School Of Mathematics, Statistics, and Operations research Te Kura Mātai Tatauranga, Rangahau Pūnaha

MATH 321/322/323 Applied Mathematics T1 and T2 2013

Module on Quantum Mechanics: Assignment 4

- This fourth and final assignment will deal with the S-matrix.
- Read chapter 6 of the notes - the chapter on the S-matrix.
- Let me know of any typos.

1. For a general potential, evaluate the determinant of the S matrix simplify it as much as possible.

It will be useful to write it in terms of the phase ϕ_{0} of the transmission amplitude t.

Notation: Remember that for any arbitrary complex number we have $z=x+i y=r e^{i \phi}$.
The modulus is $r=\sqrt{x^{2}+y^{2}}$ and the phase is $\phi=\tan ^{-1}(y / x)$.
2. Show that for any arbitrary potential the S-matrix is always unitary.

How is this related to the conservation of flux?
Remember the adjoint (Hermitian conjugate) is defined by

$$
S^{\dagger}=\left(S^{*}\right)^{T},
$$

and a matrix is unitary if and only if

$$
S^{\dagger}=S^{-1}
$$

3. Calculate the S-matrix for scattering from a single delta-function potential located at the origin $x=0$.
(All the intermediate steps have already been done for you, and can be found in the notes.)
4. Now calculate the S-matrix for scattering from a single delta-function potential located at the single point $x= \pm a$.
(All the intermediate steps have already been done for you, and can be found in the notes.)
5. If S_{0} is the S-matrix for an arbitrary potential $V(x)$, (of compact support), that is placed in standard position, what is the S-matrix S_{a} for a potential that has been shifted a distance a ?
6. Calculate the S-matrix for scattering from a pair of delta-function potentials located at the two points $x= \pm a$.
(All the intermediate steps have already been done for you, and can be found in the notes.)
7. Calculate the S-matrix for scattering from a two-step potential.
(All the intermediate steps have already been done for you, and can be found in the notes.)

- End of fourth and final assignment in the undergraduate version of the Quantum module.
- If you are taking this module as part of Honours-level Applied Math, be sure to complete the additional Assignment 5.
- \# \# \# -

