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Chapter 1

Overview

This module investigates the mathematical structure of quantum physics. So we will
be very much emphasizing mathematical features of the theory, and will be particularly
interested in seeing how much can be deduced purely by mathematical reasoning without
any (or with very little) physics input.

To set the stage, remember the two faces of any physical theory:

• Physical theories have a mathematical structure that can be investigated purely
by logic. This mathematical structure exists independently of whether or not the
theory has anything to do with the “real world”, and this mathematical structure
can be studied and analyzed by pure logic without recourse to experiment.

• Physical theories are useful only if they closely reflect what actually happens in
the “real world” — it is at that stage of the process that you need to worry about
experimental input.

This is important because sometimes the physics results you get tell you as much (or
more) about the general mathematical framework you are working in, as they do about
the specific physical theory you thought you were investigating. I’ll illustrate this point
with a few specific examples...

The main topics to be touched on in this module will be:

• the Heisenberg uncertainty principle;

• tunnelling;

• one-dimensional scattering.

• the S-matrix.

4
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In each of these cases I hope to give you some deep insight into how very general and
fundamental mathematical tools can be brought to bear on specific physics problems.



Chapter 2

Introduction to quantum physics

• These comments closely parallel the introductory comments I made in the notes on
special relativity — with a few key differences !

• The comments in this particular chapter are for your cultural edification — I will
not set any assignment problems based on this chapter.

First, while the special theory of relativity is the theory for which Albert Einstein is most
famous in the public mind, to a physicist, the special relativity is merely one of Einstein’s
many contributions to physics. Einstein, together with Planck, Schrödinger, Heisenberg,
et al., were all involved in setting up the very foundations of quantum physics.

2.1 Quantum mechanics

1. Non-relativistic quantum mechanics generalizes Newtonian mechanics to “small”
systems. Non-relativistic Quantum mechanics gives a good description of individual
atoms and molecules.

2. However, non-relativistic quantum mechanics is limited to small velocities (small
compared to lightspeed)1 and weak gravitational fields.2

1For instance, non-relativistic quantum mechanics is already not quite good enough for dealing with
the innermost electrons of heavy elements such as Uranium. For the outermost electrons, on which all of
chemistry is based, non-relativistic quantum mechanics is fine.

2Non-relativistic quantum mechanics plus Newton’s gravity is quite good enough for almost all ter-
restrial purposes. It’s in the vicinity of black holes that things get dicey — see for instance Stephen
Hawking’s ideas on black hole evaporation via relativistic quantum effects.

6
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2.2 Quantum technology

During the second half of the twentieth century the major advances in human technological
development have been due to our increasing ability to manipulate the effects inherent in
the quantum theory. The fundamental equations of the (nonrelativistic) quantum theory
were written down in 1925 by Schrödinger, Heisenberg, Bohr, Jordan, and others. Eighty-
five years later the Schrödinger equation continues to provide us with hints and ideas for
manipulating matter in its quantum aspects. The nonrelativistic Schrödinger equation
is intrinsic to understanding the structure of atoms, chemical compounds, and the solid,
liquid, gaseous, and plasma states. From a technological perspective the Schrödinger
equation is the underpinning for the solid-state diode and the solid-state transistor. These
two simple devices are based on quantum physics, but they are designed to produce results
at the classical level, where they act as one-way gates and switches. The importance of
the transistor is that it gives us technological access to simple, rugged, small switches,
and lets us replace the bulkier and hotter thermionic valves found in older radios and
televisions. There are only so many thermionic valves that can be packed into a small
space before they begin to fry each other with the waste heat they generate.

In contrast, transistors can be made smaller, packed together tighter, and generate much
less heat (though getting rid of waste heat is still a significant problem). It is quantum
physics that underlies modern solid-state electronics and permits us to build the memory
chips, central processing units, and multitude of special-purpose integrated circuit chips
that underlie modern computer technology (and modern miniaturized televisions, radios,
CD players, and other household electronics). Again, even though the basic Schrödinger
equation was written down in 1925 it is not a simple direct route from that equation to
integrated circuit technology — as generations of physicists and engineers will attest. On
the other hand, as indicated above, a rather good case can be made for nonrelativistic
quantum mechanics as the primum movil behind solid-state electronics.

One thing that should be emphasized in this situation is that transistors are still classical
devices that function using quantum physics, but at a fundamental level transistors do
not themselves exhibit such quantum weirdness as the Schrödinger’s cat effect. (Is there
something rotten in the eigenstate of Schrödinger’s cat?) There is currently (2013) a
revolution underway using nanoscale and mesoscale technology to try making intrinsically
quantum switches, with a view to ultimately making intrinsically quantum computers —
this may cause a major revolution in computer technology over the next few decades
but it is too soon to tell with certainty. Similarly there are efforts underway to apply
quantum physics directly to cryptography (code-making and code-breaking), and to the
construction of eavesdropper-proof communication links. I mention these possibilities so
that you can appreciate that even nonrelativistic quantum physics (let alone relativistic
quantum field theory) is a field that has not yet yielded all is secrets, and that there is still
a vast potential for technological development hiding in the innocent-looking Schrödinger
equation — a potential that many people are eagerly seeking to exploit.
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2.3 Quantum field theory

Quantum field theory (QFT), which I won’t deal with in this module, is the proper tool for
describing relativistic quantum physics — the physics of the very small at arbitrary speeds
up to the speed of light. As such, quantum field theory is the appropriate description
underlying lasers,3 nuclear physics, “atom smashers”, and radioactivity in all its forms.

1. Quantum field theory generalizes both non-relativistic quantum mechanics and spe-
cial relativity, the physics of the very small and the very fast. This class of theories
is quite adequate for doing all of particle physics (the physics of elementary particles
such as quarks, leptons, gauge bosons, Higgs, etc..)

2. Quantum field theory, in its current incarnation, is incapable of dealing with quan-
tized gravitational fields in a clean manner.

3. If you ever come up with a really good theory of quantum gravity, publish.

(Physicists and mathematicians have been struggling with this problem for fifty
years now, and progress is fragmentary and haphazard. Look up, for instance,
“string models”, “loop variables”, “spin networks”, “spin foams”, “lattice quantum
gravity”, “causal dynamical triangulations”, and “Hořava gravity” for more than
you ever really wanted to know...)

2.4 Classifying the theories of physics:

Superb, Useful, and Tentative

Professor Roger Penrose (Oxford University) has come up with a very interesting classi-
fication of scientific theories:

1. Superb: The Superb theories will always be with us. They are rock solid descrip-
tions of fundamental reality that are simply too useful to discard, and will if nothing
else be retained for all time as suitable limiting cases of any more fundamental the-
ory that may come along.
For example, you will never abandon Newtonian physics completely, it’s simply too
good an approximation to reality in the regime where most engineers are working.

3 Actually, trying to decide where to classify lasers is a little tricky. The photons in the laser beam are
of course moving at the speed of light, which screams “special relativity”. But there are approximations
where you can treat the atoms that emit the photons non-relativistically, and agree not to ask too many
nasty questions about the photons themselves. Plus for good measure, there is such a thing as non-
relativistic quantum field theory, suitable for studying condensed matter physics, so the dividing lines
between theories are not always as sharp as I have made them appear in this account.
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Similarly, Maxwell’s electromagnetism is a fantastically good approximation, which
is why we still use it even if quantum electrodynamics is “more fundamental”.

Warning: Strictly speaking, the word “theory” should really be reserved for the-
ories belonging to the Superb classification. Similarly, any talk about the “laws”
of physics, should really be reserved for items in the Superb category. In internal
discussions among experts, these linguistic rules are often violated because we know
enough background information to be able to fill in the blanks for ourselves. Un-
fortunately this can lead to comprehension difficulties when communicating across
discipline boundaries, or to the general public.

2. Useful: The Useful theories are provisional in nature; while it is clear that they
capture some aspects of physical reality, there will be nagging details and reasons to
suspect they are not the last word. Useful theories will almost certainly last a few
centuries, and be relatively stable on the one to two decade timescale (and perhaps
longer).

Warning: Strictly speaking the Useful theories should not be called theories,
but rather “standard models”. (As in “standard model of particle physics”, or
“standard model of cosmology”.) For standard models you should really not talk
about “laws”, but rather use constructions such as “rules of thumb”, “empirical
relationships”, “phenomenologically determined parameters” and the like.

3. Tentative: The Tentative theories represent “work in progress”; they are likely
to suffer severe revision as our ideas (and experimental input) gets better.

Warning: Strictly speaking you should never use the word theory to describe
something in the Tentative category; words like “model”, “concept”, or “idea” are
more appropriate. Sometimes you should go so far as to use the phrase “toy model”
or the word “conjecture”. (For instance grand unified theories, which are definitely
in the Tentative category, should really be called grand unified models, but the
acronym GUT sounds so much better than GUM, that GUT has been universally
adopted.)4

This is not to say that everything is in constant flux: the Superb theories have pretty
much settled into their final forms and we don’t expect any really revolutionary surprises
there (though there may still be interesting refinements to be extracted). The Useful
“theories” (standard models) tend to evolve slowly over the lifetimes of most professional
physicists, while only the Tentative “theories” (conjectures) are in a state of constant
upheaval.

4One particle theorist has been known to put it this way: Current “Grand Unified Theories” are
neither grand, nor unified, nor even theories...
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2.5 Superb means “Never to be Discarded”

Quantum physics has been very well-tested, both experimentally and mathematically, it is
definitely Superb in the sense of Roger Penrose. The mathematical structure of quantum
physics has been investigated in elaborate detail (sometimes in baroque detail), and its
experimental consequences have been extensively checked (in the parameter ranges where
we expect this theory to be valid, and where we have appropriate technology).

It is critically important to realize that in a certain sense quantum physics will never be
discarded — it is simply too useful in the range where we know it works. At the very
worst, this theory will be superseded by some more complicated “master theory” that
must effectively reduce to standard quantum physics in appropriate limits.

2.6 Textual analysis: A warning

Before we go any further, I feel that an important warning is in order: Never attempt a
comparative textual analysis of popular-level physics books (including these notes) — the
results are almost certain to be abject nonsense. By way of example, any serious literary
study of Don Quixote will require you to learn the Spanish language — working only from
an English language translation is never going to provide deep insight into the work. Sim-
ilarly, popular level books on physics are inherently limited by the translation difficulties
of adopting a natural language at the cost of excising the underlying mathematics. Do
not take pretty pictures and verbal descriptions too seriously — they can be dangerously
misleading — natural language is a subtle and shifting foundation on which to attempt
to build physical theory.

For an example of the problems that can arise purely at the level of English language
usage I need merely point out the confusion attendant on use of the word “paradox”.
In English this word has two primary meanings. Either:

1. an apparent contradiction in a logically consistent theory, or

2. a real logical inconsistency in a truly inconsistent theory.

(There are also a few more archaic meanings that are not currently of relevance.) Worse,
the most likely meaning has shifted over the past few decades.

Problems arise for instance, in the discussion of the famous “twin paradox” of special
relativity. Einstein and his contemporaries used the word in the sense of an “apparent
inconsistency” (what we might now call a “pseudo-paradox”) and certainly did not claim
or imply that special relativity was internally inconsistent. Unfortunately, many commen-
tators have fixated attention on the word “paradox” and automatically assumed that the



Math 321/322/323: Quantum Physics 11

meaning of “real logical inconsistency” was intended, leading to discussions whose results
are both pathetic and predictable. [At least half of the yelling and screaming surrounding
the issue of the twin paradox in special relativity can be tracked down to not having a
good dictionary on hand.] And this is just a simple ambiguity within the English language
itself — this is not even a translation difficulty from mathematics to English. (To add to
the confusion, don’t forget that Einstein’s native language was German, not English, and
that his early works were written in German, not English.)

Another famous, well infamous, example of the troubles that can be caused by outright
mis-translation between natural languages is that of the infamous Martian “canali”.
Now “canali” is a perfectly good Italian word that has the English meaning of “channels”
(naturally occurring channels, with no implication of human or alien intervention). Unfor-
tunately US newspapers of the late 1800’s [deliberately] mis-translated this into English
as “canals” (implying they were constructed by someone or something). So much for the
canals of Mars; they were never more than endless speculation heaped upon a simple
mis-translation (and a few highly ambiguous and noisy ground-based visual observations
of some things that looked vaguely like channels). Still, John Carter and Barsoom will
continue to live on in legend.

Yet another example of places where problems commonly arise is in the discussion of the
“Einstein elevator”. This is a gedanken-experiment (thought-experiment) devised by
Einstein that argues for the complete equivalence between acceleration and an applied
gravitational field. (This is the Einstein Equivalence Principle, one of the main principles
underlying Einstein gravity, about which I will have more to say next year in Math 464
[differential geometry] and Math 465 [general relativity and cosmology].) More precisely,
the Einstein elevator gedanken-experiment argues for the complete equivalence between
acceleration and a homogeneous gravitational field.

Now all real gravitational fields are inhomogeneous, so the result of the Einstein elevator
gedanken-experiment should really be phrased as: “in any real gravitational field, if one
has an elevator that is sufficiently small that inhomogeneities in the gravitational field
can be safely ignored, then a person inside the elevator cannot tell the difference between
gravity and acceleration”

This is often shortened for convenience to: “a person inside an elevator cannot tell the
difference between gravity and acceleration”. Unfortunately I have then seen people who
take this shortened version of the Einstein Equivalence Principle too literally. If you
take the short version as the one and only definition of the Equivalence Principle, and
then observe that real gravitational fields are inhomogeneous, than you can mistakenly
conclude the existence of an internal inconsistency in general relativity. [This mistake
is unfortunately rather common.] Of course, what you have really deduced is that the
shortened version of the Equivalence Principle is not quite precise enough — going to the
long version of the Equivalence Principle removes the problem.
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This all came about because in the interests of clarity it is sometimes appropriate to
delete some of the qualifying phrases that would otherwise make a popular description
or an introductory textbook completely unwieldy and impenetrable — in fact, in the
interests of getting any coherent message across I shall occasionally have to resort to such
trimming myself. But the reader should be warned that some simplification along these
lines is inevitable — and if by determined textual analysis the reader discovers a logical
paradox, the paradox is almost certainly a translation difficulty and not a part of the
underlying physics. I trust that forewarned is forearmed.

2.7 Filtering out the nonsense

Because the theories and concepts that I am talking about in this course are so far beyond
the pale of everyday experience, I think that it would be useful for the student if I were to
provide some rules of thumb for filtering out the more extreme crackpot nonsense. (It is
unfortunately a truism that nothing attracts the crackpots quite like the words “Einstein”
and “relativity”, it’s like waving a red flag in front of a bull. The word “quantum” is
also rather good at attracting the nutters.) Now it is actually rather difficult to give hard
and fast rules for detecting crackpot nonsense. Certainly any practitioner in the field
can look at a specific document and within sixty seconds can come to a snap decision.
Many of rules used in coming to such a conclusion are entirely heuristic and impossible
to formalize in all generality. Fortunately however, a certain subset of the rules used by
practicing physicists can be more or less formalized: these are the rules associated with
the internal consistency of physical theories.

2.7.1 The two faces of physical theory

It is extremely important to realize that physical theories have two main attributes that
are logically distinct from one another. Physical theories must be both internally con-
sistent, and an accurate reflection of experimental reality. To discuss the first aspect,
consistency, a physical theory must be formalized as some well-defined mathematical
structure, some set of equations and mathematical rules that interrelate various math-
ematical symbols in some way. If this mathematical structure is internally inconsistent
then the theory has already failed without a single experiment being performed. The
second aspect is the extent to which this mathematical structure represents reality. The
various mathematical symbols appearing in the equations must be asserted to correspond
to some in-principle-measurable experimental quantities. A successful physical theory is
one that is mathematically consistent and that accurately predicts/explains/retrodicts a
suitably large class of experimental results.

But note one very important point: the internal logical and mathematical consistency of
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the theory is not decided by experiment — consistency is purely an issue of mathematics
and logic and can be settled once and for all without recourse to experiment. (It is
extremely rare for a physical theory to become in any way well-established and then
later fail some internal consistency checks, there are simply too many physicists and
mathematicians working on problems and checking each other’s results.) Experiment
only comes in at the second stage — no matter how beautiful or internally consistent a
physical theory is it is simply not useful unless it is an accurate description of how the
real universe works. (Sometimes we add qualifying phrases — such as “this theory works
well in thus and so a range of parameters, but is known not to accurately reflect nature
if one goes outside this range of parameters”.)

Very Important Point: It is absolutely critical to realise that there is an enormous
difference between being “wrong” and being a “crackpot” — more on this later.

2.7.2 Rules based on mathematical consistency

When it comes to detecting psycho-ceramics [crack-pottery] in quantum physics, the most
basic guiding rule is fortunately very simple:

Rule 1 If you run across someone who claims that the mathematical structure of quantum
mechanics is internally inconsistent, then you can safely ignore them: they are wrong.

Issues of internal mathematical consistency in quantum mechanics boil down to verifying
the existence of suitable Hilbert spaces and suitable self-adjoint operators on these Hilbert
spaces. (This is undergraduate-level mathematics, at least in principle.)

Unfortunately, when you start digging deeper, things very rapidly become much more
subtle:

Rule 2 If you run across someone who claims that the metaphysical foundations [epis-
temology and ontology] of quantum mechanics are internally inconsistent, be prepared to
take such claims with several kilograms of salt (a pinch of salt is not sufficient).

The philosophical foundations and metaphysics of quantum mechanics is an area where
reasonable people can and do still differ — fortunately mucking around with the episte-
mology and ontology does not change the predictions of the experimental results — which
are in excellent agreement with empirical reality.

Rule 3 If you run across someone who claims that the metaphysical foundations [epis-
temology and ontology] of quantum mechanics can change the predictions for an experi-
mental result, then you can safely ignore them: they are wrong.
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While essentially all physicists agree on what the rules of quantum mechanics are, there
is very little agreement on what it all means. Interpretational issues are still murky
(despite many loud, forceful, and mutually incompatible claims to the contrary). The
major interpretational schemes are:

• Copenhagen interpretation: Bohr’s original interpretation — this is the official party
line.

• Everett’s relative state interpretation: This has metamorphosed over the years into
the Everett–DeWitt “many-worlds” interpretation.
Popular among the high priests of quantum cosmology.

• Bohm’s hidden variable interpretation: This one is a wild card. It works well for non-
relativistic systems but does not seem to have a clean special relativistic extension,
let alone a clean general relativistic extension. Highly non-local. Not really popular
with anybody except a small cadre of dedicated converts.

• Cramer’s transactional interpretation.

• Decoherence (Gell–Mann, Hartle, Zurek, et. al.).

• The “shut-up-and-calculate” non-interpretation: Extremely popular when teaching.

• Various variations on these themes. [Consistent histories (in the sense of quantum
mechanical consistent histories, as opposed to time-travel consistent histories —
don’t ask...), pilot waves, etc..]

The single most important thing to know about these various interpretations of quantum
mechanics is that they are all compatible with experiment. Applied to ordinary quantum
mechanics these interpretations are in fact experimentally indistinguishable.

Many physicists (and presumably a few interested outsiders as well) will be utterly morti-
fied by the realization that there is a consistent hidden variable interpretation of ordinary
(non-relativistic) quantum mechanics that is experimentally indistinguishable from the
more usual interpretations. (This is not what you are generally taught in undergraduate
or graduate school). If you want to get further into this, read David Bohm’s 1952 papers
and the commentary by John S. Bell (Speakable and Unspeakable in Quantum Mechanics).
Note in particular that Bell’s theorem deals only with local hidden variable theories.

Warning: Do not confuse Bohm’s 1952 papers with his later work on “implicate order”.
These are rather different theories, and you do not automatically have to accept “implicate
order” if you accept Bohm’s 1952 “ontological interpretation”.

Since the various interpretations of quantum mechanics are experimentally indistinguish-
able, they are by definition metaphysical constructs of no physical relevance. So why
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bring these issues up in a mathematics course? The various metaphysical interpretations
of ordinary quantum mechanics become physically interesting if and only if one tries to
alter or extend quantum mechanics in some fashion. Different metaphysical interpreta-
tions lead to different ideas of what a “natural” extension of quantum mechanics might
be.

That is: An “interpretation” of quantum mechanics has no physical consequences and is
merely an additional layer of metaphysics added to the theory. If one ever finds a situation
where different “interpretations” of quantum mechanics lead to different physical results
then one has not “interpreted” quantum mechanics — rather one has modified quantum
mechanics to produce a different physical theory.

Warning: The relevant scientific literature is vast, inconclusive, and internally contra-
dictory. The quality of the contributions is also extremely variable.

One of the most exciting aspects of all these interpretational issues is that the relevant
experimental technology is getting better very quickly. Experimentalists are getting much
better at constructing and manipulating mesoscopic (i.e., reasonably large) quantum sys-
tems, and keeping them intact long enough to start to do interesting experiments. This is
the same underlying technology that is driving the current interest in “quantum comput-
ing” and “quantum cryptography”. A very important side-effect of these investigations is
that it seems that at least some of the ideas related to foundational and interpretational
issues in quantum mechanics are on the verge of moving out of the realm of philosophy
and directly into the realm of experimental physics.

2.7.3 Parameterized post classical formalism?

To get a feel for how the situation in quantum physics differs from the way many of
the theories of classical physics have been tested, consider this analogy: When discussing
experimental tests of general relativity it is extremely useful to invoke the so-called param-
eterized post-Newtonian (PPN) formalism. The PPN formalism is a general phenomeno-
logical framework for describing weak-field gravity that contains a number of adjustable
parameters. Depending on the values of these parameters, the PPN formalism describes
the weak-field limits of Newtonian gravity, Einstein gravity, and many other a priori rea-
sonable alternatives to ordinary general relativity. It is then a matter of experiment to
measure the various parameters in the PPN formalism to see whether or not Einstein
gravity is the theory that describes physical gravity. It is. (For a popular-level survey of
the experimental situation, see Cliff Will’s book, “Was Einstein Right?”.)

So far, no similar unified “parameterized post-classical” (PPC) formalism exists for study-
ing quantum mechanics. What would be desired is a phenomenological model with many
adjustable parameters. One choice of parameters should correspond to classical Newto-
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nian mechanics. Another choice of parameters should correspond to ordinary quantum
mechanics. Present tests of quantum mechanics are pretty much constructed on an ad
hoc basis — a quantum mechanics calculation is performed and the results checked ex-
perimentally. The closest we currently have to a PPC formalism is the general complex of
ideas associated with the Bell inequalities. Studying the metaphysical interpretations of
ordinary quantum mechanics might give us a hint on how to flesh out a PPC formalism.

2.7.4 High weirdness in quantum field theory

It is when you move beyond (non-relativistic) quantum mechanics to (relativistic) quan-
tum field theory that things really start to get messy:

Rule 4 If you run across someone who claims that the mathematical structure of rela-
tivistic quantum field theory is internally inconsistent, then you will need to ask (and get
answers to) a long string of highly technical questions to establish what exactly is being
claimed.5

There is little doubt in the community that quantum field theory gives a highly accurate
description of what is really going on but there are a few niggling highly technical matters
that might give reasonable people reason for pause — fortunately for the quantum physics
community the relevant questions involve such highly abstruse mathematical issues that
crackpot infestation has to date been kept to a minimum. (The relativity community has
not been as lucky: Because special relativity can be formulated in terms of high-school
algebra, anyone and everyone who is capable of getting high-school algebra wrong believes
that they have something to say about special relativity.)

Rule 5 If you run across someone who claims that the standard model of particle physics
[SU(3)× SU(2)× U(1)] is not an accurate description of reality, then you will need to
ask (and get answers to) a somewhat shorter string of somewhat less technical questions
to establish what exactly is being claimed.

The standard model of particle physics [SU(3)× SU(2)× U(1)] is our current best (though
still provisional) model for elementary particles and their interactions. Crudely speaking,
the particles in question are quarks and leptons, interacting via forces mediated by glu-
ons, intermediate vector bosons, and photons, with the Higgs mechanism thrown in to
get particle masses and symmetry breaking to come out right. While the standard model

5For the initiated I will mutter the incantations “Haag’s theorem”, and “triviality of λ φ4
4”. Physicists

tend not to worry about Haag’s theorem, there’s probably ways around it, though it sends mathematicians
into paroxysms of apoplexy. Triviality on the other hand, worries even the physicists, and probably means
that the Higgs mechanism of the standard model of particle physics is not truly fundamental, but is only
an “effective” low-energy description of some deeper reality.
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of particle physics has been tested to impressively high energies, it is widely [though not
universally] expected that revisions to the model will be needed by the time accessible
energies reach 10 TeV or so. Reasonable people can disagree on these issues (sometimes
violently so), without going over the edge into crack-pottery.

Rule 6 If you run across someone who claims that the logical structure of quantum gravity
is mathematically inconsistent; ignore them, they are not even wrong.6

The problem in this case is more subtle: as of 2013 we simply do not have a fully successful
theory of quantum gravity — so attempts to show that a non-existent theory is internally
inconsistent is more than a trifle premature. What is probably going on is that someone
has stumbled across one of the many candidate models for quantum gravity, taken the
model a little too seriously, and then misinterpreted a defect in the model as an intrinsic
feature of quantum gravity.

2.7.5 The rough guide to crackpot filtering

The alert reader will have noticed that all this discussion of how to filter out potentially
strange and peculiar physics I have not actually defined what a crackpot is. This is partly
because there is no really generally agreed upon definition (though everyone will recognize
one when they run across one). Crack-pottery is associated more with a style of argument
and a style of presentation than it is with the actual content. It is important to realize
that people can be wrong without being crackpots, and that crackpots can accidentally
be right on some issues while still remaining crackpots — crack-pottery can be loosely
characterized as:

1. an inability to mentally separate the logical structure of a physical theory from
issues of experimental evidence, and

2. the inability to dispassionately assess the experimental evidence, generally coupled
with overwhelming arrogance [and often, unfortunately, some form of mental dis-
ease].

A very rough-and-ready guide to crackpot detection has now been circulating in the
internet for a few years. The crackpot index (see the website) was developed as a humorous
attempt to summarize some of the rules of thumb derived from bitter experience in the
flamewars infesting the internet newsgroup sci.physics. This internet newsgroup is so

6The pejorative phrase “not even wrong” is generally attributed to Wolfgang Pauli. In Pauli’s view,
an attitude shared by most physicists, there is no crime per se in being wrong — it’s when ideas are so
ill thought out that they are impossible to assess that you are better off keeping your mouth zipped until
you have a firmer grasp on things.
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heavily infested with crackpot drivel that very few (zero?) professional physicists are
willing to put up with the personal abuse that generally results from giving straightforward
non-crackpot answers to honest questions from genuinely curious non-experts. I shall leave
it as an exercise to the reader to obtain internet access and make their own judgments.
(For that matter, I should also warn readers with internet access that if you go to any
of the standard internet search engines and type in the word relativity, your hits will be
about 50 percent crackpot nonsense.)7

You should of course, not take the final score obtained from the crackpot index too
seriously. A high crackpot index merely indicates that there might be a problem with
the document, but there may be extenuating circumstances. Likewise a low crackpot
index does not guarantee that the document is correct. Unlike the relatively rigid rules I
provided earlier in this chapter, the crackpot index should be used only as a rough guide.

The key issues in avoiding a high crackpot index are:

1. Think your proposal through carefully and check it for internal consistency.

2. Make sure your proposal is compatible with current experimental data.

3. Don’t ever try to claim that classical mechanics, special relativity, general relativity,
or quantum mechanics are internally inconsistent.

4. Don’t try to claim that any other presently accepted theory is internally inconsistent
unless you have very good evidence presented in a very clear and convincing manner.

If any of these suggestions is violated you should be very suspicious of the author’s claims.8

2.8 Last words

To wrap up this introductory chapter, permit me to summarize what you should have
learned:

1. Physics theories can be quality graded (Superb/ Useful/ Tentative) with the
Superb theories being so well verified by experiment that any direct attack on
them is simply quixotic.

2. Quantum physics and general relativity are two of the Superb theories. In the rest
of these notes I will describe quantum physics in a little more detail, and you should
then have a basic understanding of what this theory entails.

7Exercise: Use a search engine to look up the crackpot index by John Baez.
8Exercise: Use a search engine to look up the essay “How to become a bad theoretical physicist” by

Nobel prizewinner Gerhard ’t Hooft. In a simiar vein, there is Warren Siegel’s effort “Are you a quack?”.
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3. When judging strange and exotic claims and unfamiliar physics, try to look first for
issues of internal mathematical consistency, secondly for compatibility with present
experiment, and only then should you worry about the details of the “new physics”.



Chapter 3

Heisenberg uncertainty principle

The Heisenberg uncertainty principle is such a basic aspect of quantum physics that it is
at first a little scary to realise that the uncertainty principle intrinsically has very little
to do with quantum physics itself. In fact:

• The first 90% of the Heisenberg uncertainty principle is actually rather basic and
fundamental mathematics — the mathematics underlying Fourier series and Fourier
transform theory.

• The remaining 10% of the Heisenberg uncertainty principle is extremely elementary
quantum physics — amounting merely to invoking the de Broglie/ Einstein relations
between (energy) ↔ (frequency) and (momentum) ↔ (wavenumber).

Now these claims will make many physicists choke, though many others will think these
comments are utterly “obvious”, so I’d better make a good job of justifying them.

3.1 Fourier transforms and signal theory

Suppose we are interested in some signal s(t). This signal might be the pressure at a
certain sensor, the voltage at a certain place on a wire, or the current through a given
wire.

(Or it might be the value of the Schrödinger wavefunction at a certain place — but the
signal does not have to be a quantum signal, classical signals are quite good enough for
the point I want to make.)

20
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Now Fourier transform the signal into frequency space:

F : s(t) 7→ s̃(ω) =
1√
2π

∫ +∞

−∞
s(t) exp[−iωt] dt; (3.1)

F−1 : s̃(ω) 7→ s(t) =
1√
2π

∫ +∞

−∞
s̃(ω) exp[+iωt] dω. (3.2)

Some of you will never have seen Fourier transforms yet, don’t panic:

• Simply take the integral above as the definition of the Fourier transform operator
F which maps functions s(t) to functions s̃(ω).

• Note that F is a linear operator (on the space of all functions).

[More precisely: On some suitable class of functions where the integral actually
converges.]

• If it is helpful to you, you might want to think of the signal s(t) as an infinite-
dimensional vector, with one distinct vector component for each distinct value of t.
The Fourier transform can then be thought of as an (infinity)×(infinity) matrix.
If this point of view confuses you, forget it.

• It is a theorem that in the second line above F−1 really is the inverse of the operator
F , and this really is the matrix inverse of the (infinity)×(infinity) matrix F .

• Feel free to search on Google and Wikipedia for more information regarding Fourier
transforms.

Theorem 1 (Fourier inverse) Let us define the Fourier transform by

F : s(t) 7→ s̃(ω) =
1√
2π

∫ +∞

−∞
s(t) exp[−iωt] dt. (3.3)

Then the inverse Fourier transform is

F−1 : s̃(ω) 7→ s(t) =
1√
2π

∫ +∞

−∞
s̃(ω) exp[+iωt] dω. (3.4)

We will not prove this result — we will merely use it.

Definition 1 The Dirac delta function is defined by

f(t) =

∫ +∞

−∞
f(t′) δ(t− t′) dt′; (3.5)

g(ω) =

∫ +∞

−∞
g(ω′) δ(ω − ω′) dω′. (3.6)
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From the Fourier inversion theorem, and the definition of the Dirac delta function, it is
easy to show:

Theorem 2 (Dirac delta function) The Dirac delta function satisfies

δ(t− t′) =
1

2π

∫ +∞

−∞
exp(−iω[t− t′]) dω, (3.7)

or equivalently

δ(ω − ω′) =
1

2π

∫ +∞

−∞
exp(−i[ω − ω′]t) dt. (3.8)

Here the Dirac delta function is defined by

f(t) =

∫ +∞

−∞
f(t′) δ(t− t′) dt′; (3.9)

g(ω) =

∫ +∞

−∞
g(ω′) δ(ω − ω′) dω′; (3.10)

We will not prove this result — we will merely use it.

You should prove this result as one of the assignment problems.

If we were being very careful, I would of course admit that the Dirac delta function is not
really a function — it is a functional defined so as to act on a suitable set of well-behaved
functions (for example, functions of compact support or functions of exponential falloff
at infinity) — the resulting Schwartz distribution theory is a way of making standard
delta-function manipulations completely rigorous.

Let’s now assume that the signal s(t) is peaked at time t̄ and has a width ∆t. Similarly
let’s assume that the Fourier transformed signal s̃(ω) is peaked at angular frequency ω̄
and has a width ∆ω. (I do not at this stage need to define these notions more precisely.)

If I now re-scale the time coordinate and the signal according to the prescription

T : s(t)→ sκ(t) = s(κ t), (3.11)

then even without knowing the precise definition of ∆t it makes sense to demand that for
the re-scaled signal

∆t[sκ] = κ−1 ∆t[s]. (3.12)

Furthermore it is easy to calculate the Fourier transform of [T sκ](t) and see that

s̃κ(ω) =
1√
2π

∫ +∞

−∞
sκ(t) exp[−iωt] dt =

1√
2π

∫ +∞

−∞
s(κ t) exp[−iωt] dt =

s̃(ω/κ)

κ
.

(3.13)



Math 321/322/323: Quantum Physics 23

Then even without knowing the precise definition of ∆ω it makes sense to demand

∆ω[s̃κ] = κ ∆ω[s̃]. (3.14)

That is, squeezing the signal in the time direction by a factor κ forces it to spread in the
frequency domain by the same factor κ — and this will be true for any sensible definition
for ∆t and ∆ω. Consequently

∆t[sκ] ∆ω[s̃κ] = ∆t[s] ∆ω[s̃] = C(s, s̃), (3.15)

where C(s, s̃) is some functional independent of κ, and which depends at most on the
“shape” of the signal {s(t), s̃(ω)}. This is already enough to tell you, with minimal
calculation, that precisely localizing the signal in time t will force its Fourier transform
to be de-localized in angular frequency ω, and vice versa.

We can sharpen these comments to obtain a rigorous inequality, by adding a little technical
structure and by more precisely defining ∆t and ∆ω. Start by defining

t̄ =

∫ +∞
−∞ t |s(t)|2 dt∫ +∞
−∞ |s(t)|2 dt

(3.16)

and

(∆t)2 =

∫ +∞
−∞ (t− t̄)2 |s(t)|2 dt∫ +∞

−∞ |s(t)|2 dt
(3.17)

and analogously

ω̄ =

∫ +∞
−∞ ω |s̃(ω)|2 dω∫ +∞
−∞ |s̃(ω)|2 dω

(3.18)

and

(∆ω)2 =

∫ +∞
−∞ (ω − ω̄)2 |s̃(ω)|2 dω∫ +∞

−∞ |s̃(ω)|2 dω
(3.19)

Now these are definitions, there is nothing here that has to be proved. The ultimate
justification for these definitions is that they are both natural and useful. In particular:

• These definitions are plausible, and do the sensible thing under rescaling the time
and frequency domains.

• You can think of t̄ as an estimate of the “arrival time” of the non-trivial part of the
signal s(t), and ∆t as an estimate of the amount of time over which the signal is
non-trivial.

• You can think of ω̄ as the “average frequency” contained in the signal, and ∆ω as
an estimate of the amount of the “frequency spread”.
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• These definitions lead to useful results.

• The reason for the presence of |s(t)|2 and |s̃(ω)|2 as useful weighting factors can be
motivated by considering:

Theorem 3 (Parseval’s theorem)∫ +∞

−∞
|s(t)|2 dt =

∫ +∞

−∞
|s̃(ω)|2 dω. (3.20)

We will not prove this result — we will merely use it.

You should prove this result as one of the assignment problems.

I want to emphasise that everything is perfectly classical, there is not a ~ in sight.

Nevertheless, one can prove the following classical uncertainty relation as an utterly rig-
orous theorem of Fourier transform theory.

Theorem 4 (Classical uncertainty relation)
Let s(t) be an arbitrary signal (classical or quantum), and let s̃(ω) be its Fourier transform.

Let ∆t and ∆ω be as defined above.

Then

∆ω ×∆t ≥ 1

2
. (3.21)

Proof: The proof is deferred for now. You can find it a few pages further along in these
notes, or at several places on the internet, (use Google), or you can adapt various proofs
of the Heisenberg uncertainty relations from physics textbooks, by stripping out all the
irrelevant ~’s and dropping all irrelevant references to energy and momentum.

You will effectively prove this result, in stages, as assignment 1.

There is of course nothing special about the use of time and frequency as our Fourier
transform variables, we could just as easily work with position and wave-number. That
is, consider a position-dependent signal s(x) and its Fourier transform

F : s(x) 7→ s̃(k) =
1√
2π

∫ +∞

−∞
s(x) exp[−ikx] dx (3.22)

F−1 : s̃(k) 7→ s(x) =
1√
2π

∫ +∞

−∞
s̃(k) exp[+ikx] dk (3.23)

Then, suitably defining ∆x and ∆k (and I leave this step as an exercise), we have the
second classical theorem below:
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Theorem 5 (Classical uncertainty relation)
Let s(x) be an arbitrary position-dependent signal (classical or quantum), and let s̃(k) be
its Fourier transform into the wave-number domain.

Let ∆x and ∆k be defined in a manner analogous to ∆t and ∆ω above.

Then

∆k ×∆x ≥ 1

2
. (3.24)

These two classical uncertainty relations are basic theorems of fundamental mathematics
— no physics assumptions have been made. These two theorems also encode about 90%
of what is referred to as the “Heisenberg uncertainty relations”.

Here’s a nice application of the classical uncertainty theorem: Since for any signal s(t) we
have

∆ω ×∆t ≥ 1

2
, (3.25)

ask what happens if I try to force B bits per second down a communications channel?

With B bits per second going by, each bit has to be localized in time to within roughly
∆t . 1/(2B) seconds. But then

∆ω &
1

2∆t
&

1

2/(2B)
& B (3.26)

That is, when you Fourier transform any old signal containing B bits per second of
information, it must spread out a distance of at least B in frequency space.

Definition 2 (Bandwidth — physical definition)
For any signal s(t) the bandwidth is defined as the difference between the maximum fre-
quency in the signal and the minimum frequency in the signal.

(For pragmatic reasons it is common practice to approximate this max–min definition
of bandwidth by either FWHM, that is “full width at half maximum” for the Fourier
transformed signal s̃(ω), or by some suitably weighted standard deviation ∆ω.)

The first classical uncertainty theorem then says:

(bit rate) . (bandwidth) (3.27)

In fact, this theorem is so basic and fundamental that in computer science it is now
common to use this as the definition of bandwidth:

Definition 3 (Bandwidth — computer science definition)
Bandwidth is the maximum possible rate at which you can force bits through a communi-
cations channel.



Math 321/322/323: Quantum Physics 26

I hope this has convinced you of the importance and fundamental nature of the classical
uncertainty theorem. Remember — there’s not (yet) a ~ in sight...

3.2 The de Broglie and Einstein relations

Quantum physics enters once you adopt the de Broglie hypothesis and Einstein’s quanti-
zation hypothesis:

Hypothesis 1 (de Broglie waves)
All particles exhibit wavelike properties, and the relation between the energy/momentum
of the particle and the angular-frequency/wavenumber of the associated wave is:

E = ~ ω; and p = ~ k. (3.28)

The de Broglie hypothesis is the converse of Einstein’s quantization hypothesis (an ex-
tension of Einstein’s analysis of the photoelectric effect, which led to the concept of the
photon). In its most general formulation:

Hypothesis 2 (Einstein quantization)
All wavelike excitations exhibit particle-like properties and the relation between the angular-
frequency/wavenumber of the wave and the energy/momentum of the associated particle
is:

E = ~ ω; and p = ~ k. (3.29)

Once we have these relations between angular frequency and energy, and wavenumber
and momentum, we can convert the classical uncertainty relations above (relevant for
arbitrary signals), into the quantum Heisenberg uncertainty relation (relevant now for
specifically quantum excitations).

3.3 The Heisenberg uncertainty principle

Let the signal we are interested in be ψ(t), the value of the Schrodinger wavefunction
at some particular point. We can still define t̄ and ∆t as for a classical signal above.
Since in quantum physics |ψ(t)|2 has the physical interpretation of being proportional to
a probability density, we now have the interpretation that the particle passes by roughly
at time

t̄±∆t (3.30)
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(That is, in a statistical ensemble of identically prepared particles, the average arrival
time is t̄, and the standard deviation in arrival times is ∆t.)

We can still define ω̄ and ∆ω as for the classical signal. The new twist is that, in view of
the Fourier transform formula,

ψ(t) =
1√
2π

∫ +∞

−∞
ψ̃(ω) exp[+iωt] dω (3.31)

the signal can be viewed as a superposition of waves, each of which via the Einstein
quantization hypothesis, corresponds to a particle-like excitation. The average energy of
these particle like excitations is

Ē = ~ ω̄ (3.32)

and the uncertainty in the energy is

∆E = ~ ∆ω (3.33)

(In a statistical ensemble of otherwise identically prepared particles this would be the
standard deviation of the measured energies.) Then, since the classical theorem tells us

∆ω ×∆t ≥ 1

2
, (3.34)

adding quantum physics results in

∆E ×∆t ≥ ~
2
, (3.35)

which is now the quantum Heisenberg uncertainty relation. Note that in this way of
setting things up ∆E and ∆t have very simple physical interpretations:

• ∆E is simply the standard deviation in measured energies.

• ∆t is simply the standard deviation in arrival times.

Similarly for the position-momentum uncertainty relation. We have

p̄ = ~ k̄ (3.36)

for the average momentum, and
∆p = ~ ∆k (3.37)

for the standard deviation in measured momentum.

Then, since the classical theorem tells us

∆k ×∆x ≥ 1

2
, (3.38)
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adding quantum physics results in

∆p×∆x ≥ ~
2
, (3.39)

which is the other quantum Heisenberg uncertainty relation.

Viewed in the light above the Heisenberg uncertainty principle is closely related to signal
processing theory, and in particular to Nyquist’s sampling theorem and Shannon’s theo-
rem on the relationship between channel capacity and bandwidth. With hindsight, given
what was already known about Fourier transforms in 1925, it should have been “obvious”
that the de Broglie relations automatically and immediately lead to the Heisenberg un-
certainty principle. That was not the way Heisenberg’s insight was historically achieved,
at least partly because signal processing theory had not yet been developed to the level
it subsequently was.

(In fact it was one of John Wheeler’s graduate students [yes, the same chap that wrote
your special relativity textbook], Claude Shannon, who was then largely responsible for
laying the mathematical and physical foundations of signal theory.)

3.4 Classical operators and commutators

A classical operator is simply a linear mapping that takes a signal s1(t) to a new signal
s2(t). That is, an operator is a linear mapping on the function space of all possible signals.
Two very important linear mappings are:

t : s(t)→ t s(t) (3.40)

∂t : s(t)→ ∂ts(t) (3.41)

corresponding to “multiplication by t” and “differentiation with respect to t”. Note that
we can evaluate the commutator

[∂t, t] (3.42)

by looking at its action on arbitrary signals:

[∂t, t]s(t) = (∂t t− t ∂t)s(t) = s(t) + t ∂ts(t)− t ∂ts(t) = s(t). (3.43)

That is
[∂t, t] = I (3.44)

Note that this operator statement is purely a mathematical statement about how the two
processes of differentiation and “multiplication by the variable you are differentiating with
respect to” commute with each other. There is — as yet — no quantum physics in this
relation. Similarly in position space we have

[∂x, x] = I (3.45)
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Now let’s see how these classical operators interact with the process of Fourier transfor-
mation.

We have

F [ts(t)] =
1√
2π

∫ +∞

−∞
t s(t) exp[−iωt] dt = i

d

dω

1√
2π

∫ +∞

−∞
s(t) exp[−iωt] dt (3.46)

= i
d

dω
s̃(ω) = i

d

dω
F [s(t)], (3.47)

and similarly (integrating by parts)

F [∂ts(t)] =
1√
2π

∫ +∞

−∞
∂ts(t) exp[−iωt] dt = iω

1√
2π

∫ +∞

−∞
s(t) exp[−iωt] dt (3.48)

= iω s̃(ω) = iωF [s(t)]. (3.49)

More formally we can write this as:

F ◦ t = i
d

dω
◦ F ; F ◦ ∂t = iω ◦ F . (3.50)

There are similar statements that can be made about the inverse Fourier transform process
F−1. Namely:

F−1 ◦ ω = −i∂t ◦ F−1; F−1 ◦ d

dω
= −it ◦ F−1. (3.51)

Similar results hold for a signal that depends on position (which is Fourier transformed
to wavenumber). We collect these results in a theorem regarding classical operators.

Theorem 6 (Classical operator theorem — time-frequency domain)
Acting on the function space of all time-domain signals S = {s(t)} the classical linear
operators

t : s(t)→ t s(t) (3.52)

∂t : s(t)→ ∂ts(t) (3.53)

satisfy the classical commutation relation

[∂t, t] = I (3.54)

and the intertwining relations

F ◦ t = i
d

dω
◦ F ; F ◦ ∂t = iω ◦ F . (3.55)

F−1 ◦ ω = −i∂t ◦ F−1; F−1 ◦ d

dω
= −it ◦ F−1. (3.56)



Math 321/322/323: Quantum Physics 30

Theorem 7 (Classical operator theorem — space-wavenumber domain)
Acting on the function space of all space-domain signals S = {s(x)} the classical linear
operators

x : s(x)→ x s(x) (3.57)

∂x : s(x)→ ∂xs(x) (3.58)

satisfy the classical commutation relation

[∂x, x] = I (3.59)

and the intertwining relations

F ◦ x = i
d

dk
◦ F ; F ◦ ∂x = ik ◦ F . (3.60)

F−1 ◦ k = −i∂x ◦ F−1; F−1 ◦ d

dk
= −ix ◦ F−1. (3.61)

Some simple theorems (that I will leave to the reader to actually prove, they are part of
the homework exercises) are the shifting and modulation theorems (and their analogues
in the space-wavenumber domain):

Theorem 8 (Shifting theorem)

F [s(t+ t0)](ω) = exp(+iω t0) F [s(t)](ω) (3.62)

You will prove this as part of assignment 1.

Theorem 9 (Modulation theorem)

F [exp(−iω0 t) s(t)](ω) = F [s(t)](ω + ω0) (3.63)

You will prove this as part of assignment 1.

Now introduce some notation:

Definition 4 (Inner product)

〈s1, s2〉 ≡
∫ +∞

−∞
s∗1(t) s2(t) dt (3.64)

〈s̃1, s̃2〉 ≡
∫ +∞

−∞
s̃∗1(ω) s2(ω) dω (3.65)
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Definition 5 (Hermitian operator) A Hermitian operator H satisfies:

〈s1, Hs2〉 = 〈Hs1, s2〉. (3.66)

Definition 6 (anti-Hermitian operator) An anti-Hermitian operator A satisfies:

〈s1, As2〉 = −〈As1, s2〉. (3.67)

Once you have defined this inner product, and these notions of Hermiticity and anti-
Hermiticity, it is easy to check that the operator t is Hermitian (self-adjoint), while ∂t is
anti-Hermitian (anti-self-adjoint).

You will prove this as part of assignment 1.

Remember that a Hermitian matrix satisfies

[(M)∗]T = M, (3.68)

that is, the matrix is equal to the transpose of its complex conjugate.

Similarly, an anti-Hermitian matrix satisfies

[(M)∗]T = −M, (3.69)

that is, the matrix is equal to minus the transpose of its complex conjugate.

These notions extend naturally to (infinity)×(infinity) matrices, and thence to operators
on function spaces.

(The distinction between Hermitian operators and self-adjoint operators is a highly tech-
nical one that has to do with the details of the precise function space you are working
on: square-integrable functions? functions of compact support? whatever? Do not worry
about it for the purposes of this module.)

This anti-Hermitian property for the derivative operator ∂t is why physicists prefer to
work with the operator i∂t, because i∂t is Hermitian due to the presence of the extra
factor i, but this is merely a matter of taste and convenience.

Furthermore (and this might be a little more surprising the first time you see it), in
terms of this inner product the Fourier transform process is unitary linear operator on
signal-space.

Definition 7 (unitary operator) A uinitary operator U satisfies:

〈s1, Us2〉 = 〈U−1s1, s2〉. (3.70)
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Remember that a unitary matrix satisfies

U−1 = U † = (U∗)T (3.71)

This notion extends naturally to (infinity)×(infinity) matrices, and thence to operators
on function spaces.

The equivalent statement for the Fourier transform process (and inverse Fourier transform
process) is that

F−1 = F † = (F∗)T (3.72)

or equivalently (but more formally)

〈s̃1,Fs2〉 = 〈F−1s̃1, s2〉. (3.73)

You will prove this as part of assignment 1.

This is now a quite sufficient quantity of Fourier transform theory to do the job we are
interested in.

3.5 Proof of the classical uncertainty relation

Let s(t) be an arbitrary classical signal. In view of the shifting theorem and modulation
theorem there is no loss in generality in taking t̄ = 0 and ω̄ = 0. (You should easily be
able to convince yourself this is true. Try it. In fact, it’s a homework exercise.)

Now consider the quantity

Q(a, b) = 〈(a t+ b ∂t)s, (a t+ b ∂t)s〉 (3.74)

where a and b are both real.

Since this is the inner product of a vector with itself we know that Q(a, b) ≥ 0. On the
other hand, since t is Hermitian and ∂t is anti-Hermitian

Q(a, b) = 〈s, (a t− b ∂t)(a t+ b ∂t)〉 (3.75)

That is
Q(a, b) =

〈
s,
[
a2 t2 − b2 ∂2

t + ab(t ∂t − ∂t t)
]
s
〉

(3.76)

which simplifies to
Q(a, b) =

〈
s,
(
a2 t2 − b2 ∂2

t − ab [∂t, t]
)
s
〉
. (3.77)

That is
Q(a, b) =

〈
s,
(
a2 t2 − b2 ∂2

t − ab I
)
s
〉

(3.78)
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so that
Q(a, b) = a2 〈s, t2s〉 − b2 〈s, ∂2

t s〉 − ab 〈s, s〉 (3.79)

But by definition (remember, we have already shifted the time coordinate so that t̄ = 0)

(∆t)2 =
〈s, t2s〉
〈s, s〉

(3.80)

and with a few elementary steps (remember ω̄ = 0, and the rest can be obtained from
Parseval’s theorem and simple integral manipulations)

(∆ω)2 =
〈s̃, ω2s̃〉
〈s̃, s̃〉

= −〈s, ∂
2
t s〉

〈s, s〉
(3.81)

The net result is that

Q(a, b) =
{
a2 (∆t)2 + b2 (∆ω)2 − ab

}
〈s, s〉 (3.82)

Consequently for all real a, b we must have:

a2 (∆t)2 + b2 (∆ω)2 − ab ≥ 0 (3.83)

That is

[a ∆t− b ∆ω]2 + 2ab

[
∆t ∆ω − 1

2

]
≥ 0 (3.84)

Since this must hold for arbitrary real a, b we can in particular choose a = ∆ω and
b = ∆t, to deduce

∆t ∆ω ≥ 1

2
. (3.85)

This is what we set out to prove.

Notice that as promised, this is purely a theorem about mathematics — in particular
about Fourier transform theory and signal processing, with not a single ~ in sight.

3.6 Comments

Though the math here is straightforward, even trivial, there is a very important point
here — a lot of what goes on in quantum mechanics is unnecessarily mystical because
people go out of their way to make it look mysterious. In particular, much of what falls
under the rubric of “uncertainty” is a purely classical phenomenon that is not really very
mysterious at all. If you really want mystery, focus on the de Broglie hypothesis and the
Einstein quantization hypothesis — they are in many ways both the essential physical
core and the mathematically trivial part of the Heisenberg uncertainty relations.

Of course it’s possible to extend the considerations of this section in many ways:
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• Classical extensions of these uncertainty relations focus on different and better ways
of estimating (or defining) ∆t and ∆ω.

• You could try to generalize beyond Fourier transforms, maybe to Bessel transforms,
Mellin transforms, or wavelet transforms — I’m not really sure what’s known or not
known on those topics and that might make a nice little research project.

• You might also want to search on the net for “generalized uncertainty relations”.



Chapter 4

Tunnelling

Tunnelling is another one of those things you most likely first learn about when studying
quantum mechanics — and by and large most physicists are taught that tunnelling is
an intrinsically quantum phenomenon. Of course this is complete and utter nonsense;
tunnelling is a wave phenomenon that occurs whenever you are dealing with wavelike
excitations.

The only thing “quantum” about the tunnelling phenomenon is the the de Broglie hy-
pothesis. Whenever you are in a regime where the “wavelike” aspects of your “particles”
are important, then you have the possibility of encountering the tunnelling phenomenon.

But tunneling can occur in situations where the “particle” aspects of your “waves” are
completely negligible. That is, there are purely classical situations in wave physics where
classical tunnelling can and does occur.

Three elementary situations where classical tunnelling occurs (and I’m sure there are
many others) are:

• Sound waves penetrating a window.

• Radio waves penetrating a building.

• Frustrated total internal reflection.

Two of these situations are so simple as to be almost trivial, but “frustrated total internal
refraction” is a nice physical result that merits some attention.

35
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4.1 Sound penetrating a barrier

We have all heard sound waves penetrating a window. And once you stop to think
about it the physics is trivial: Sound waves in air are vibrations in air pressure. The
pressure fluctuations impinge on the window and set it vibrating. These vibrations travel
through the glass and excite pressure fluctuations on the far side of the window. No atoms
penetrate the glass, but the wave proceeds — it may be refracted and attenuated, but it
will get through.

4.2 Radio penetrating a barrier

We have similarly all had the experience of turning on a radio indoors, without external
antenna, which makes it clear that radio waves can penetrating a significant quantity
of building material. And once you stop to think about it the physics is again trivial:
Radio waves have relatively long wavelengths which lets them diffract around hills or
buildings — but equally well the long wavelength implies a significant “skin depth” when
encountering a building. The radio waves may be refracted and attenuated, but a certain
amount of electromagnetic energy will get through. In the visible range the analogous
phrase is “optical depth”.

The fraction of electromagnetic radiation getting through is

exp

[
−
∫
σ dz

]
(4.1)

where 1/σ has units of length and is called the “skin depth” while the dimensionless
integral

∫
σ dz is referred to as the “optical depth”. For a homogeneous slab you can

often approximate this as

optical depth =

∫
σ dz ≈ physical depth

skin depth
(4.2)

These two examples are sufficiently elementary that I think you should now be convinced:

• Tunnelling is fundamentally a wave phenomenon!

4.3 Frustrated total internal reflection

This is a beautiful result of classical physical optics that deserves to be much better known
than it currently is.



Math 321/322/323: Quantum Physics 37

Figure 4.1: Total internal reflection

Figure 4.2: Frustrated total internal reflection

Figure 4.3: Transition from total internal reflection, to frustrated total internal reflection,
to transparency
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4.3.1 Key idea

Frustrated Total Internal Reflection (FTIR) occurs [for example] when a ray of light
travelling through glass strikes an interface at an angle exceeding the critical angle. You
would expect it to be totally-internally-reflected at the glass/air interface.

However, if another piece of glass is placed close to (but not touching) the interface, some
light will evanescently couple through the thin gap and propagate. Both the reflected and
transmitted beams will be affected, depending on the thickness of the gap. In the limit
of the gap having zero thickness, the light will continue as if there were no boundary. In
the limit of a large gap, more than a wavelength or two, then virtually all the light is
internally reflected.

FTIR can also be seen through a experiment that can be done at home. Fill a glass
approximately half way full of water. If you try to see objects just outside the glass by
looking down through the top of the water and out the side, you cannot see anything
because of the total internal reflection at the water–glass interface. However, if you press
your fingers tightly against the glass, you can see the whorls of your fingerprints through
the glass. In this case the air gap is reduced enough so that the electromagnetic waves
can transit into the glass, and from there into the water and air and eventually your eyes.

4.3.2 Reminder: Snell’s law

Reminder: Snell’s law says
n1 sin θ1 = n2 sin θ2 (4.3)

where n1 and n2 are the refractive indices of the two media, and θ1 and θ2 are the angles
between the direction of the light ray (or acoustic ray) and the normal to the interface.

4.3.3 Some technicalities

Here’s a few standard definitions that I extracted from “Eric Weisstein’s world of physics”
(slightly edited for clarity):

Frustrated total internal reflection:
If an evanescent wave (such as that produced by total internal reflection) ex-
tends across a separating medium into a region occupied by a higher index of
refraction material, energy may flow across the boundary. This phenomenon
is known as frustrated total internal reflection, and is similar to quantum
mechanical tunneling or barrier penetration. When transmission across the
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Figure 4.4: Snell’s law

boundary occurs in this manner, the “total internal reflection” is no longer to-
tal since the transmitted wave comes at the expense of the internally reflected
one.

Total internal reflection:
Total internal reflection is the reflection of electromagnetic radiation from the
interface of medium with larger index of refraction n1 with a medium of smaller
index of refraction n2 (with n2 < n1) when making an angle

θ1 > sin−1(n2/n1) (4.4)

to the normal. Total internal reflection can be used to losslessly redirect a
light beam in the direction of its source using a 45◦ − 45◦ − 90◦ prism.

However, there is still an electric field in medium n2, given by

Et(t, x, y, z) = E2 exp
{
−k2z

√
(sin θ1/ sin θ∗)2 − 1

}
cos

(
ωt− k2y

n1

n2

sin θ1

)
(4.5)

where k2 is the wavenumber in medium 2 and θ∗ is the critical angle

θ∗ = sin−1(n2/n1) (4.6)

(See, for example, Bekefi and Barrett 1987, p. 477). Note that this field falls
off exponentially with distance z from the interface, and propagates along the
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interface in the y direction. This disturbance is therefore known as a surface
wave and has phase velocity

v =
ω

k2

(
n1

n2

)
sin θ1

(4.7)

Reference:
Bekefi, G. and Barrett, A. H.
“Electromagnetic Vibrations, Waves, and Radiation”.
Cambridge, MA: MIT Press, pp. 475-483, 1987.

Evanescent wave:
An electromagnetic wave observed in total internal reflection, undersized waveg-
uides, and in periodic dielectric heterostructures. While wave solutions have
real wavenumbers k; k for an evanescent mode is purely imaginary. Evanes-
cent modes are characterized by an exponential attenuation and lack of a phase
shift.

Critical angle:
If the angle of incidence of light on a dielectric medium is greater than a
critical angle θ∗, then the light experiences total internal reflection instead of
refraction. The angle is given by

θ∗ = sin−1(n2/n1) (4.8)

where is the θ∗ angle from the normal, and n1 and n2 are the indices of
refraction of the original and second media, respectively.

For n2 < n1, a ray incident at an angle greater than θ∗ will undergo total
internal reflection. However, it is impossible to satisfy the boundary conditions
if there is no transmission, so a surface (or evanescent) wave must be present.
Beyond the critical angle, both the reflection and transmission coefficients are
complex. If another material is placed near the evanescent wave, frustrated
total internal reflection may occur.

4.3.4 Barrier penetration

Note that with a little work, in particular using Snell’s law, you can re-write the evanescent
wave as:

Et(t, x, y, z) = E2 exp
{
−k1z

√
sin2 θ1 − sin2 θ∗

}
cos (ωt− k1y sin θ1) (4.9)
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Suppose the slab of material n2 has thickness L.

• Temporarily ignoring backscatter from either interface, the electric field just above
the first interface (z = 0+) would be:

Et(t, x, y, 0
+) = E2 cos

(
ωt− k2y

n1

n2

sin θ1

)
. (4.10)

• Again temporarily ignoring backscatter from either interface, the electric field just
below the second interface (z = L−) would be:

Et(t, x, y, L
−) = E2 exp

{
−kiL

√
sin2 θ1 − sin2 θ∗

}
cos

(
ωt− k2y

n1

n2

sin θ1

)
(4.11)

That is:

Et(t, x, y, L
−) = exp

{
−k1L

√
sin2 θ1 − sin2 θ∗

}
Et(t, x, y, 0) (4.12)

• That is, in the approximation where backscatter is neglected, the fraction of electric
field that gets through the slab is

exp
{
−k1L

√
sin2 θ1 − sin2 θ∗

}
(4.13)

This sort of exponential suppression of the wave, depending in L the thickness of the
intermediate region, should remind you very strongly of quantum mechanical barrier
penetration. (Some of you will already have seen the WKB approximation to barrier
penetration.)

(Correctly dealing with backscatter from the interfaces is a little tedious, but does not
greatly affect the details of the discussion.)

4.4 FTIR in acoustics

Remember that Snell’s law also works in acoustics — with the refractive index now being
n = 1/(speed of sound). So total internal reflection also works in acoustics, and likewise
you would expect FTIR to occur in acoustics.

• Acoustic FTIR should occur in fluid-fluid, fluid-solid, and solid-solid interfaces.

• The fluid-fluid case is likely to be the easiest to analyze (only longitudinal sound,
no transverse sound).
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4.4.1 TIR in fluid-fluid acoustics

Let’s consider total internal reflection of sound waves at a fluid-fluid interface.

• Consider a sound wave in a fluid medium (for example, air, water) where the speed
of sound is c1.

It is a standard textbook result that the pressure fluctuations are governed by the
equation

∂2p

∂t2
= c21 ∇2p. (4.14)

Similarly, in a medium where the speed of sound is c2 the pressure fluctuations are
governed by the equation

∂2p

∂t2
= c22 ∇2p. (4.15)

• Now consider a plane wave of angular frequency ω, and wave-vector ~k.

In medium 1 we have
ω2 = c21 ||~k1||2; (4.16)

while in medium 2
ω2 = c22 ||~k2||2. (4.17)

Note that whatever happens to the wave as it crosses from medium 1 to medium 2
the frequency ω must stay the same.

Exercise: Why? This should be obvious, think about it.

• Deduce
c1 ||~k1|| = c2 ||~k2||. (4.18)

Since we are going to get tired of writing ||~k|| all the time, adopt the notation

k = ||~k|| (4.19)

so that
c1 k1 = c2 k2. (4.20)

• Now assume the interface between medium 1 and 2 is the flat plane at z = 0.
Assume that in medium 1 the plane wave is travelling in the direction

k̂1 = (sin θ1, 0, cos θ1); (4.21)

and that in medium 2 the plane wave is travelling in the direction

k̂2 = (sin θ2, 0, cos θ2). (4.22)

The x-component of ~k1 must equal the x-component of ~k2.
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Exercise: Why? This should be obvious, think about it.

That is,
(~k1)x = (~k2)x. (4.23)

Rearrange this to yield
k1 sin θ1 = k2 sin θ2. (4.24)

• We have now obtained the two simultaneous equations

c1 k1 = c2 k2; (4.25)

and
k1 sin θ1 = k2 sin θ2. (4.26)

Solving these linear equations we obtain a version of Snell’s law

sin θ1

c1
=

sin θ2

c2
. (4.27)

(The reason this whole discussion is so much simpler than the electromagnetic case
is that in fluid acoustics there is only one polarization for the sound waves.)

• Suppose c2 > c1. Rewrite Snell’s law as

sin θ2 =
c2
c1

sin θ1 (4.28)

This implies the existence of a critical angle

θ∗ = sin−1(c1/c2) (4.29)

such that for θ1 > θ∗ there is no physical solution for θ2 — that is, no refracted ray
exists.

(Therefore, θ1 > θ∗ corresponds to total internal reflection, which we see can only
occur if you are leaving a “slow” medium to enter a “fast” medium.)

• Using the two simultaneous equations

c1 k1 = c2 k2; (4.30)

and
k1 sin θ1 = k2 sin θ2. (4.31)

it is easy to see that

(~k2)z = k2 cos θ2 = k1
c1
c2

√
1− sin2 θ2 = k1

c1
c2

√
1− c22

c21
sin2 θ1 (4.32)

finally yielding

(~k2)z = k1

√
sin2 θ∗ − sin2 θ1 (4.33)

What happens to (~k2)z in the situation where θ1 > θ∗? It becomes pure imaginary.

And note that if (~k2)z is pure imaginary, then exp(i[~k2]z z) is purely real.
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• In medium 1 we have by assumption a plane wave of the form

p1 exp
[
−i{ωt− ~k1 · ~x}

]
, (4.34)

and in medium 2 a (refracted) plane wave of the form

p(t, ~x) = p2 exp
[
−i{ωt− ~k2 · ~x}

]
. (4.35)

(More precisely, we want the real part of these complex exponentials.)

The measured pressure is after all a real number — but it is a very useful trick to
write it as complex exponential:

p = A exp(iϕ); pphysical = Re(p) = Re(A) cosϕ− Im(A) sinϕ

• In medium 2 the pressure fluctuation can be more explicitly written (in terms of θ1

and other quantities measured in medium 1) as:

p(t, ~x) = p2 exp
[
−i
{
ωt− ||~k1||

(
sin θ1 x+

√
sin2 θ∗ − sin2 θ1 z

)}]
(4.36)

But we still need to determine the amplitude p2.

• To do this we need to recognize that there will also be a certain amount of reflection
from the interface, so that medium 1 will also contain a reflected wave

pR1 exp
[
−i{ωt− ~kR1 · ~x}

]
, (4.37)

where
k̂R1 = (sin θ1, 0,− cos θ1) (4.38)

and
~kR1 = k1 k̂

R
1 = k1(sin θ1, 0,− cos θ1) (4.39)

represents a ray that is now moving back downwards.

• That is, in medium 1 the total pressure fluctuation is

p(t, ~x) = p1 exp
[
−i{ωt− ~k1 · ~x}

]
+ pR1 exp

[
−i{ωt− ~kR1 · ~x}

]
. (4.40)

• At the interface we must satisfy the boundary conditions

p(t, x, y, 0−) = p(t, x, y, 0+) (4.41)

and
∂zp(t, x, y, 0

−) = ∂zp(t, x, y, 0
+) (4.42)

If the first of these conditions is not satisfied then there is an infinite pressure
gradient across the interface. (Infinite force ⇒ infinite acceleration.) If the second
of these conditions is not satisfied, then the wave equation cannot be satisfied at
the interface. (Because ∇2p will contain a delta-function contribution).
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• The first boundary condition implies

p1 + pR1 = p2 (4.43)

while the second implies

(~k1)z
[
p1 − pR1

]
= (~k2)z p2 (4.44)

• To simplify things, let’s agree to write

κ = (~k)z = ~k · ẑ (4.45)

so that the second boundary condition becomes

κ1

[
p1 − pR1

]
= κ2 p2 (4.46)

• Rearrange the first boundary condition to give

pR1 = p2 − p1 (4.47)

and substitute into the second boundary condition

κ1 [2p1 − p2] = κ2 p2 (4.48)

• Rearrange
2κ1p1 = [κ2 + κ1]p2 (4.49)

• That is

p2 =
2κ1

κ1 + κ2

p1, (4.50)

and consequently

pR1 =
κ1 − κ2

κ1 + κ2

p1. (4.51)

• But we already have
κ1 = k1 cos θ1 (4.52)

and
κ2 = k2 cos θ2 = k1

√
sin2 θ∗ − sin2 θ1 (4.53)

so that

p2 =
2 cos θ1

cos θ1 +
√

sin2 θ∗ − sin2 θ1

p1 (4.54)

which implies that in medium 2

p(t, ~x) = p1
2 cos θ1

cos θ1 +
√

sin2 θ∗ − sin2 θ1

× exp
[
−i
{
ωt− k1

(
sin θ1 x+

√
sin2 θ∗ − sin2 θ1 z

)}]
(4.55)

This finally is our complete solution for the pressure fluctuation in medium 2, in-
cluding the effects of the backscattered reflected wave in medium 1.
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• What fraction of the acoustic power is transmitted through the interface? It is a
standard result that for plane waves the power flux in the ẑ direction is proportional
to

P ∝ Re

(
p∗ p

c

[
k̂ · ẑ

])
= Re

(
p∗ p

c
cos θ

)
(4.56)

Hence the transmitted power is

P2 ∝ Re

(
p∗2 p2

c2
cos θ2

)
∝ Re (p∗2 p2 k2 cos θ2) = Re (p∗2 p2 κ2) (4.57)

while the incident power is
P1 ∝ Re (p∗1 p1 κ1) (4.58)

• If θ1 > θ0, so that total internal reflection occurs, then κ2 is pure imaginary, and
P2 → 0. In general the transmission coefficient is

T =
P2

P1

=
Re (p∗2 p2 κ2)

Re (p∗1 p1 κ1)
=

∣∣∣∣ 2κ1

κ1 + κ2

∣∣∣∣2 Re

(
κ2

κ1

)
=

4 Re (κ1κ2)

|κ1 + κ2|2
(4.59)

• We can simplify this to

T =
4 cos θ1 Re

(√
sin2 θ∗ − sin2 θ1

)
∣∣∣cos θ1 +

√
sin2 θ∗ − sin2 θ1

∣∣∣2 (4.60)

• Note that this has all the sensible limits. For θ1 > θ∗ we have T → 0, for c1 = c2
we have T → 1. We can similarly calculate the reflection coefficient

R =
PR

1

P1

=
Re
(
[pR1 ]∗ pR1

)
Re (p∗1 p1)

=

∣∣∣∣κ1 − κ2

κ1 + κ2

∣∣∣∣2 (4.61)

and verify that T +R = 1.

• Note that the reflection and transmission coefficients are very similar to quantum
mechanical scattering on a one-step potential — a problem that many of you will
have seen before.

Exercise: Look up quantum scattering from a one-step potential.

Find formulae for the transmission and reflection coefficients.

Compare them with the above.

Build a suitable translation table for the (two-fluid) ↔ (one-step potential) problems.
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4.4.2 FTIR in fluid-fluid acoustics

• Now introduce a third medium, with speed of sound c3. Assume a third planar
interface at z = L, this now being an interface between medium 2 and medium 3.
(That is, we are considering a three-fluid layered system). It is now trivial to show
that

∂2p

∂t2
= c23 ∇2p, (4.62)

and for a plane wave
ω2 = c23 ||~k3||2. (4.63)

We now have
c1 ||~k1|| = c2 ||~k2|| = c3 ||~k3||; (4.64)

and
||~k1|| sin θ1 = ||~k2|| sin θ2 = ||~k3|| sin θ3. (4.65)

• In medium 3 we must have a transmitted wave

p(t, ~x) = p3 exp
[
−i{ωt− ~k3 · ~x}

]
, (4.66)

where p3 is to be determined.

In medium 2 we now have both transmitted and reflected waves

p(t, ~x) = p2 exp
[
−i{ωt− ~k2 · ~x}

]
+ pR2 exp

[
−i{ωt− ~kR2 · ~x}

]
, (4.67)

where p2 and pR2 are to be determined.

In medium 1 we still have

p(t, ~x) = p1 exp
[
−i{ωt− ~k1 · ~x}

]
+ pR1 exp

[
−i{ωt− ~kR1 · ~x}

]
, (4.68)

where p1 is treated as given, and pR1 is to be determined.

• We now need to apply boundary conditions at both interfaces. At z = 0 we find

p1 + pR1 = p2 + pR2 (4.69)

κ1{p1 − pR1 } = κ2{p2 − pR2 } (4.70)

while at z = L we have

p2 exp[iκ2L] + pR2 exp[−iκ2L] = p3 exp[iκ3L] (4.71)

κ2

{
p2 exp[iκ2L]− pR2 exp[−iκ2L]

}
= κ3 p3 exp[iκ3L] (4.72)

This gives us 4 linear equations for the 4 unknowns pR1 , p2, p
R
2 , p3 in terms of the

known variables p0, κ1, κ2, κ3 and L. Hence we can solve for p3 (this will be part
of the homework, used Maple or Mathematica, or do it by hand) and so determine:

p3 = p1 F (κ1, κ2, κ3, L) (4.73)
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• The transmission coefficient will be

T =
P3

P1

=
Re (p∗3 p3 κ3)

Re (p∗1 p1 κ1)
= |F (κ1, κ2, κ3, L)|2 Re

(
κ3

κ1

)
(4.74)

which expresses everything in terms of the unknown function F (κ1, κ2, κ3, L).

• In the special case n3 = n1 we also have κ3 = κ1 and things simplify a little:

T =
P3

P1

=
Re (p∗3 p3 )

Re (p∗1 p1 )
= |F (κ1, κ2, L)|2 . (4.75)

• If we now explicitly calculate the function F (κ1, κ2, κ3, L), you will find reflection
and transmission amplitudes that are completely equivalent to that of a quantum
mechanical particle incident on a two-step potential.

4.5 Comments

• Tunnelling is a wave phenomenon, not intrinsically a quantum phenomenon.

• Of course, since it is a wave phenomenon, regardless of the detailed physical situation
you are likely to wind up with very similar partial differential equations [PDEs] to
solve — typically second-order.

• Once you apply various symmetries, you are likely to be able to reduce things to a
one-dimensional ordinary differential equation [ODE], very often of the form:

ψ′′(x) +K2(x) ψ(x) = 0 (4.76)

In quantum mechanics K(x) will depend on the potential V (x) the particle is placed
in, whereas for electromagnetism K(x) will depend on the local refractive index.
Then the actual mathematical problems to be solved are very similar.

• Where does quantum physics enter? As soon as you adopt the de Broglie hypothesis
then particles have wavelike aspects. But, as we have just seen, any wave process,
classical or quantum, exhibits tunnelling. So, as soon as you adopt the de Broglie
hypothesis, quantum mechanical particles must exhibit tunnelling.



Chapter 5

One-dimensional scattering

Scattering theory in one space dimension is a lovely subject that is mathematically sim-
ple, physically transparent, and still contains numerous interesting results. We will be
interested in the Schrodinger equation

− ~2

2m

d2

dx2
ψ(x) + V (x) Ψ(x) = E ψ(x). (5.1)

in situations where the potential V (x) is zero outside of a finite interval — mathematically
we are looking at potentials of compact support.

In any region where the potential is zero we simply need to solve

− ~2

2m

d2

dx2
ψ(x) = E ψ(x). (5.2)

for which the two independent solutions are

exp(±ikx); k =

√
2mE

~
(5.3)

or more explicitly

exp

{
±i
√

2mE

~
x

}
(5.4)

To the left of the potential we have

ψL(x) = a exp(ikx) + b exp(−ikx) (5.5)

while to the right of the potential we have

ψR(x) = c exp(ikx) + d exp(−ikx) (5.6)

49
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Even without knowing anything more about the potential V (x), the linearity of the
Schrodinger ODE guarantees that there will be some 2× 2 matrix M (typically called a
transfer matrix) such that [

c
d

]
= M

[
a
b

]
(5.7)

This transfer matrix relates the situation to the left of the potential with the wave-function
to the right of the potential. We might use this formalism, for instance, to think about the
propagation of electrons down a wire (approximately one-dimensional) with V (x) used to
describe various barriers placed in the path of the electron.

(Similar matrices also occur in classical optics, where they are referred to as “Jones
matrices”.)

The components of the transfer matrix M will be some horrible nonlinear function of the
potential V (x), but by linearity of the Schrodinger ODE these matrix components must
be independent of the parameters a, b, c, and d. In some particularly simple situations we
may be able to calculate the matrix M explicitly, but in general it will be a complicated
mess. Nevertheless we may be able to prove some general theorems about this matrix,
and that is what this chapter is all about.

5.1 Physical interpretation of the transfer matrix M

Let’s start with a wave moving in from the left

exp(ikx) (5.8)

which then hits the potential, is partially reflected and partially transmitted. In this case,
on the left of the potential we have

ψL(x) = exp(ikx) + rL exp(−ikx) (5.9)

where rL is the left-moving reflection amplitude and on the right of the potential

ψR(x) = tL exp(ikx) (5.10)

where tL is the left-moving transmission amplitude. This tells us that[
tL
0

]
= M

[
1
rL

]
(5.11)

But since the Schrodinger equation is real, the complex conjugate of any solution is also
a solution. So the solution which on the left has the form

ψL(x) = exp(−ikx) + r∗L exp(+ikx) (5.12)
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must on the right have the form

ψR(x) = t∗L exp(−ikx) (5.13)

and so we also have [
0
t∗L

]
= M

[
r∗L
1

]
(5.14)

These two matrix equations now imply

M =
1

1− r∗LrL

[
tL −tLr∗L
−t∗LrL t∗L

]
(5.15)

But by conservation of flux we must have1

|tL|2 + |rL|2 = 1 (5.16)

so
1

1− r∗LrL
=

1

1− |rL|2
=

1

|tL|2
(5.17)

whence

M =
1

|tL|2

[
tL −tLr∗L
−t∗LrL t∗L

]
=

[
1/t∗L −r∗L/t∗L
−rL/tL 1/tL

]
(5.18)

Similarly, consider a wave moving in from the right

exp(−ikx) (5.19)

which then hits the potential, is partially reflected and partially transmitted. In this case,
on the right of the potential we have

ψR(x) = exp(−ikx) + rR exp(+ikx) (5.20)

where rR is the right-moving reflection amplitude and on the left of the potential

ψL(x) = tR exp(−ikx) (5.21)

where tR is the left-moving transmission amplitude. This tells us that[
rR
1

]
= M

[
0
tR

]
(5.22)

Again, since the Schrodinger equation is real, the complex conjugate of any solution is
also a solution. So the solution which on the left has the form

ψL(x) = t∗R exp(+ikx) (5.23)

1In particular, if r = 0 then |t| = 1. Similarly, if t = 0 then |r| = 1.
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must on the right have the form

ψR(x) = exp(+ikx) + r∗R exp(−ikx) (5.24)

whence [
1
r∗R

]
= M

[
t∗R
0

]
(5.25)

But now these two matrix equations imply

M =

[
1/t∗R rR/tR
r∗R/t

∗
R 1/tR

]
(5.26)

Combining the information from left moving and right moving cases we have first that

tL = tR (5.27)

and secondly that
rR
tR

= −r
∗
L

t∗L
(5.28)

implying

rR = −r∗L
tL
t∗L

; |rR| = |rL| (5.29)

Note that we cannot in general deduce rL = rR, indeed in general this is false.

So for any potential we have

T = |tL|2 = |tR|2; R = |rL|2 = |rR|2 (5.30)

implying that the transmission and reflection coefficients are independent on whether
or not the particle is incident from the left or the right — and we have not made any
assumption here about any symmetry for the potential V (x) itself. We conclude

M =

[
1/t∗ −r∗L/t∗
−rL/t 1/t

]
=

[
1/t∗ rR/t
r∗R/t

∗ 1/t

]
. (5.31)

Note that the M -matrix has the general form

M =

[
α∗ β∗

β α

]
. (5.32)

Exercise: Verify that with this notation

|α|2 − |β|2 = 1. (5.33)
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Exercise: Explore the relationship between the M -matrix and the so-called Bogoliubov
coefficients that you may have run across in other contexts.

5.1.1 Special case: Definite parity

A special case arises if the potential happens to have definite parity

V (−x) = ±V (x), (5.34)

then whenever ψ(x) solves the Schrodinger ODE, so does ψ(−x). But this means that
the solution whose left and right limits are

ψL(x) = exp(+ikx) + rL exp(+ikx) (5.35)

ψR(x) = tL exp(+ikx) (5.36)

gives rise to
ψL(−x) = exp(−ikx) + rL exp(+ikx) = ψ̃R(x) (5.37)

ψR(−x) = tL exp(−ikx) = ψ̃L(x) (5.38)

whence
rR = rL; tR = tL. (5.39)

So a potential of definite parity (either even or odd) does have simple left-right symmetry
in the scattering amplitudes (not just the scattering coefficients). In this case we have

(r/t)∗ = −r/t (5.40)

implying that r/t is pure imaginary — the amplitudes r and t must be 90◦ out of phase,

r = ±i|r| t
|t|
, (5.41)

and

M =

[
1/t∗ −r∗/t∗
−r/t 1/t

]
=

[
1/t∗ r/t
r∗/t∗ 1/t

]
. (5.42)

Notation: Remember that for an arbitrary complex number z = x+ iy = reiφ.

The modulus is r =
√
x2 + y2 and the phase is φ = tan−1(y/x).

5.2 Simple examples

Here’s a few cases where everything can be solved analytically.
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5.2.1 Delta-function potential

Take V (x) = Γ δ(x), and consider a wave incident from the left

ψL(x) = exp(+ikx) + r exp(−ikx); ψR(x) = t exp(+ikx) (5.43)

with

k =

√
2mE

~
(5.44)

Then the wave-function must be continuous at x = 0 and integrating the Schrodinger
equation across the delta function

− ~2

2m

[
ψ′(0+)− ψ′(0−)

]
+ Γψ(0) = 0 (5.45)

This implies
1 + r = t (5.46)

and

− ~2

2m
[ik(1− r)− ikt] + Γt = 0 (5.47)

whence

− 2ik(1− t) +
2mΓ

~2
t = 0 (5.48)

That is

t =
2ik

2ik + 2mΓ/~2
=

k

k − imΓ/~2
(5.49)

and the transmission coefficient is

T =
k2

k2 + (mΓ/~2)2
(5.50)

Note that T (k = 0) = 0 and that as the momentum increases T (k → ∞) → 1 smoothly
and monotonically. Such simple smooth monotonic behaviour is actually the exception,
not the rule.

Note that

r = t− 1 =
−imΓ/~2

k − imΓ/~2
(5.51)

so that r and t are 90◦ out of phase, as expected for this even parity potential.

Let’s write

k0 =
mΓ

~2
(5.52)

so that

t =
k

k − ik0

; r =
−ik0

k − ik0

(5.53)
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and we see

M =

[
1 + ik0/k −ik0/k
ik0/k 1− ik0/k

]
= I +

ik0

k

[
1 −1
1 −1

]
(5.54)

Exercise: Calculate det(M) and tr(M) for this particular potential. ♦

5.2.2 Two delta-function potentials

Now consider the potential

V (x) = Γ [δ(x− a) + δ(x+ a)] (5.55)

consisting of two symmetrically placed delta functions. For a particle incident from the
left we now have

ψL(x) = exp(+ikx) + r exp(−ikx); ψR(x) = t exp(+ikx); (5.56)

ψinner(x) = A exp(+ikx) +B exp(−ikx); (5.57)

where now we also have to consider the inner region between the two delta-functions. Ap-
plying the same sort of boundary conditions we now have four equations. From continuity
at x = −a we have

exp(−ika) + r exp(+ika) = A exp(−ika) +B exp(+ika) (5.58)

while continuity at x = +a implies

A exp(+ika) +B exp(−ika) = r exp(+ika) (5.59)

Integrating across the delta functions leads to

− ~2

2m
{ik[exp(−ika)− r exp(+ika)]− ik[A exp(−ika)−B exp(+ika)]} (5.60)

+ Γ[A exp(−ika) +B exp(+ika)] = 0 (5.61)

and

− ~2

2m
{ik[A exp(+ika)−B exp(−ika)]− ik[t exp(+ika)]}+ Γ[t exp(+ika)] = 0 (5.62)

To reduce clutter it is again useful to define the constant

k0 =
mΓ

~2
(5.63)
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in which case our four boundary conditions become

exp(−ika) + r exp(+ika) = A exp(−ika) +B exp(+ika) (5.64)

A exp(+ika) +B exp(−ika) = t exp(+ika) (5.65)

{ik[exp(−ika)− r exp(+ika)]− ik[A exp(−ika)−B exp(+ika)]}
= 2k0[A exp(−ika) +B exp(+ika)] (5.66)

{ik[A exp(+ika)−B exp(−ika)]− ik[t exp(+ika)]} = 2k0[t exp(+ika)] (5.67)

These are 4 simultaneous linear equations for four unknowns: r, A, B, and t (in terms
of the known quantities k, k0, and a). These can be solved, either by brute force or by
Maple or something similar. A tedious little exercise then leads to

t =
k2

(k − ik0)2 + k2
0 exp(4ika)

(5.68)

r =
2ik0[k cos(2ka)− k0 sin(2ka)]

(k − ik0)2 + k2
0 exp(4ika)

(5.69)

Note that r/t is pure imaginary, in agreement with our general argument regarding definite
parity potentials. Furthermore note that

R = |r|2 ∝ [k cos(2ka)− k0 sin(2ka)]2 (5.70)

and so R = 0 whenever

tan(2ka) =
k

k0

(5.71)

That is, the system exhibits “transmission resonances” where T → 1 and R → 0. If we
work at fixed energy then these resonances occur at equally spaced spatial separation for
the two delta functions, namely:

aresonance =
1

2k

{
tan−1(k/k0) + nπ

}
; n ∈ Z (5.72)

If instead we hold a fixed and vary k then the location of the resonances is determined
by the transcendental equation

k0 tan(2ka) = k (5.73)

and there is no simple formula explicit for finding kresonance(k0, a, n), though there are
various graphical and approximation techniques that give useful information. The ex-
istence of these “transmission resonances” in one-dimensional scattering is in fact very
widespread, it’s not specific to this particular example. A brief computation leads to the
explicit transmission coefficient

T =
k4

k4 + 4k2
0[k cos(2ka)− k0 sin(2ka)]2

(5.74)
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which agrees on the location of the transmission resonances. Finally note T (k → 0)→ 0
and T (k → ∞) → 1. After we look at one more illustrative example we’ll return to the
issue of obtaining some general theorems governing one-dimensional scattering.

Exercise: Calculate the transfer matrix M for this particular potential.

Now calculate det(M) and tr(M) for this particular potential. ♦

5.2.3 Two-step potential

Let Θ(·) be the Heavyside function (step function) and consider the potential

V (x) = V0 Θ(a− |x|) (5.75)

which has width 2a and is zero for |x| > a and equals V0 for |x| < a. (I call this two-step
because it’s one step up and then one step down.) Solving the scattering problem for this
potential is a standard textbook exercise. To the left and right of the barrier we have

ψL(x) = exp(+ikx) + r exp(−ikx); ψR(x) = t exp(+ikx); (5.76)

while inside the barrier itself

ψinner(x) = A exp(+ik0x) +B exp(−ik0x); (5.77)

where k0 is defined by

k0 =

√
2m(E − V0)

~
(5.78)

and we allow the possibility that k0 is pure imaginary (whenever E < V0).

The junction conditions at x = ±a come from the fact that the wavefunction and its
derivative must be continuous at those points. They are similar to (but distinct from) the
previous example and are easily seen to be

exp(−ika) + r exp(+ika) = A exp(−ik0a) +B exp(+ik0a) (5.79)

A exp(+ik0a) +B exp(−ik0a) = t exp(+ika) (5.80)

k[exp(−ika)− r exp(+ika)] = k0[A exp(−ik0a)−B exp(+ik0a)] (5.81)

k0[A exp(+ik0a)−B exp(−ik0a)] = k[t exp(+ika)] (5.82)

These are 4 simultaneous linear equations for the four unknowns r, A, B, and t (in terms
of the known quantities k, k0, and a). These can be solved, either by brute force or by
Maple or something similar. A tedious little exercise then leads to

t =
4kk0 exp(−2i[k − k0]a)

(k + k0)2 − (k − k0)2 exp(4ik0a)
(5.83)
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r =
−2i(k2 − k2

0) sin(2k0a) exp(−2i[k − k0]a)

(k + k0)2 − (k − k0)2 exp(4ik0a)
(5.84)

Again, note that r/t is pure imaginary as expected for a definite parity potential. Note
that the reflection coefficient satisfies

R = |r|2 ∝ sin2(2k0a) (5.85)

so that the barrier becomes completely transparent whenever

sin(2k0a) = 0; a =
nπ

k
; n ∈ Z (5.86)

another example of “transmission resonance”. A brief computation leads to the explicit
transmission coefficient

T =
4k2k2

0

4k2k2
0 + (k2 − k2

0)2 sin2(2ak0)
(5.87)

Note that this agrees on the location of the transmission resonances — at sin(2k0a) = 0.
Finally note that T (k → 0)→ 0 and T (k →∞)→ 1.

Exercise: Calculate the transfer matrix M for this particular potential.

Now calculate det(M) and tr(M) for this particular potential. ♦

Now that we’ve seen these illustrative examples, we’ll use them as a guide as we return
to the issue of obtaining general theorems governing one-dimensional scattering.

5.3 Some general theorems

5.3.1 Translation

What happens to the transfer matrix M if I shift the potential? That is, consider the
shift

V (x)→ Ṽ (x) = V (x− a) (5.88)

Then a solution ψ(x) of the original problem becomes a solution ψ̃(x) = ψ(x− a) of the
shifted problem. Look at what this does to ψL(r) and ψR(r). We deduce

t̃ = t; r̃L = exp(+2iak) rL; r̃R = exp(−2iak) rR; (5.89)

That is, shifting the position of the potential does not affect the transmission amplitude,
but does adjust the phase of the reflection amplitude. That is, for the transfer matrix

Ma =

[
1/t∗ − exp(−2iak) r∗L/t

∗

− exp(+2iak) rL/t 1/t

]
(5.90)
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or equivalently

Ma =

[
1/t∗ exp(−2iak) rR/t

exp(+2iak) r∗R/t
∗ 1/t

]
. (5.91)

We can also write this in terms of matrix multiplication as

Ma =

[
exp(−iak) 0

0 exp(+iak)

]
M0

[
exp(+iak) 0

0 exp(−iak)

]
. (5.92)

Thus, although in general one cannot deduce rL = rR (except when the potential has
definite parity), this translation trick is sufficient to guarantee that there will be some
value of a for which the translated reflection amplitudes satisfy

r̃L = r̃R (5.93)

and once this is done, it follows that r̃/t is pure imaginary, as for potentials of definite
parity. If we have adjusted the location of the potential to force r̃L = r̃R then we shall
say that the barrier is in standard position (more precisely, one of its standard positions).

5.3.2 Composition

Suppose now that the potential is the disjoint sum of two (disjoint) components

V (x) = V1(x) + V2(x) (5.94)

with V1(x) on the left of V2(x). Then transmission through the compound potential can be
considered at two separate processes. (For instance, transmission from the “left” region
to the “central” region, described by V1(x), followed by transmission from the “central”
region to the “right” region, described by potential V2.) Then for the transfer matrices
we have

M = M2 M1 (5.95)

That is: As long as the potentials are disjoint, we can simply multiply the transfer
matrices.

Example:
For a single delta-function at the origin

M = I +
ik0

k

[
1 −1
1 −1

]
(5.96)

Translating the delta function to ±a gives

M+a = I +
ik0

k

[
1 − exp(−2iak)

exp(+2iak) −1

]
(5.97)
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M−a = I +
ik0

k

[
1 − exp(+2iak)

exp(−2iak) −1

]
(5.98)

So for the two-delta function potential we have

M = M+aM−a, (5.99)

which can easily be computed by multiplying 2× 2 matrices.{
I +

ik0

k

[
1 − exp(−2iak)

exp(+2iak) −1

]} {
I +

ik0

k

[
1 − exp(+2iak)

exp(−2iak) −1

]}
.

(5.100)
Indeed, simply by looking at the bottom right corner

1

t
= 1− 2ik0

k
− k2

0

k2
[1− exp(4iak)]. (5.101)

That is

t =
k2

(k − ik0)2 + k2
0 exp(4iak)

, (5.102)

which is exactly the same result we got from directly solving four simultaneous linear
equations.

5.3.3 Transmission resonances

We are now ready to prove a general theorem on transmission resonances. Consider
an arbitrary potential with compact support, and using the translation property of the
reflection amplitude, place the potential in standard position. Call this potential V0(x),
and write the transfer matrix as

M0 =

[
1/t∗0 −r∗0/t∗0
−r0/t0 1/t0

]
=

[
1/t∗0 r0/t0
r∗0/t

∗
0 1/t0

]
. (5.103)

where r0/t0 is pure imaginary.

Now take a second copy of this same potential and translate it a distance a to the right,
producing a potential Va(x). Then

Ma =

[
1/t∗0 − exp(−2iak) r∗0/t

∗
0

− exp(+2iak) r0/t0 1/t0

]
(5.104)

As long as we shift far enough that the potential Va(x) does not overlap with the potential
V0(x) we will have

M = Ma M0 (5.105)



Math 321/322/323: Quantum Physics 61

That is

M =

[
1/t∗0 − exp(−2iak) r∗0/t

∗
0

− exp(+2iak) r0/t0 1/t0

] [
1/t∗0 −r∗0/t∗0
−r0/t0 1/t0

]
(5.106)

That is

M =

[
1/t∗20 + exp(−2iak)|r2

0/t
2
0| −(r0/t

∗2
0 ){1 + [t∗0/t0] exp(−2iak)}

−(r0/t
2
0){1 + [t0/t

∗
0] exp(+2iak)} 1/t20 + exp(+2ika)|r0/t0|2

]
(5.107)

By looking at the bottom left element of the compound matrix we see

r

t
=
r0
t20

{
1 +

t0
t∗0

exp(+2iak)

}
(5.108)

Let the phase of t0 be φ0, that is t0 = |t0| exp(iφ0).
2 Then

r ∝ 1 + exp(2i[φ0 + ak]) (5.109)

Therefore, we can always make the (compound) reflection coefficient r vanish by picking
a value of a such that

2[φ0 + ak] = (2n+ 1)π (5.110)

that is

a =
(n+ 1

2
)π − φ0

k
; n ∈ Z (5.111)

Note the very general nature of this result — any compound barrier constructed out of
two copies of the same potential will have transmission resonances as you vary the distance
between the two copies of the barrier.

By looking at the bottom right element of the compound matrix we see

1

t
=

1

t20
+
r r∗

t t∗
exp(+2iak) (5.112)

which can be rearranged to yield

t =
T0 exp(2iφ0)

1 + (1− T0) exp(2i[φ0 + ak])
(5.113)

and leads (after a bit of algebra) to the transmission coefficient

T =
T 2

0

T 2
0 + 4R0 cos2(φ0 + ka)

(5.114)

The message to take from this is that you can say an awful lot without knowing much
about the details of the potential V (x).

2Whence, if we were to assume a potential of definite parity, r0 = i|r0| exp(iφ0). But we have no
need, nor any particular desire, to make such an assumption.
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5.4 Lessons

• One-dimensional scattering provides a lot of useful examples.

• There is a interesting and general mathematical structure lying behind all of the
special case examples you may have run across as examples in other courses.



Chapter 6

The scattering matrix in
one-dimension

In the previous chapter we considered the transfer matrix M , and developed some general
theorems regarding its behaviour. In this chapter we will briefly consider the related
concept of the scattering matrix — the S matrix.

6.1 Physical interpretation of the S-matrix

The idea now is to rephrase the discussion in terms of incoming and outgoing waves
instead of left-moving and right-moving waves. To the left of the barrier we have:

ψL(x) = ainL exp(ikx) + aoutL exp(−ikx) (6.1)

while to the right of the potential we have

ψR(x) = aoutR exp(ikx) + ainR exp(−ikx) (6.2)

Even without knowing anything more about the potential V (x), the linearity of the
Schrodinger ODE guarantees that there will be some 2 × 2 scattering matrix S such
that [

aoutR

aoutL

]
= S

[
ainL
ainR

]
(6.3)

This scattering matrix relates the incoming modes (directed toward the potential) to the
outgoing modes (directed away from the potential). It is clear that the elements of the
S-matrix will be related to the elements of the M matrix, and that many statements
made about the transfer matrix can be carried over to the S-matrix. (The physics must
ultimately be independent of whether you chose to work with the S-matrix or the transfer
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matrix; of course some questions might be easier to deal with in one formalism or the
other.)

Let’s start with a wave moving in from the left

exp(ikx) (6.4)

which then hits the potential, is partially reflected and partially transmitted. In this case,
on the left of the potential we have

ψL(x) = exp(ikx) + rL exp(−ikx) (6.5)

where rL is the left-moving reflection amplitude and on the right of the potential

ψR(x) = tL exp(ikx) (6.6)

where tL is the left-moving transmission amplitude. This tells us that[
tL
rL

]
= S

[
1
0

]
(6.7)

But since the Schrodinger equation is real, the complex conjugate of any solution is also
a solution. So the solution which on the left has the form

ψL(x) = exp(−ikx) + r∗L exp(+ikx) (6.8)

must on the right have the form

ψR(x) = t∗L exp(−ikx) (6.9)

and so we also have [
0
1

]
= S

[
r∗L
t∗L

]
(6.10)

These two matrix equations now imply

S =

[
tL −r∗L(tL/t

∗
L)

rL tL

]
(6.11)

Similarly, consider a wave moving in from the right

exp(−ikx) (6.12)

which then hits the potential, is partially reflected and partially transmitted. In this case,
on the right of the potential we have

ψR(x) = exp(−ikx) + rR exp(+ikx) (6.13)
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where rR is the right-moving reflection amplitude and on the left of the potential

ψL(x) = tR exp(−ikx) (6.14)

where tR is the left-moving transmission amplitude. This tells us that[
rR
tR

]
= S

[
0
1

]
(6.15)

Again, since the Schrodinger equation is real, the complex conjugate of any solution is
also a solution. So the solution which on the left has the form

ψL(x) = t∗R exp(+ikx) (6.16)

must on the right have the form

ψR(x) = exp(+ikx) + r∗R exp(−ikx) (6.17)

whence [
1
0

]
= S

[
t∗R
r∗R

]
(6.18)

But now these two matrix equations imply

S =

[
tR rR

−r∗R(tR/t
∗
R) tR

]
(6.19)

Combining the information from left moving and right moving cases we obtain the same
results as we deduced via the transfer matrix. First, we have that

tL = tR (6.20)

and secondly that
rR
tR

= −r
∗
L

t∗L
(6.21)

implying

rR = −r∗L
tL
t∗L

; |rR| = |rL| (6.22)

Note that we cannot in general deduce rL = rR, indeed in general this is false.

So for any potential we have

T = |tL|2 = |tR|2; R = |rL|2 = |rR|2 (6.23)

implying that the transmission and reflection coefficients are independent on whether
or not the particle is incident from the left or the right — and we have not made any
assumption here about any symmetry for the potential V (x) itself. We conclude

S =

[
t −r∗L(t/t∗)
rL t

]
=

[
t rR

−r∗R(t/t∗) t

]
. (6.24)
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Exercise: Show that the S-matrix is unitary. That is, define

S† = [S∗]T , (6.25)

and show
S S† = I; that is S−1 = S†. (6.26)

♦

6.2 Lessons

• The S-matrix represents the same physics as the transfer matrix.

• There is again a deep mathematical structure underlying the specific examples you
may have encountered in other courses.

• But I think we have now gone far enough for this particular course....



Chapter 7

Coda

Between these notes and the homework exercises I hope you now have a good feel for
the mathematical structure of quantum physics — and hope that you’ll be interested in
learning more about it.

Cheers
Matt Visser
26 February 2013
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