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Module on Special Relativity: Assignment 6

This last assignment covers chapter 9 of the textbook (“Gravity: Curved
spacetime in action”) — this chapter provides a quick introduction to general
relativity.
The assignment itself is relatively short and straightforward.
Comments:

• If you want to know more about black holes you could take a look at
another book:
Exploring black holes, also written by Taylor and Wheeler.

• You could also sign up for the Math 464 (Differential geometry), and
Math465 (General Relativity and Cosmology) combination for Math
Honours or Physics Honours next year.

• In the appendix to the notes, titled “The poor man’s Schwarzschild so-
lution”, I give a simple introduction to and motivation for the Schwarz-
schild geometry of general relativity.

• It would be silly not to make use of these notes.

• From dark star to black hole:

Almost immediately after Newton formulated his theory of gravity,
there was speculation about the possibility of “dark stars”.

(There are a couple of really old papers by Michell, who you have
almost certainly never heard of, and Laplace, who you very definitely
should have heard of.)

Remember that in Newtonian gravity the escape velocity from a com-
pact body of mass M and radius R is given by:
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This formula is derived simply by conservation of energy, trading off
(Newtonian) kinetic energy for (Newtonian) gravitational potential en-
ergy. Now define

Rdark star =
2GM

c2

Then if R is less than Rdark star, we have vescape greater than c, so that
light cannot escape.

Of course, this logic is completely Newtonian and it is pretty much a
miracle that exactly the same result holds in full-fledged general rel-
ativity (Einstein gravity), up to and including the precise numerical
factor of 2.

In general relativity we just change the name, and call it the Schwarzschild
radius:

RSchwarzschild =
2GM

c2
,

and we say that objects that are smaller than their Schwarzschild radius
are to be called “black holes”.

• If you want a bit of a challenge, look up the article “Heuristic approach
to the Schwarzschild geometry”, which is available as electronic article
number gr-qc/0309072 at the website http://arXiv.org

The formal published article is available as International Journal of
Modern Physics D14 (2005) 2051–2068.

That article pushes these ideas a little further.

• If you want a real challenge, (and this is really tough), try to understand
rotating black holes (Kerr black holes)...

• Now, on with the assignment itself.

— # # # —
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Assignment:

1. Schwarzschild radius: Calculate the Schwarzschild radii for the Moon,
Earth, Jupiter, and Sun.

(You will have to look up a few numbers! Specifically, the masses of
the Moon, Earth, Jupiter, and Sun. You will also need to either find or
already know the numerical value of Newton’s constant and the speed
of light in the SI [metric] system of units.)

Then I want the answer in centimetres/ metres/ kilometres (as appro-
priate), and I want at least 3 significant figures.

2. Schwarzschild radius: Compare these Schwarzschild radii with the
actual radii of these astronomical objects. (You will have to look up a
few numbers! Specifically, the actual radii of the Moon, Earth, Jupiter,
and Sun.)

(a) By what factor would we have to decrease the radius of the Moon,
Earth, Jupiter, and Sun to turn them into black holes?

(b) By what factor would we have to decrease the volume of the Moon,
Earth, Jupiter, and Sun to turn them into black holes?

(c) Do you think this would be easy to do?

3. Schwarzschild radius: It is suspected that the core of our own Milky
Way galaxy contains a super-massive black hole with a mass of about
three million times that of our Sun. Calculate the Schwarzschild radius
of this black hole in kilometres, in light-seconds, in astronomical units,
and in light-years.

4. The flat Earth approximation:

(This is a simpler example of the “poor man” discussion in the notes
available on the website.)

We know that in an inertial frame (free-float frame, free-fall frame) the
invariant interval can be written

ds2 = c2 dt2
FF − dz2

FF ,

(and never mind the x and y directions because we will make the flat
Earth approximation; x and y are taken to be horizontal and the z axis
is taken to be pointing down).
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Then if we drop an inertial frame, starting from z = 0, it picks up a
speed

1

2
v2 = gh

where g ≈ 10 metres/(sec)2 is the usual acceleration due to gravity;
and we are making a non-relativistic approximation that v � c.

Using the fact that we know how quickly a free-fall frame will move with
respect to a fixed frame (solidly bolted to the Earth), use Newtonian
transformations to write dtFF and dzFF in terms of dtfixed and dzfixed.

Now use this to re-write the invariant interval in terms of fixed coordi-
nates, instead of free fall coordinates — you will get a formula similar
to but quite a bit simpler than the one I derived in the notes for the
gravitational field of an isolated point mass.

(The main message you should take from all this is that physics in
non-inertial frames tends to be a lot messier than in inertial frames.)

5. By the way, what is the speed of light in furlongs per fortnight?

(I want at least 3 significant digits in your answer.)
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