School Of Mathematics, Statistics, and Operations Research
Te Kura Mātai Tatauranga, Rangahau Pūnaha

MATH $466 \quad$ Applied Mathematics T1 and T2 2013

Module on Mechanix: Assignment 5

- This fifth assignment is specific to the honours-level mechanix module (Math 466).
- You do not need to do this assignment if you are enrolled in 3rd-year Math 321/322/323.
- Let me know of any typos.

1. Elliptical orbits in Newtonian gravity:

In previous assignments we have already seen that

$$
(\text { circular orbits })+(\text { Kepler's laws }) \Rightarrow \text { (inverse square law). }
$$

We now want to check that

$$
\text { (inverse square law) } \Rightarrow \text { (elliptic orbits) }
$$

or more generally
(inverse square law) \Rightarrow (circular/elliptic/parabolic/hyperbolic orbits),
or even more generally

$$
\text { (Kepler's laws) } \Leftrightarrow \text { (inverse square law). }
$$

Note that this result goes all the way back to Newton - and in fact establishing this particular, result (inverse square law) \Rightarrow (elliptic orbits), was the primary reason Newton developed his version of the differential and integral calculus.

We have already seen how to decompose the gravitational 2-body problem into a trivial centre of mass (COM) motion plus a nontrivial relative motion.

Discard the trivial COM motion, and focus on the relative motion.
In terms of the reduced mass μ and total mass M the Lagrangian for the relative motion in Newtonian gravity has already been shown to simplify to

$$
L=\frac{1}{2} \mu|\dot{\vec{x}}|^{2}+\frac{G \mu M}{|\vec{x}|} .
$$

(a) [Trivial] Using the Euler-Lagrange equations, verify that the resulting equation of motion is the standard inverse-square law

$$
\ddot{\vec{x}}=-\frac{G M}{|\vec{x}|^{2}} \hat{x} .
$$

(b) [Trivial] Verify that the energy

$$
E=\frac{1}{2} \mu|\dot{\vec{x}}|^{2}-\frac{G \mu M}{|\vec{x}|}
$$

is conserved.
(Note the minus sign; it is important.)
(c) [Trivial] Verify that the angular momentum

$$
\vec{J}=\vec{p} \times \vec{x}=\mu \dot{\vec{x}} \times \vec{x}
$$

is conserved.
(d) [Trivial] Show that, since the angular momentum \vec{J} is conserved, one can without loss of generality choose coordinates to make \vec{J} point along the z axis.
(e) [Trivial] If this is done, argue that the position and velocity can always be chosen to lie purely in the (x, y) plane:

$$
\vec{x}=(x, y, 0) ; \quad \dot{\vec{x}}=(\dot{x}, \dot{y}, 0) .
$$

(f) [Easy] Adopt polar coordinates (r, θ) so that we have

$$
\vec{x}=(x, y, 0)=(r \cos \theta, r \sin \theta, 0)=r(\cos \theta, \sin \theta, 0) .
$$

Show that

$$
\dot{\vec{x}}=(\dot{x}, \dot{y}, 0)=\dot{r}(\cos \theta, \sin \theta, 0)+r(-\sin \theta, \cos \theta, 0) \dot{\theta}
$$

and that

$$
\ddot{\vec{x}}=(\ddot{x}, \ddot{y}, 0)=\left[\ddot{r}-r \dot{\theta}^{2}\right](\cos \theta, \sin \theta, 0)+[2 \dot{r} \dot{\theta}+r \ddot{\theta}](-\sin \theta, \cos \theta, 0) .
$$

(g) [Easy] Hence verify that the equations of motion reduce to

$$
\ddot{r}-r \dot{\theta}^{2}=-\frac{G M}{r^{2}} ; \quad 2 \dot{r} \dot{\theta}+r \ddot{\theta}=0 .
$$

(h) [Easy] Verify that the second of these equations is equivalent to the constancy of

$$
|\vec{J}|=\mu r^{2} \dot{\theta}
$$

(i) [Easy] Hence show that

$$
\ddot{r}=\frac{J^{2}}{\mu^{2} r^{3}}-\frac{G M}{r^{2}} .
$$

You could in principle integrate this ODE directly - good luck.
(j) [Devious] Instead let's be a little devious - write $r=r(\theta)$ and show that

$$
\dot{r}=\frac{d r}{d \theta} \dot{\theta}=\frac{d r}{d \theta} \frac{J}{\mu r^{2}} .
$$

(k) [Devious] Thence show

$$
\begin{aligned}
\ddot{r} & =\frac{d}{d \theta}\left(\frac{d r}{d \theta} \frac{J}{\mu r^{2}}\right) \dot{\theta} \\
& =\frac{d}{d \theta}\left(\frac{d r}{d \theta} \frac{J}{\mu r^{2}}\right) \frac{J}{m r^{2}} \\
& =\frac{d^{2} r}{d \theta^{2}} \frac{J^{2}}{\mu^{2} r^{4}}-2\left(\frac{d r}{d \theta}\right)^{2} \frac{J^{2}}{\mu^{2} r^{5}} .
\end{aligned}
$$

(l) [Devious] Now let's be even more devious - write

$$
u(\theta)=\frac{1}{r(\theta)},
$$

and show that

$$
\frac{d u}{d \theta}=-\frac{1}{r^{2}} \frac{d r}{d \theta},
$$

and that

$$
\frac{d^{2} u}{d \theta^{2}}=-\frac{1}{r^{2}} \frac{d^{2} r}{d \theta^{2}}+\frac{2}{r^{3}}\left(\frac{d r}{d \theta}\right)^{2}
$$

(m) [Easy] Hence deduce

$$
\ddot{r}=-\frac{J^{2}}{m^{2} r^{2}} \frac{d^{2} u}{d \theta^{2}}=-\frac{J^{2} u^{2}}{m^{2}} \frac{d^{2} u}{d \theta^{2}} .
$$

(n) [Easy] Inserting this into the radial equation of motion deduce

$$
-\frac{J^{2} u^{2}}{\mu^{2}} \frac{d^{2} u}{d \theta^{2}}=\frac{J^{2} u^{3}}{\mu^{2}}-G M u^{2},
$$

and from this obtain

$$
\frac{d^{2} u}{d \theta^{2}}=\frac{G M \mu^{2}}{J^{2}}-u .
$$

(o) [Easy] The virtue of taking these extremely devious intermediate steps is that this last ODE is now very easy to integrate.
Define

$$
\tilde{u}=u-\frac{G M \mu^{2}}{J^{2}}
$$

so that

$$
\frac{d^{2} \tilde{u}}{d \theta^{2}}=-\tilde{u}
$$

Show that the general solution to this last ODE is:

$$
\tilde{u}(\theta)=A \cos (\theta+B) .
$$

(p) [Easy] From this deduce

$$
u(\theta)=\frac{G M \mu^{2}}{J^{2}}+A \cos (\theta+B)
$$

whence

$$
r(\theta)=\frac{1}{\frac{G M \mu^{2}}{J^{2}}+A \cos (\theta+B)},
$$

which one can rewrite as

$$
r(\theta)=\frac{J^{2}}{G M \mu^{2}} \frac{1}{1+e \cos (\theta+B)},
$$

or even better as

$$
r(\theta)=\frac{J^{2}}{G M \mu^{2}\left(1-e^{2}\right)} \frac{1-e^{2}}{1+e \cos (\theta+B)} .
$$

Recognize that this is one of the standard forms of representing an ellipse (with polar coordinates relative to one of the foci of the ellipse).
Remember Kepler's first law: the planets move in ellipses with the sun at one focus.
(A more precise statement is that the planets move in ellipses with the 2-body center of mass at one focus).
The quantity e is the eccentricity of the ellipse.
The quantity

$$
a=\frac{J^{2}}{G M \mu^{2}}
$$

is called the semi latus rectum of the ellipse.
(q) [Easy] Calculate the semi major axis of the ellipse.
(r) [Easy] Calculate the semi minor axis of the ellipse.
(s) [Easy] What happens if $e=0$?

Physically interpret this situation.
(t) [Easy] What happens if $e=1$?

Physically interpret this situation.
(u) [Easy] What happens if $e>1$?

Physically interpret this situation.
(Yes, this does happen in the "real world".)
I realise this has been somewhat painful - but just think what Newton had to do when coming up with an equivalent argument and inventing calculus at the same time.

2. Virial theorem:

The so-called virial theorem is most often formulated and used within the context of non-relativistic mechanics of a n-body system interacting via central forces.
Let us consider the Lagrangian

$$
L=T-V_{\text {total }},
$$

where

$$
T=\frac{1}{2} \sum_{i=1}^{n} m_{i}\left|\dot{\vec{x}}_{i}\right|^{2} ; \quad \text { and } \quad V_{\text {total }}=\sum_{i<j} V\left(\left|\vec{x}_{i}-\vec{x}_{j}\right|\right) .
$$

Define quantities called the "scalar moment of inertia" I, and the "scalar virial" G, by:

$$
I=\sum_{i=1}^{n} m_{i}\left|\vec{x}_{i}\right|^{2} ; \quad \text { and } \quad G=\sum_{i=1}^{n} \vec{p}_{i} \cdot \vec{x}_{i}=\sum_{i=1}^{n} m_{i} \dot{\vec{x}}_{i} \cdot \vec{x}_{i} .
$$

(a) [Easy]

Assuming the individual masses are constant show that

$$
\frac{d I}{d t}=2 G .
$$

(b) [Easy]

Show

$$
\frac{d G}{d t}=2 T+\sum_{i=1}^{n} \vec{F}_{i} \cdot \vec{x}_{i} .
$$

(c) [Straightforward]

Define $r_{i j}=\left|\vec{x}_{i}-\vec{x}_{j}\right|$.
Using the fact that $V_{\text {total }}$ is assumed to be sum of 2-body central potentials, demonstrate that

$$
\frac{d G}{d t}=2 T-\left.\sum_{i<j}^{n} \frac{d V}{d r}\right|_{r_{i j}} r_{i j}
$$

(d) [Easy]

For a power law potential $V(r)=\alpha r^{\beta}$ show that this implies

$$
\frac{d G}{d t}=2 T-\beta V_{\text {total }} .
$$

(e) [Easy]

In particular, for n particles interacting via Newtonian gravity or electrostatic forces show that this implies

$$
\frac{d G}{d t}=2 T+V_{\text {total }}
$$

(f) [Easy]

If the system is assumed to undergo periodic motion show that the time average of $d G / d t$ vanishes identically:

$$
\left\langle\frac{d G}{d t}\right\rangle=0
$$

Note: Even if the motion is not exactly periodic there are still situations under which one can usefully approximate

$$
\left\langle\frac{d G}{d t}\right\rangle \approx 0
$$

(g) [Easy]

Under the assumption of periodic motion under a power-law potential $V(r)=\alpha r^{\beta}$ show:

$$
\langle T\rangle=\frac{\beta}{2}\left\langle V_{\text {total }}\right\rangle .
$$

(h) [Easy]

Under the assumption of periodic motion under Newtonian gravity or electrostatic forces show:

$$
\langle T\rangle=-\frac{1}{2}\left\langle V_{\text {total }}\right\rangle
$$

(i) [Tricky]

What if anything can you say about the situation where the particles are relativistic?
Consider the quantity

$$
T_{i}=\frac{m_{i} c^{2}}{\sqrt{1-v^{2} / c^{2}}}-m_{i} c^{2}
$$

and find an appropriate virial theorem.
Can you generalize this even further?
(j) [Tricky]

What (if anything) can you say about the situation where the 2-body forces are not a power law?

End of honours-level assignment for the mechanix module.

