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Scattering from a compound barrier, one composed of a number of distinct non-
overlapping sub-barriers, has a number of interesting and subtle mathematical fea-
tures. If one is scattering classical particles, where the wave aspects of the particle
can be ignored, the transmission probability of the compound barrier is simply given
by the product of the transmission probabilities of the individual sub-barriers. In con-
trast, if one is scattering waves (whether we are dealing with either purely classical
waves or quantum Schrodinger wavefunctions) each sub-barrier contributes phase
information (as well as a transmission probability), and these phases can lead to
either constructive or destructive interference, with the transmission probability os-
cillating between nontrivial upper and lower bounds. In this article, we shall study
these upper and lower bounds in some detail, and also derive bounds on the closely
related process of quantum excitation (particle production) via parametric resonance.
C© 2012 American Institute of Physics. [doi:10.1063/1.3676070]

I. BACKGROUND

Consider a general one-dimensional scattering problem. One might be interested in classical
waves (acoustic waves in a pipe, surface waves in a channel, electromagnetic waves in a waveguide),
or quantum waves (the Schrodinger equation). One formalism that is very well adapted to addressing
this mathematical situation is that of “transfer matrices” where one relates the waves on the left of a
barrier to the waves on the right of the barrier via a 2 × 2 complex transfer matrix. These transfer
matrix techniques are discussed, at varying levels of detail, in the textbooks by Merzbacher,1

Mathews and Venkatesan,2 and Singh,3 and in the pedagogical articles by Sanchez-Soto et al.4 and
the present authors.5 Other more technical research articles using this formalism include those of
Peres,6 Kowalski and Fry,7 Korasani and Adibi,8 and Barriuso et al.9, 10 These techniques have also
served as backdrop to some previous results reported by the second author in Ref. 11, and related
work by both current authors reported in Refs. 12–18.

We start by noting that transfer matrices are of the following form:

M =
[

α β

β∗ α∗

]

; |α|2 − |β|2 = 1, (1)

where α and β are known as “Bogoliubov coefficients.” In terms of the perhaps more common
transmission and reflection amplitudes, one has

M =
[

1/t r/t

r∗/t∗ 1/t∗

]

; |t |2 + |r |2 = 1. (2)
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The transmission and reflection probabilities are simply

T = |t |2; R = |r |2; T + R = 1. (3)

Because of these normalization properties we can always find real numbers {θ , ϕα , ϕβ} to write

α = cosh(θ ) exp(iϕα), β = sinh(θ ) exp(iϕβ) (4)

and

t = sech(θ ) exp(−iϕα), r = tanh(θ ) exp(−i[ϕα − ϕβ]). (5)

Now consider a situation where one has a number of non-overlapping barriers. We can assign a
distinct transfer matrix Mi to each barrier. How do these transfer matrices combine to give the “total”
transfer matrix for the compound barrier?

Two key standard results are as follows:1–5

• If one moves any one of the sub-barriers a distance ai, the effect of this translation is to modify

Mi → M̃i =
[

e+ikai 0

0 e−ikai

]

Mi

[
e−ikai 0

0 e+ikai

]

=
[

αi βi e+2ikai

β∗
i e−2ikai α∗

i

]

. (6)

That is, the Bogoliubov coefficient αi (and so the transmission amplitude ti) is invariant under
a shift in the physical location of the barrier, while the Bogoliubov coefficient β i (and so the
reflection amplitude ri) picks up a shift-dependent phase e+ikai .

• A compound transfer matrix (for n distinct non-overlapping localized barriers) is of the form

M12...n = M1 M2 . . . Mn. (7)

The order in which these matrices are multiplied together is important.

The various phases eiϕαi , eiϕβi , and e+ikai , have a very strong influence on the overall transmission
and reflection properties, and can lead to either constructive interference or destructive interference.
(In extreme cases, one may encounter transmission resonances [reflection-less potentials] where the
transmission probability is unity, T → 1, even for rather nontrivial potentials.)

We shall be interested in extracting as much information as possible regarding the compound
transmission probability T12. . . n without having access to knowledge of the individual phases eiϕαi ,
eiϕβi , and e+ikai . That is, given only the individual transmission probabilities Ti, what can one
say about the total transmission probability T12. . . n? Naturally, information regarding transmission
probabilities will also translate into information regarding reflection probabilities.

We have so far phrased things in terms of a scattering problem, but if one moves from the
space domain into the time domain, the same analysis will give information regarding quantum
particle production due to parametric resonance. Each “barrier” is now viewed as a time-dependent
parametric change in oscillation frequency, and each of these “parametric excitation episodes” would
by itself excite a number Ni of quanta, where

Ni = |βi |2. (8)

But, because of the phases eiϕαi , eiϕβi , and e+ikai , distinct parametric excitation episodes can interfere
either constructively or destructively, and the total number of quanta excited, N12. . . n, will be some
complicated function of the individual Ni and the phases. (In extreme cases, one may encounter total
destructive interference, where the nett (overall) particle production is zero, N → 0, even for a rather
nontrivial parametric excitation.)

We shall also be interested in extracting as much information as possible regarding the nett
particle production N12. . . n without having access to knowledge of the individual phases eiϕαi , eiϕβi ,
and e+ikai . That is, given only the individual particle production numbers Ni, what can one say about
the total particle production N12. . . n?

In counterpoint to these phase-dependent questions, if one is working in the limit where the
objects being scattered can be treated as classical particles, so their wave properties can be neglected,
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then the individual transmission probabilities Ti are combined according to the standard rules of
ordinary probability theory:

Tparticles =
n∏

i=1

Ti . (9)

In the discussion below, we will investigate these questions in considerable detail, developing very
general upper and lower bounds on the nett Bogoliubov coefficients, nett transmission and reflection
probabilities, and nett number of excited quanta in terms of the properties of the individual sub-
barriers and/or parametric resonance episodes.

We have also investigated the possibility of utilizing the Abeles matrix formulation of the
scattering problem. (See for instance Refs. 19–22.) While the transfer matrix approach and the Abeles
matrix approach are fundamentally just different mathematical ways of addressing the same physical
problem, and so must ultimately give completely equivalent answers, the the details of the matrix
manipulations involved are different. Specifically, the process of extracting a transmission amplitude
from an Abeles matrix is somewhat messier than that for extracting a transmission amplitude from
a transfer matrix — for this reason we focus on the transfer matrix approach throughout the current
article.

II. TWO-BARRIER SYSTEMS

The compound transfer matrix (for two non-overlapping localized barriers) is of the form

M12 = M1 M2 =
[

α1α2 + β1β
∗
2 α1β2 + β1α

∗
2

α∗
1β

∗
2 + β∗

1 α2 α∗
1α

∗
2 + β∗

1 β2

]

. (10)

That is,

α12 = α1α2 + β1β
∗
2 ; β12 = α1β2 + β1α

∗
2 . (11)

A. Bounding the Bogoliubov coefficients

This leads to the immediate upper bounds

|α12| ≤ |α1||α2| + |β1||β2|; |β12| ≤ |α1||β2| + |β1||α2|. (12)

Now using the normalization conditions, and writing |αi| = cosh θ i and |β i| = sinh θ i, we have

|α12| ≤ cosh θ1 cosh θ2 + sinh θ1 sinh θ2 = cosh(θ1 + θ2), (13)

and

|β12| ≤ cosh θ1 sinh θ2 + sinh θ1 cosh θ2 = sinh(θ1 + θ2), (14)

which can be rewritten as

|α12| ≤ cosh{cosh−1 |α1| + cosh−1 |α2|}; (15)

and

|β12| ≤ sinh{sinh−1 |β1| + sinh−1 |β2|}. (16)

In the other direction, we have the immediate lower bound

|α12| ≥ |α1||α2| − |β1||β2|, (17)

which we can rewrite as

|α12| ≥ cosh{cosh−1 |α1| − cosh−1 |α2|}. (18)
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Because cosh is an even function of its argument, there is no need to worry about the relative sizes
of the two cosh − 1|αi| terms. In contrast, we have to be particularly careful when deriving a lower
bound for β12. (This will be a recurring theme in the article, so we shall be particularly explicit in
deriving this result.) Note that

β12 = α1β2 + β1α
∗
2 = |α1||β2| exp

(
i[ϕα1 + ϕβ2 ]) + |β1||α2| exp(i[ϕβ1 − ϕα2 ]

)
. (19)

But then

|β12| =
∣∣∣|α1||β2| + |β1||α2| exp(i[ϕβ1 − ϕβ2 − ϕα1 − ϕα2 ])

∣∣∣. (20)

But |α1||β2| and |β1||α2| are both real and positive — so the quantity above is minimized when
destructive interference is maximum. It is now easy to see that this occurs when the phases are such
that

ϕβ1 − ϕβ2 − ϕα1 − ϕα2 = (2n + 1)π, (21)

in which case

exp(i[ϕβ1 − ϕβ2 − ϕα1 − ϕα2 ]) = −1. (22)

Consequently,

|β12| ≥
∣∣∣ |α1||β2| − |β1||α2|

∣∣∣. (23)

Note that the outermost set of absolute value signs is particularly critical, guaranteeing that the RHS
is non-negative. This can now be rewritten as

|β12| ≥ sinh
∣∣∣ sinh−1 |β1| − sinh−1 |β2|

∣∣∣. (24)

Again, the outermost set of absolute value signs is particularly critical, guaranteeing that the RHS is
non-negative.

B. Bounding transmission and reflection probabilities

Now working in terms of transmission and reflection amplitudes and probabilities, we have

M =
[

α β

β∗ α∗

]

=
[

1/t r/t

r∗/t∗ 1/t∗

]

, (25)

and

T = |t |2 = 1
|α|2

= sech2θ ; R = |r |2 = |β|2

|α|2
= tanh2θ. (26)

The upper bounds on the Bogoliubov coefficients lead to a lower bound on T and an upper bound
on R as follows:

T12 ≥ sech2
{

sech−1
√

T1 + sech−1
√

T2

}
, (27)

R12 ≤ tanh2
{

tanh−1
√

R1 + tanh−1
√

R2

}
. (28)

Similarly, the lower bounds on the Bogoliubov coefficients lead to an upper bound on T and a lower
bound on R as follows:

T12 ≤ sech2
{

sech−1
√

T1 − sech−1
√

T2

}
, (29)

R12 ≥ tanh2
{

tanh−1
√

R1 − tanh−1
√

R2

}
. (30)
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Note that, because we are squaring the sech and tanh, we do not need to worry about the relative
magnitudes of the Ti and the Ri in the two formulae above.

By manipulating the hyperbolic and inverse hyperbolic functions, (see some key hyperbolic
identities in Appendix A), these bounds can be brought into the rational algebraic form

T12 ≥ T1T2
{
1 +

√
1 − T1

√
1 − T2

}2 , R12 ≤
{ √

R1 +
√

R2

1 +
√

R1
√

R2

}2

. (31)

Similarly

T12 ≤ T1T2
{
1 −

√
1 − T1

√
1 − T2

}2 , R12 ≥
{ √

R1 −
√

R2

1 −
√

R1
√

R2

}2

. (32)

As a useful internal consistency check on the formalism note that for Ri ∈ [0, 1] we have
√

R1 +
√

R2

1 +
√

R1
√

R2
≤ 1, (33)

and that for Ti ∈ [0, 1] we have

T1T2
{
1 −

√
1 − T1

√
1 − T2

}2 ≤ 1. (34)

Note that to get an exact transmission resonance T12 = 1 it is necessary (but certainly not sufficient)
that

T1T2
{
1 −

√
1 − T1

√
1 − T2

}2 = 1. (35)

But this implies T1 = T2. That is, if one ever wishes to obtain an exact transmission resonance from
two disjoint non-overlapping barriers, then the two individual barriers must have equal transmission
probabilities.

C. Bounding particle production

If in contrast we work in a particle production scenario, (via episodic parametric resonance),
where N = |β|2 we can similarly extract upper and lower bounds

N12 ≤ sinh2
{

sinh−1
√

N1 + sinh−1
√

N2

}
, (36)

N12 ≥ sinh2
{

sinh−1
√

N1 − sinh−1
√

N2

}
. (37)

Again, because we are squaring the sinh, we do not need to worry about the relative magnitudes
of the Ni in the formula above. These bounds can be converted (see Appendix A) to the algebraic
statements

N12 ≤
{√

N1(N2 + 1) +
√

N2(N1 + 1)
}2

, (38)

N12 ≥
{√

N1(N2 + 1) −
√

N2(N1 + 1)
}2

. (39)

Note that if one wishes to get complete destructive interference, then one must have{√
N1(N2 + 1) −

√
N2(N1 + 1)

}
= 0, implying N1 = N2. That is, if one ever wishes to obtain

an exact cancellation of particle production from two disjoint non-overlapping parametric reso-
nance episodes, then the two individual episodes must individually have equal quantities of particle
production.
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D. Summary

Having worked through the two barrier case in some detail, we are now in a position to consider
the more general case. Note that all the bounds above have been carefully checked against the extant
literature, (see for example Refs. 1–18), and are compatible with all known results. For the multiple-
barrier situation, many of the calculations are immediate and straightforward generalizations of the
above — we shall soon see that the tricky one is the lower bound on the (absolute magnitude of the)
Bogoliubov coefficients |α12. . . n| and |β12. . . n|, (which ultimately leads to the upper bound on T12. . . n

and the lower bound on N12. . . n).

III. GENERAL UPPER BOUNDS ON |α| AND |β|
The two-barrier upper bounds on the Bogoliubov coefficients |α| and |β| immediately generalize

(by straightforward iteration) to the composition of n transfer matrices

|α12...n| ≤ cosh

{
n∑

i=1

cosh−1 |αi |
}

, |β12...n| ≤ sinh

{
n∑

i=1

sinh−1 |βi |
}

. (40)

This immediately leads to a lower bound on transmission probability and an upper bound on reflection
probability,

T12...n ≥ sech2

{
n∑

i=1

sech−1
√

Ti

}

, R12...n ≤ tanh2

{
n∑

i=1

tanh−1
√

Ri

}

. (41)

If we work in a particle production scenario where N = |β|2, we can similarly write

N12...n ≤ sinh2

{
n∑

i=1

sinh−1
√

Ni

}

. (42)

In the general case, these appear to be the most tractable form of the bounds. (We have also verified
the correctness of these results by explicitly iterating the two-barrier results to investigate three-
barrier, four-barrier, and certain particularly tractable n-barrier systems, comparing with the general
result presented above.)

IV. GENERAL LOWER BOUNDS ON |α| AND |β|
When it comes to bounding the Bogoliubov coefficients from below, we have already seen

|α12| ≥ |α1||α2| − |β1||β2|, |β12| ≥
∣∣∣ |α1||β2| − |β1||α2|

∣∣∣; (43)

which can be rewritten as

|α12| ≥ cosh{cosh−1 |α1| − cosh−1 |α2|}, |β12| ≥ sinh
∣∣∣ sinh−1 |β1| − sinh−1 |β2|

∣∣∣. (44)

However, generalizing these lower bound inequalities to n steps is much more difficult. We shall build
up our lower bound in stages, first providing a recursive version of the bound before constructing an
explicit solution to the recursion relation.

A. Implicit iterative lower bounds on |α| and |β|
Define a collection of n parameters:

θi = cosh−1 |αi |, (45)

and the sums (m ∈ {1, 2, 3, . . . n})

Sm =
m∑

i=1

θi . (46)
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Now take

B1 = θ1, (47)

and, for m ∈ {1, 2, 3, . . . n − 1}, iteratively define the quantities Bm + 1 by

Bm+1 = (θm+1 − Sm) H (θm+1 − Sm) + (Bm − θm+1) H (Bm − θm+1), (48)

where H( · ) is the Heaviside step function.

Theorem: By iterating the 2-step bounds one has

|α12...n| ≥ cosh Bn, |β12...n| ≥ sinh Bn, (49)

and consequently

T12...n ≤ sech2 Bn, R12...n ≥ tanh2 Bn, N12...n ≥ sinh2 Bn. (50)

Proof by induction: When we iterate the definition for Bn the first two times, we obtain

S1 = θ1, B1 = θ1, (51)

S2 = θ1 + θ2, B2 = |θ1 − θ2|. (52)

Thus by our previous results, the claimed theorem is certainly true for n = 2. Now apply mathematical
induction: Assume that at each stage the interval [Bm, Sm] characterizes the highest possible and
lowest possible values of θ12. . . m. Applying the 2-step bound to the pair θ12. . . m and θm + 1 leads
trivially to θ12. . . (m + 1) being bounded from above by

Sm+1 = Sm + θm+1, (53)

and less trivially to being bounded from below by

Bm+1 = (θm+1 − Sm) H (θm+1 − Sm) + (Bm − θm+1) H (Bm − θm+1), (54)

as asserted above. This completes the inductive step. That is:

θ12...(m+1) ∈ [Bm+1, Sm+1]. (55)

!

However these bounds are unfortunately defined in a relatively messy and implicit iterative
manner — can this be usefully simplified? Can we make the bounds explicit?

B. Symmetry properties for the lower bound

When we iterate the general definition of Bn, previously used to obtain B2, one more time we
see

S3 = θ1 + θ2 + θ3; B3 = max{θ3 − (θ1 + θ2), |θ1 − θ2| − θ3, 0}.

Is there any further way of simplifying this? Rewrite B3 as

B3 = max{θ1 − θ2 − θ3, θ2 − θ3 − θ1, θ3 − θ1 − θ2, 0}. (56)

Note that this form of B3 is manifestly symmetric under arbitrary permutations of the labels 123.
One suspects that there is a good reason for this. In fact there is.

Theorem: ∀n Bn(θ i) is a totally symmetric function of the n parameters θ i.

Proof: Note that the individual transfer matrices Mi and MT
i trivially have the same values of Si

and Bi, and in fact have the same values of θ i. Note further that for any two transfer matrices M1M2
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and M2M1 have identical values of S2 and B2. Finally for any two transfer matrices the products
M1 MT

2 and M1M2 have identical values of S2 and B2. (These assertions all follow from the simple
results obtained above for compounding two transfer matrices.)

That is,

S(Mi ) = S(MT
i ), B(Mi ) = B(MT

i ), (57)

S(M1 M2) = S(M2 M1), B(M1 M2) = B(M2 M1), (58)

S(M1 MT
2 ) = S(M1 M2), B(M1 MT

2 ) = B(M1 M2). (59)

But then by cyclic permutation

B(M1 M2 M3) = B(M3 M1 M2) = B(M2 M3 M1), (60)

and furthermore

B(M2 M1 M3) = B((MT
1 MT

2 )T M3)

= B((MT
1 MT

2 )M3)

= B(MT
1 (MT

2 M3))

= B(M1(MT
2 M3))

= B((MT
2 M3)M1)

= B(MT
2 (M3 M1))

= B(M2 M3 M1)

= B(M1 M2 M3). (61)

That is,

B(M2 M1 M3) = B(M1 M2 M3). (62)

Combining these results implies that B(M1M2M3) is a symmetric function of the three transfer
matrices Mi, and hence a symmetric function of the three parameters θ1, θ2, θ3. But this argument
now generalizes — For any B(M1M2. . . Mn), you can use this argument to show

B(M1 M2 M3 . . . Mn) = B(M2 M1 M3 . . . Mn), (63)

and

B(M1 M2 M3 . . . Mn) = B(M2 M3 . . . Mn M1), (64)

which implies complete symmetry in all its n arguments θ i. !

Based on this observation we can now assert a bolder theorem that has the effect of yielding an
explicit (non-iterative) formula for Bn.

C. Explicit non-iterative formula for the lower bound

Theorem:

∀m : Bm = max
i∈{1,2,...m}

{2θi − Sm, 0}. (65)

Proof by induction: We have already seen that the iterative definition of Bn can be written as

Bm+1 = max{θm+1 − Sm, Bm − θm+1, 0}, (66)
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which we can also rewrite as

Bm+1 = max{2θm+1 − Sm+1, Bm − θm+1, 0}. (67)

Now apply induction. The assertion of the theorem is certainly true for m = 1 and m = 2, and has
even been explicitly verified for m = 3. Now assume it holds up to some m, then

Bm+1 = max{2θm+1 − Sm+1, Bm − θm+1, 0}

= max
{

2θm+1 − Sm+1, max
i∈{1,2,...m}

{2θi − Sm, 0} − θm+1, 0
}

= max
{

2θm+1 − Sm+1, max
i∈{1,2,...m}

{2θi − Sm+1, 0}, 0
}

= max
i∈{1,2,...m,(m+1)}

{2θi − Sm+1, 0}.

This proves the inductive step. Consequently,

∀m : Bm = max
i∈{1,2,...m}

{2θi − Sm, 0}, (68)

and in particular

Bn = max
i∈{1,2,...n}

{2θi − Sn, 0}. (69)

(For completeness, note that we have explicitly checked the equivalence of these iterative and non-
iterative results for Bn by using symbolic manipulation packages for multiple examples for the cases
n = 5 and n = 10.) !

To simplify the formalism even further, let us now define

θpeak = max
i∈{1,2,...n}

θi , (70)

and

θoff peak =
∑

i *=ipeak

θi =
n∑

i=1

θi − θpeak = Sn − θpeak. (71)

(We wish to use the subscript “peak” for the maximum of the individual θ i’s; the subscripts “max”
and “min” will be reserved for bounds on the n-fold composite transfer matrix.) Then we can write

Bn = max{2θpeak − Sn, 0}, (72)

or

Bn = max{θpeak − θoff peak, 0}. (73)

Note that the max function is still needed to guarantee that the Bn are non-negative. With this explicit
formula for Bn in hand, we have

|α12...n| ≥ cosh
[
max{2θpeak − Sn, 0}

]
, |β12...n| ≥ sinh

[
max{2θpeak − Sn, 0}

]
. (74)

D. Geometrical interpretation

These lower bounds on the Bogoliubov coefficients can also be given a clean and intuitive
geometrical interpretation. From the work of Barriuso, Monzon, Sanchez-Soto, and Cariñena4, 9, 10 it
is known that the composition of two barriers can be understood as the composition of two hyperbolic
vectors (translations in the hyperbolic plane, “turns” in Hamilton’s original notation). The length of
these hyperbolic vectors is related to the Bogoliubov, transmission, and reflection coefficients by

&i = cosh−1 |αi | = sinh−1 |βi | = sech−1
√

Ti = tanh−1
√

Ri . (75)
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The two-barrier upper bounds (13) and (14) can then be easily derived from geometrical consider-
ations as hyperbolic space applications of the triangle inequalities. The lower bounds (17) and (24)
are a little more subtle, but for the two-barrier case both upper and lower bounds can be summarized
as

|&1 − &2| ≤ &12 ≤ &1 + &2. (76)

For the n-barrier case, the upper bound is straightforward,

&12...n ≤
n∑

i=1

&i . (77)

The lower bound is a little trickier. Separate out the lengths &i of the hyperbolic vectors into the
“largest” and the “rest” (corresponding to what we previously called “peak” and “off peak”). Then
geometrically

&12...n ≥ max

{

&largest −
∑

rest

&i , 0

}

. (78)

It is only when the single largest step exceeds the maximum possible size of all the other remaining
steps put together that one obtains a non-trivial lower bound. We shall now apply this formalism to
bounding the the transmission and reflection probabilities, and to bounding the amount of particle
production.

V. APPLICATION TO T, R, AND N

First, we note that

T12...n ≤ sech2 {
max{θpeak − θoff peak, 0}

}
, (79)

or equivalently

T12...n ≤ sech2 {
max{2θpeak − Sn, 0}

}
. (80)

That is

T12...n ≤ sech2
{

max
{

2 sech−1
√

Tpeak − sech−1
√

Tmin, 0
}}

, (81)

where we have defined Tmin by

T12...n ≥ Tmin ≡ sech2 {Sn} . (82)

Second, we note that

R12...n ≥ tanh2 {
max{2θpeak − Sn, 0}

}
, (83)

that is

R12...n ≥ tanh2
{

max
{

2 tanh−1
√

Rpeak − tanh−1
√

Rmax, 0
}}

, (84)

where we have defined Rmax by

R12...n ≤ Rmax ≡ tanh2 {Sn} . (85)

Finally,

N12...n ≥ sinh2 {
max{2θpeak − Sn, 0}

}
, (86)

that is

N12...n ≥ sinh2
{

max
{

2 sinh−1
√

Npeak − sinh−1
√

Nmax, 0
}}

, (87)

where we have defined Nmax by

N12...n ≤ Nmax ≡ sinh2 {Sn} . (88)
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If we want to be a little more explicit, then we could write these bounds as

T12...n ≤ sech2

{

max

{

2 sech−1
√

Tpeak −
n∑

i=1

sech−1
√

Ti , 0

}}

, (89)

R12...n ≥ tanh2

{

max

{

2 tanh−1
√

Rpeak −
n∑

i=1

tanh−1
√

Ri , 0

}}

, (90)

N12...n ≥ sinh2

{

max

{

2 sinh−1
√

Npeak −
n∑

i=1

sinh−1
√

Ni , 0

}}

. (91)

This appears to be the simplest form achievable for these three bounds. Remember that these three
bounds, coming from lower bounds on the Bogoliubov coefficients are complemented by three other
simpler bounds

T12...n ≥ sech2

{
n∑

i=1

sech−1
√

Ti

}

, R12...n ≤ tanh2

{
n∑

i=1

tanh−1
√

Ri

}

, (92)

N12...n ≤ sinh2

{
n∑

i=1

sinh−1
√

Ni

}

. (93)

coming from upper bounds on the Bogoliubov coefficients.

VI. PERFECT TRANSMISSION RESONANCES

Transmission resonances (perfect transmission resonances) occur when T → 1 at certain energies
or barrier spacings when the phases work out just right to cancel the reflection. But the occurrence
of these resonances is still constrained by our general bound

T12...n ≤ sech2

{

max

{

2sech−1
√

Tpeak −
n∑

i=1

sech−1
√

Ti , 0

}}

. (94)

So a perfect transmission resonance can only occur if

2sech−1
√

Tpeak −
n∑

i=1

sech−1
√

Ti ≤ 0, (95)

(this is a necessary condition, not a sufficient condition). This is equivalent to requiring

Tpeak ≤ sech2

{
1
2

n∑

i=1

sech−1
√

Ti

}

≡ sech2
{

1
2

sech−1
√

Tmin

}
. (96)

Now use the “half angle formula”

sech(x/2) =
√

2
cosh x + 1

=
√

2 sechx
1 + sechx

, (97)

to obtain

Tpeak ≤ 2
√

Tmin

(1 +
√

Tmin)
. (98)

Again, this is a necessary condition (not a sufficient condition) in order for a perfect transmission
resonance to be possible.

In terms of a particle production scenario, a transmission resonance translates to “complete
destructive interference” between two or more particle creation events (so that the nett particle
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production is zero). To be absolutely certain of avoiding “complete destructive interference” one
must have

Npeak > sinh2

{
1
2

n∑

i=1

sinh−1
√

Ni

}

. (99)

But we know

N ≤ Nmax ≡ sinh2 Sn = sinh2

{
n∑

i=1

sinh−1
√

Ni

}

, (100)

so we can rewrite this as

Npeak >

√
Nmax + 1 − 1

2
. (101)

This is a sufficient condition for Nmin > 0, a sufficient condition for there to be at least some overall
particle production.

VII. DISCUSSION

We have seen how a rather nontrivial application of the transfer matrix formalism, (see for
example Refs. 1–5 for basic background information), allows us to place rather nontrivial bounds
on the physics of compound scattering systems — even in the absence of detailed information
concerning their internal structure. The compound scattering systems we are interested in are one-
dimensional systems built up from a number of disjoint non-overlapping barriers; for such systems
we have explicitly shown that the nett scattering properties (unsurprisingly) depend not only on the
transmission probability, Ti, of each individual barrier, but also on a number of phases associated
with these individual barriers and the separation between them. Surprisingly, even in the absence
of quantitative information regarding the value of these phases it is nevertheless possible to place
rigorous and nontrivial upper and lower bounds on the scattering properties of the compound system.
The resulting bounds also apply (with suitable modification of the language) to bounds on the number
of quanta excited via parametric resonance. These bounds have all been carefully checked against
the extant literature, (see for example Refs. 1–18), and are compatible with all known results. The
bounds are explicit, compact, and (despite their relative simplicity) appear to be entirely novel.
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APPENDIX: HYPERBOLIC IDENTITIES

Here are several useful and quite elementary hyperbolic identities (particularly relevant to
Secs. II B and II C):

sinh
(
sinh−1 A + sinh−1 B

)
= sinh

(
sinh−1 A

)
cosh

(
sinh−1 B

)

+ cosh
(
sinh−1 A

)
sinh

(
sinh−1 B

)

= A
√

1 + B2 +
√

1 + A2 B. (A1)
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cosh
(
sinh−1 A + sinh−1 B

)
= cosh

(
sinh−1 A

)
cosh

(
sinh−1 B

)

+ sinh
(
sinh−1 A

)
sinh

(
sinh−1 B

)

=
√

1 + A2
√

1 + B2 + A B. (A2)

cosh
(
cosh−1 A + cosh−1 B

)
= cosh

(
cosh−1 A

)
cosh

(
cosh−1 B

)

+ sinh
(
cosh−1 A

)
sinh

(
cosh−1 B

)

= A B +
√

A2 − 1
√

B2 − 1. (A3)

tanh
(
tanh−1 A + tanh−1 B

)
=

tanh
(
tanh−1 A

)
+ tanh

(
tanh−1 B

)

1 + tanh
(
tanh−1 A

)
tanh

(
tanh−1 B

)

= A + B
1 + AB

. (A4)

This now implies the more subtle result

sech
(
sech−1 A + sech−1 B

)
= 1

cosh
(
cosh−1(1/A) + cosh−1(1/B)

)

= 1

A−1 B−1 +
√

A−2 − 1
√

B−2 − 1

= AB

1 +
√

1 − A2
√

1 − B2
. (A5)

1 E. Merzbacher, Quantum Mechanics (Wiley, New York, 1965).
2 P. M. Mathews and K. Venkatesan, A Textbook of Quantum Mechanics (McGraw-Hill, New York, 1978).
3 J. Singh, Quantum Mechanics: Fundamentals and Applications to Technology (Wiley, New York, 1997).
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