MATH 321/322/323 APPLIED MATHEMATICS T1 and T2
--

Module on Mechanix: Assignment 3

- This third assignment will deal with the Hamiltonian description of classical mechanics.
- Read the chapters on the notes that deal with the Hamiltonian formulation.
- Applied math level proofs are good enough I do not demand absolute analytical rigour, but do want to see enough information so that any interested reader could fill in any missing steps.
- If you find any typos in the notes or assignment, please let me know.
- 1. Consider a Hamiltonian function of the form

$$H(p,x) = \frac{p^2}{2m} + V(x).$$

- (a) Write down Hamilton's equations. Physically interpret p, m, V for this particular system.
- (b) Using Hamilton's equations, solve for p as a function of m and \dot{x} .
- (c) Rewrite the quantity

$$T = \frac{p^2}{2m}$$

as a function of m and \dot{x} , and hence provide a physical interpretation for this quantity.

2. Repeat the above question with a Hamiltonian of the form

$$H(\vec{p}, \vec{x}) = \frac{|\vec{p}|^2}{2m} + V(\vec{x}),$$

where $\vec{p}(t)$ and $\vec{x}(t)$ are now vector functions in 3-dimensional space. (Given what you have already done, this should be very easy.) 3. Now consider a Hamiltonian function of the form

$$H(\vec{p}, \vec{x}) = \frac{|\vec{p} - q \ \vec{A}(\vec{x})|^2}{2m} + q \ V(\vec{x}).$$

(This will be a little trickier than what you have seen previously, but patience, things will drop out nicely in the end.)

- (a) Write down Hamilton's equations, (all of them).[Remember to use the chain rule.][Write the result as simply as possible as 2 vector equations.]
- (b) Use one of Hamilton's (vector) equations to explicitly solve for the momentum \vec{p} as a function of m, q, \vec{x} , and $\vec{A}(\vec{x})$.
- (c) Substitute thus result for the momentum \vec{p} into the *other* (vector) Hamilton equation.

You should find an explicit result for the second derivative $\vec{x}(t)$ of position $\vec{x}(t)$ as a function of m, q, \vec{x} , and various partial derivatives of V and \vec{A} .

Rearrange to make these results as simple as possible, but no simpler...

[Remember to use the chain rule.]

[Hint: If you are on the right track you should see various components of the vector $\vec{B} = \text{curl } \vec{A} = \nabla \times \vec{A}$ showing up at various stages of the calculation.]

- (d) Physically interpret the resulting ordinary differential equation.
 - i. Specifically, the ODE for \vec{x} has a special name. What is it called?
 - ii. Specifically, the quantity $\vec{B} = \nabla \times \vec{A}$ has a special name. What is it called?
 - iii. Specifically, physically interpret the quantities q, $V(\vec{x})$, and $\vec{A}(\vec{x})$ for this particular system. They all have special names.
- 4. Now consider a Hamiltonian of the form

$$H(\vec{p}, \vec{x}) = \sqrt{m_0^2 c^4 + |\vec{p}|^2 c^2 + V(\vec{x})}.$$

(You should find this question "straightforward", I have broken things down into simple little steps.)

(a) Write down Hamilton's equations for this particular Hamiltonian. Solve for \vec{p} as a function of \vec{x} , (and c and m_0). Provide a physical interpretation.

[You may have to think a little when inverting $\vec{a}(\vec{p})$ to find $\vec{p}(\vec{x})$. Hint: When in doubt, use symmetry.]

(b) Take the limit $|\vec{p}| \ll m_0 c$ in the Hamilton equations you have just derived.

What do you get? Physically interpret your result.

- (c) Take the limit |p| ≪ m₀c directly in the Hamiltonian that I provided above. Be certain to keep the first non-trivial term in |p|.
 What do you get? Physically interpret your result.
- (d) Again take the limit |p| ≪ m₀c directly in the Hamiltonian that I provided above, but now keep the first two nontrivial terms in p. What do you get? Physically interpret your result.
- (e) Now take the limit m₀ → 0 in the Hamiltonian equations of motion you derived in the first step above.
 Do the equations of motion have a sensible limit?
 Physically interpret your result.
- (f) Now take the limit $m_0 \rightarrow 0$ directly in the Hamiltonian that I provided above.

Does the Hamiltonian have a sensible limit? Physically interpret your result.