p)Fp(p),

Since, therefore, the solution depends only on finding an integral p(x, y) which is single
valued and continuous in a certain neighborhood of the integral curve , which we are
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considering, the developments just indicated lead immediately—without the introduction
of the second variation, but only by the application of the polar process to the differential
equation (1)—to the expression of Jacobi’s condition and to the answer to the question:
How far this condition of Jacobi’s in conjunction with Weierstrass’s condition E > 0 is
necessary and sufficient for the occurrence of a minimum.

The developments indicated may be transferred without necessitating further calcula-
tion to the case of two or more required functions, and also to the case of a double or a
multiple integral. So, for example, in the case of a double integral

J =

∫
F (zx, zy, z;x, y)dω,

[
zx =

∂z

∂x
, zy =

∂z

∂y

]
to be extended over a given region ω, the vanishing of the first variation (to be understood
in the usual sense)

δJ = 0

gives the well-known differential equation of the second order

dFzx

dx
+

dFzy

dy
− Fz = 0,

[
Fzx =

∂F

∂zx
, Fzy =

∂F

∂zy
, Fz =

∂F

∂z

]
(I)

for the required function z of x and y.

On the other hand we consider the integral

J∗ =

∫
{F + (zx − p)Fp + (zy − q)Fq} dω

[
F = F (p, q, z;x, y), Fp =

∂F

∂p
, Fq =

∂F

∂q

]
and inquire, how p and q are to be taken as functions of x, y and z in order that the value
of this integral may be independent of the choice of the surface passing through the given
closed twisted curve, i.e., of the choice of the function z of the variables x and y.

The integral J* has the form

J∗ =

∫
{Azx +Bzy − C} dω

and the vanishing of the first variation

δJ∗ = 0

in the sense which the new formulation of the question demands, gives the equation

∂A

∂x
+
∂B

∂y
+
∂C

∂z
= 0,
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i.e., we find for the functions p and q of the three variables x, y and z the differential
equation of the first order

∂Fp
∂x

+
∂Fq
∂y

+
∂(pFp + qFq − F )

∂z
= 0. (I)

If we add to this differential equation the partial differential equation

py + qpx = qx + pqz (I∗)

resulting from the equations
zx = p(x, y, z),

zy = q(x, y, z)

the partial differential equation (I) for the function z of the two variables x and y and the
simultaneous system of the two partial differential equations of the first order (I*) for the
two functions p and q of the three variables x, y, and z stand toward one another in a
relation exactly analogous to that in which the differential equations (1) and (1*) stood
in the case of the simple integral.

It follows from the fact that the integral J∗ is independent of the choice of the surface
of integration z that∫

{F (p, q) + (zx − p)Fp(p, q) + (zy − q)Fq(p, q)} dω =

∫
F (z̄z, z̄y) dω, (III)

if we think of the right hand integral as taken over z̄ an integral surface of the partial
differential equations

z̄x = p(x, y, z̄), z̄y = q(x, y, z̄);

and with the help of this formula we arrive at once at the formula∫
F (zx, zy)dω −

∫
F (z̄x, z̄y)dω =

∫
E(zx, zy, p, q)dω,

[E(zx, zy, p, q) = F (zx, zy)− F (p, q)− (zx − p)Fp(p, q)− (zy − q)Fq(p, q)] , (IV )

which plays the same role for the variation of double integrals as the previously given
formula (4) for simple integrals. With the help of this formula we can now answer the
question how far Jacobi’s condition in conjunction with Weierstrass’s condition E > 0 is
necessary and sufficient for the occurrence of a minimum.

Connected with these developments is the modified form in which A. Kneser,52 beginning
from other points of view, has presented Weierstrass’s theory. While Weierstrass employed
integral curves of equation (1) which pass through a fixed point in order to derive sufficient
conditions for the extreme values, Kneser on the other hand makes use of any simple family
of such curves and constructs for every such family a solution, characteristic for that
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family, of that partial differential equation which is to be considered as a generalization
of the Jacobi-Hamilton equation.

— # # # —

The problems mentioned are merely samples of problems, yet they will suffice to show
how rich, how manifold and how extensive the mathematical science of today is, and
the question is urged upon us whether mathematics is doomed to the fate of those other
sciences that have split up into separate branches, whose representatives scarcely under-
stand one another and whose connection becomes ever more loose. I do not believe this
nor wish it. Mathematical science is in my opinion an indivisible whole, an organism
whose vitality is conditioned upon the connection of its parts. For with all the variety
of mathematical knowledge, we are still clearly conscious of the similarity of the logical
devices, the relationship of the ideas in mathematics as a whole and the numerous analo-
gies in its different departments. We also notice that, the farther a mathematical theory
is developed, the more harmoniously and uniformly does its construction proceed, and
unsuspected relations are disclosed between hitherto separate branches of the science. So
it happens that, with the extension of mathematics, its organic character is not lost but
only manifests itself the more clearly.

But, we ask, with the extension of mathematical knowledge will it not finally become
impossible for the single investigator to embrace all departments of this knowledge? In
answer let me point out how thoroughly it is ingrained in mathematical science that every
real advance goes hand in hand with the invention of sharper tools and simpler methods
which at the same time assist in understanding earlier theories and cast aside older more
complicated developments. It is therefore possible for the individual investigator, when
he makes these sharper tools and simpler methods his own, to find his way more easily in
the various branches of mathematics than is possible in any other science.

The organic unity of mathematics is inherent in the nature of this science, for math-
ematics is the foundation of all exact knowledge of natural phenomena. That it may
completely fulfill this high mission, may the new century bring it gifted masters and
many zealous and enthusiastic disciples!

— # # # —
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A.7 Notes

Note: Problems 19 and 20 are now commonly agreed to be “solved”. ♦

Note: Problem 23 is sufficiently open-ended that there is no general agreement as to
whether or it can ever be “solved”. ♦

Exercise: Do a literature survey to judge the extent to which these problems have
actually been “solved”. If you find something new and interesting, publish. ♦



Appendix B

Bibliography

B.1 Some books on Lagrangian and Hamiltonian

mechanics:

[Often with a lot of useful background information.]

• Mechanics
LD Landau and EM Lifshitz
[Course in theoretical physics, volume 1, 3rd edition]
(Butterworth–Heinenann, Oxford, 2000)

• Classical Mechanics
H Goldstein
(Addison Wesley, 1959)

• Classical Mechanics (3rd edition)
H Goldstein, CP Poole, and JL Safko
(Addison Wesley, 2001)

• Classical Mechanics
JR Taylor
(University Science Books, 2005)

• Classical mechanics
RD Gregory
(Cambridge University Press, 2006)

• A History of the Calculus of Variations from the 17th through the 19th Century.
Goldstine, H. H.
(Springer-Verlag, New York, 1980)

54



Math 321/322/323: Lagrangian and Hamiltonian mechanics 55

• The variational principles of mechanics
C Lanczos
(U Toronto Press, 1970)



Math 321/322/323: Lagrangian and Hamiltonian mechanics 56

B.2 Some websites on Lagrangian and Hamiltonian

mechanics:

[Often with a lot of useful background information.]

[On this subject Wikipedia is reasonably reliable.]

• http://en.wikipedia.org/wiki/Lagrange

• http://en.wikipedia.org/wiki/William Rowan Hamilton

• http://en.wikipedia.org/wiki/Pierre de Fermat

• http://en.wikipedia.org/wiki/Pierre Louis Maupertuis

• http://en.wikipedia.org/wiki/Lagrangian mechanics

• http://en.wikipedia.org/wiki/Hamiltonian mechanics

• http://en.wikipedia.org/wiki/Lagrangian

• http://en.wikipedia.org/wiki/Fermat’s principle

• http://en.wikipedia.org/wiki/Vis viva

• http://en.wikipedia.org/wiki/Euler–Lagrange equation

• http://en.wikipedia.org/wiki/Fundamental lemma of calculus of variations

• http://en.wikipedia.org/wiki/Euler

• http://en.wikipedia.org/wiki/Noether’s theorem

• http://arxiv.org/pdf/physics/0503066
(English translation of Emmy Noether’s original article.)

• http://en.wikipedia.org/wiki/Hilbert’s problems

— # # # —


	Introduction to Lagrangian and Hamiltonian mechanics
	General background
	Plan of this module

	Elements of the calculus of variations
	Euler--Lagrange equation
	Functional derivative
	Notes
	Euler--Lagrange equations for a function defined in IRn
	Euler--Lagrange equations for higher-derivatives
	Euler--Lagrange equations for a field defined over IRd+1
	Beltrami's identity
	Beltrami's identity for fields defined over IRd+1
	Summary

	Lagrangian mechanics
	Overview
	Momentum
	Effective mass
	From Beltrami's identity to the conservation of energy
	Motion in IRn
	Fields defined over IRd+1


	Hamiltonian mechanics
	Hamilton's equations
	Hamiltonian systems
	Variational principle for Hamilton's equations
	From Hamiltonian back to Lagrangian

	Noether's theorem
	Conservation of momentum
	Conservation of angular momentum
	Summary

	Coda
	Hilbert's 19th, 20th, and 23rd problems
	Introduction
	The 19th problem
	The 20th problem
	The 23rd problem
	Original references
	Additional references
	Notes

	Bibliography
	Some books on Lagrangian and Hamiltonian mechanics
	Some websites on Lagrangian and Hamiltonian mechanics


