School Of Mathematics, Statistics, and Operations Research
Te Kura Mātai Tatauranga, Rangahau Pūnaha

MATH 321/322/323 \quad Applied Mathematics \quad T1 and T2 2013

Module on Mechanix: Assignment 3

- This third assignment will deal with the Hamiltonian description of classical mechanics.
- Read the chapters on the notes that deal with the Hamiltonian formulation.
- Applied math level proofs are good enough - I do not demand absolute analytical rigour, but do want to see enough information so that any interested reader could fill in any missing steps.
- If you find any typos in the notes or assignment, please let me know.

1. Consider a Hamiltonian function of the form

$$
H(p, x)=\frac{p^{2}}{2 m}+V(x)
$$

(a) Write down Hamilton's equations.

Physically interpret p, m, V for this particular system.
(b) Using Hamilton's equations, solve for p as a function of m and \dot{x}.
(c) Rewrite the quantity

$$
T=\frac{p^{2}}{2 m}
$$

as a function of m and \dot{x}, and hence provide a physical interpretation for this quantity.
2. Repeat the above question with a Hamiltonian of the form

$$
H(\vec{p}, \vec{x})=\frac{|\vec{p}|^{2}}{2 m}+V(\vec{x}),
$$

where $\vec{p}(t)$ and $\vec{x}(t)$ are now vector functions in 3-dimensional space. (Given what you have already done, this should be very easy.)
3. Now consider a Hamiltonian function of the form

$$
H(\vec{p}, \vec{x})=\frac{|\vec{p}-q \vec{A}(\vec{x})|^{2}}{2 m}+q V(\vec{x}) .
$$

(This will be a little trickier than what you have seen previously, but patience, things will drop out nicely in the end.)
(a) Write down Hamilton's equations, (all of them).
[Remember to use the chain rule.]
[Write the result as simply as possible as 2 vector equations.]
(b) Use one of Hamilton's (vector) equations to explicitly solve for the momentum \vec{p} as a function of m, q, \vec{x}, and $\vec{A}(\vec{x})$.
(c) Substitute thus result for the momentum \vec{p} into the other (vector) Hamilton equation.
You should find an explicit result for the second derivative $\overrightarrow{\vec{x}}(t)$ of position $\vec{x}(t)$ as a function of $m, q, \overrightarrow{\vec{x}}$, and various partial derivatives of V and \vec{A}.
Rearrange to make these results as simple as possible, but no simpler...
[Remember to use the chain rule.]
[Hint: If you are on the right track you should see various components of the vector $\vec{B}=\operatorname{curl} \vec{A}=\nabla \times \vec{A}$ showing up at various stages of the calculation.]
(d) Physically interpret the resulting ordinary differential equation.
i. Specifically, the ODE for $\overrightarrow{\ddot{x}}$ has a special name. What is it called?
ii. Specifically, the quantity $\vec{B}=\nabla \times \vec{A}$ has a special name. What is it called?
iii. Specifically, physically interpret the quantities $q, V(\vec{x})$, and $\vec{A}(\vec{x})$ for this particular system. They all have special names.
4. Now consider a Hamiltonian of the form

$$
H(\vec{p}, \vec{x})=\sqrt{m_{0}^{2} c^{4}+|\vec{p}|^{2} c^{2}}+V(\vec{x}) .
$$

(You should find this question "straightforward", I have broken things down into simple little steps.)
(a) Write down Hamilton's equations for this particular Hamiltonian. Solve for \vec{p} as a function of $\overrightarrow{\vec{x}}$, (and c and m_{0}).
Provide a physical interpretation.
[You may have to think a little when inverting $\overrightarrow{\dot{a}}(\vec{p})$ to find $\vec{p}(\overrightarrow{\dot{x}})$. Hint: When in doubt, use symmetry.]
(b) Take the limit $|\vec{p}| \ll m_{0} c$ in the Hamilton equations you have just derived.
What do you get? Physically interpret your result.
(c) Take the limit $|\vec{p}| \ll m_{0} c$ directly in the Hamiltonian that I provided above. Be certain to keep the first non-trivial term in $|\vec{p}|$. What do you get? Physically interpret your result.
(d) Again take the limit $|\vec{p}| \ll m_{0} c$ directly in the Hamiltonian that I provided above, but now keep the first two nontrivial terms in \vec{p}. What do you get? Physically interpret your result.
(e) Now take the limit $m_{0} \rightarrow 0$ in the Hamiltonian equations of motion you derived in the first step above.
Do the equations of motion have a sensible limit?
Physically interpret your result.
(f) Now take the limit $m_{0} \rightarrow 0$ directly in the Hamiltonian that I provided above.
Does the Hamiltonian have a sensible limit?
Physically interpret your result.

- \# \# \# -

