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Real symmetric Matrices 
 
To understand the importance of symmetry of a tensor we must make use of one of the most 
useful theorems in linear algebra.  We will deal with it in a general form. 
 
Definition: We extend the concept of orthogonal matrix already developed for 3 x 3 matrices: 
If A is a real square matrix (NxN) with the property that  
 

A A T = A T A = IN 
 
Then we say A is an orthogonal matrix.  (The definition is also extendable to complex 
matrices.) 
 
As before, A T is the inverse of A. 
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Theorem: If a matrix E is a real, symmetric (NxN) matrix, there exists an orthogonal matrix A 
(NxN) such that A T E A  =  Λ , where Λ  is a diagonal matrix, viz: 
 
 Λ =  λ1 , 0, 0, …. 
    0,  λ2 , 0, 0, …. 

  0, 0,  λ3 , 0, 0, …. 
  
 
 
     ………0, 0, 0,  λN 
   

Outline of Proof 
 
The proof follows from a long chain of sub-theorems.  We outline them. 
 
We begin by looking at the Eigenvalues (λ ) and Eigenvectors ( α ) of E.  Recall that these are 
defined by the equation: 
 
 E  α = λ  α         (1) 
 
The condition that there should exist non-trivial eigenvalues and eigenvectors for E is found 
as follows.  Write eqn 1: 
 

E  α  - λ I α    = ( E  -  λ I ) α   =  0     
 
Treat ( E  -  λ I ) as a vector of columns, and multiply this out: 
 
 N 
 Σ    α i  .{ column i of ( E  -  λ I )} =  0  
  i = 1 
 
That is, the column rank of ( E  -  λ I )  is less than N; i.e. ( E  -  λ I )  is singular.  Therefore 
its determinant must be zero. 
 

| ( E  -  λ I ) |  =  0      (2) 
 
Now expanding this determinant gives a polynomial of order N in λ.  The fundamental 
theorem of algebra says that this equation has N (possibly complex) roots, not all of which 
need be distinct. 
 
We can write this polynomial: (λ  - λ 1)(λ  - λ 2)(λ  - λ 3)….(λ  - λ N)  =  0 
 
[NB 'not distinct' means that some of the λ i may be repeated.] 
 
Now for each λ i we can solve for α i : 
 

E  α i = λ i α i       (1a) 
 
Note that if α i satisfies eqn 1a, then so does k α i .  Therefore, to uniquely define the 
eigenvectors,  we adopt the convention that they are of unit length. 
 

 2



(i)  If E is real and symmetric, the λ i are all real. 
 
From eqn 1a, 
 
 α i H E  α i = λ i α i H α i   = λ i , because  α i is unit length. 
 
(where the H denotes the Hermitian - i.e. complex conjugate transpose - of the eigenvector). 
 
Take the Hermitian of the equation: 
 
 α i H E H α i = λ i . 
 
where  λ means complex conjugate. 
 
But E is real and symmetric, so E H = E, so   
 
 α i H E H α i =  α i H E  α i 
 
which means λ i   =  λ i ; i.e. λ i  is real. 
 
(ii) If E is real and symmetric, then there is a real eigenvector for every eigenvalue. 
 
From ( E  -  λ I ) α   =  0 , since ( E  -  λ I ) is real, it follows that the real part of α , α R , must 
satisfy ( E  -  λ I ) α R   =  0. I.e. α R is a real eigenvector.  Since everything is now real, we can 
now revert to T for transpose. 
 
(iii) If E is real and symmetric, the eigenvectors are mutually orthogonal. 
 
First, consider eigenvectors α i and α j associated with distinct eigenvalues λ i and λ j .   
From eqn 1a, 
 α j T E  α i = λ i α j T α i   
and 
 α i T E  α j = λ j α i T α j   
 
Take the Hermitian of the second equation, remembering that the eigenvalues are real: 
 
 α j T E T α i = λ j α j T α i   
 
But E is real and symmetric, so E T = E. Taking differences: 
 
 α j T E T α I  -  α j T E  α i =  0  = λ j α j T α i   -  λ i α j T α i   = ( λ j -  λ i  ) α j T α i    
 
But ( λ j -  λ i  ) ≠ 0 because they are distinct eigenvalues.  Therefore  α i T α j = 0, i.e. the 
eigenvectors are orthogonal. 
 
Second, consider the case where some of the eigenvalues are repeated.  For each repeated 
eigenvalue it can be shown that there is a subspace of R N of dimension equal to the number 
of times the eigenvalue is repeated, in which every vector is an eigenvector corresponding to 
that repeated eigenvalue.  So e.g. if an eigenvalue is repeated 3 times, there is a space R 3 
in which every vector is an eigenvector for that eigenvalue.  The subspace is orthogonal to the 
subspaces corresponding to the other eigenvalues - because we have proved that distinct 
eigenvalues have orthogonal eigenvectors.  In the subspaces, we can find as many orthogonal 
vectors as the dimension of the subspace.  Therefore we can find a set of N  mutually 
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orthogonal, real  eigenvectors for every set of N eigenvalues, but they will not be unique if 
there are repeated roots to | ( E  -  λ I ) |  =  0.  
 
Now write  A = ( α1 ,  α2 ,  ….αN)  

   
i.e. construct a matrix by using the eigenvectors of E as columns.  A is orthogonal by the 
previous result.  Now consider: 
 
 A T E A  = ( α1 , α2 , ….αN ) T E ( α1 , α2 , ….αN )  

 

 = ( α1 , α2 , ….αN ) T (λ 1 α1 , λ 2 α2 , ….λ N αN ) 
 
  =  λ1 , 0, 0, …. 
    0,  λ2 , 0, 0, …. 

 
 
 
     ………0, 0, 0,  λN 

 
   
  = Λ as required.  QED. 
Concept of Continuum 
 
A continuum is a macroscopic model of a material: no atomic or quantum effects!  The 
material is infinitely divisible and smoothly varying except, perhaps, for well defined points 
of discontinuity in the material properties or their gradients.  The material may or may not be 
homogeneous – which means having the same properties at all points within the continuum, 
or within some sub-region of the continuum.  It may or may not be isotropic – which means 
having the same properties in all directions at any point.  These properties are independent.  A 
plum pudding is isotropic but not homogeneous.  A glass-fibre rod is homogeneous but not 
isotropic. 
 
We will often be dealing with small deformations of the continuum.  Experiment shows that 
this assumption is usually necessary to invoke the assumption of elastic behaviour of the 
material.  However, the methods can be extended (with some care) to finite deformations.  
And while we will be concerned with solids, much of the theory can be applied to fluids as 
well. 
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Eulerian and Lagrangian Coordinates 
 
Consider a cuboid of material within a continuum, centred at P0 ( a1

0, a2
0, a3

0) at t = 0. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
After time t = T the continuum has deformed (ie moved, flowed, stretched, rotated) and now 
the matchbox is centred at ( X1, X2, X3) 

x2 

x1 

P0 (x1 = a1
0, x2 = a2

0, x3 = a3
0)  t = 0 

•

x2 •

• 

x3 

x3 

 
 
 
 
 
 
 
 
 

P0 ( X1, X2, X3)  t = T  
 
 
 
 
 

x1  
We can take two views of this.   
 
(1)  We can stand at the origin and watch the matchbox move and deform, describing the 
motion in terms of the (fixed) coordinate system ( x1, x2, x3) and t.  This is called the Eulerian, 
or spatial, system of coordinates. 
 
Or (2)  We could stand at P0 and follow the movement of ‘our’ matchbox, whose motion we 
would regard as a function of the initial position ( a1

0, a2
0, a3

0), t = 0.  So we would write Xi = 
Xi ( a1

0, a2
0, a3

0, t ), i = 1, 2, 3; ai
0 = Xi ( a1

0, a2
0, a3

0, 0 ) being the initial condition. 
 
This system of coordinates, depending on the position within the material, is called the 
Lagrangian, or material, system.  Both have their uses. 
 
We are interested not in the bodily movement of the matchbox, but rather with how it deforms 
with time.  So we will ride on the matchbox to observe its changing shape. 
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The deformation of a continuum 
 
So consider a point P near P0  (within the matchbox).   
 

t = t 
           Q(ai

0 + ui
0) 

P(ai) t = 0 
                        P0(ai

0) 

 
 
 
 
 R(ai + ui) 

  
 
 
 
 
 
In time t, P0 →  Q ,  displacement ui

0 , and P → R, displacement ui.         
 
We shall consider that ui

0 , ui are functions of their starting points P0, P, and t; i.e. we will use 
Lagrangian coordinates.   
 
Now this is a continuum, so we can assume that all movements, etc are smooth.  So expand  
ui ( a1, a2, a3) as a Taylor Series, viz: 
 
 ui ( a1, a2, a3)    = ui

0 ( a1
0, a2

0, a3
0)   

+ ∂ ui ( a1, a2, a3) /  ∂ a1 . (a1 – a1
0 ) 

+ ∂ ui ( a1, a2, a3) /  ∂ a2 . (a2 – a2
0 ) 

+ ∂ ui ( a1, a2, a3) /  ∂ a3 . (a3 – a3
0 ) 

+ terms of order (aj – aj
0 ) 2 

 
[like ½ ∂2 ui ( a1, a2, a3) /∂ a1∂ a2. (a1 – a1

0 ) (a2 – a2
0 ), etc] 

 
for i = 1, 2, 3. 

 
We assume that (aj – aj

0 ) is small, j = 1, 2, 3; so neglect the higher order terms. 
 
Write ∆ aj  =  (aj – aj

0 ) = coordinates of P relative to P0   (for j = 1, 2, 3). 
 
Then to the first order in ∆ aj ,  
            3 

ui ( a1, a2, a3)  -  ui
0 ( a1

0, a2
0, a3

0)   =   Σ    ( ∂ ui / ∂ aj  ) ∆ aj    (3) 
          j = 1  
By the summation convention, in place of eq 3 we would write: 
 

ui ( a1, a2, a3)  -  ui
0 ( a1

0, a2
0, a3

0)   =   ( ∂ ui / ∂ aj  ) ∆ aj    (3a) 
 
Now ui ( a1, a2, a3)  -  ui

0 ( a1
0, a2

0, a3
0) is the displacement of P relative to P0; i.e., relative to  

P0 we see P move by  
 
 ∆ ui   =  (ui – ui

0 ) 
 
So eq 1a now becomes: 
 

∆ ui   =  ( ∂ ui / ∂ aj  )  ∆ aj        (3b) 
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Note that this is a 'proper' index set equation. Moreover ui  is a vector, so by our earlier result 
(∂ ui / ∂ aj ) is a tensor; and ∆ ui  and ∆ aj  are vectors.  So all quantities of eqn (3b) are tensors. 
 
E and W  
 
Now we apply the very useful trick of adding and subtracting a convenient amount to  
( ∂ ui / ∂ aj  ): add and subtract ½ ( ∂ uj / ∂ ai  ) - 
 

∆ ui   =  ( ∂ ui / ∂ aj  + ½ ∂ uj / ∂ ai   - ½  ∂ uj / ∂ ai  )  ∆ aj      
 
divide ( ∂ ui / ∂ aj  ) in half and rearrange: 
  
  =  ( ½ ∂ ui / ∂ aj  + ½ ∂ uj / ∂ ai   + ½ ∂ ui / ∂ aj - ½  ∂ uj / ∂ ai  )  ∆ aj  
so: 
 
 ∆ ui   =  ( ½ ∂ ui / ∂ aj  + ½ ∂ uj / ∂ ai  ) ∆ aj + ( ½ ∂ ui / ∂ aj - ½  ∂ uj / ∂ ai  )  ∆ aj   (4) 
 
Now we define the first term in parentheses to the i,j th element of a tensor E; and define the 
second term to be the i,j th element of a tensor W (they are tensors because they are sums of 
derivatives of vectors).  So we can write eq 4 as a tensor equation (still using the summation 
convention): 
 
 ∆ ui   =  E i j ∆ aj + W i j ∆ aj         (4a) 
 
(which applies to each component of ∆ ui , i = 1, 2, 3.) 
 
If we arrange the components of ∆ ui in a column vector  ∆ u =  (∆ u1,  ∆ u2, ∆ u3 ) T   
then we can write eq4a as an equivalent matrix equation: 
 
 ∆ u   =  E  ∆ a + W  ∆ a         (4b) 
 
To recap: eq 4a (or 4b) represents the (small) displacement, relative to P0 , of points near to 
P0, to the first order in ∆ aj . 
 
The meaning of W 
 
First note that E and W are symmetric (E i j  = E j i) and antisymmetric (W i j  = - W j i) 
respectively, by construction.  This means, for W, that since W i i  = - W i i  for each i, then  
W i i = 0, ie  
 

W  =  0 W 1 2 -W 3 1 
-W 1 2 0 W 2 3 
W 3 1 -W 2 3 0 

 
Ie W has only three independent components (there is a reason for writing it this way with 
these signs!) 
 
So define   
 

ω = - (W 2 3 , W 3 1 , W 1 2 )T  
 
(Note the order! 1st component is W2 3 , rest follow cyclically.) 
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ω is called the associated vector of W.  Now consider  
 

W ∆ a = 0 W 1 2 -W 3 1 ∆ a 1  
-W 1 2 0 W 2,3 ∆ a 2  
W 3 1 -W 2 3 0 ∆ a 3  

 
 

 =   W 1 2 . ∆ a 2  -     W 3 1 . ∆ a 3  
-W 1 2 . ∆ a 1   +      W 2 3 . ∆ a 3  
  W 3 1 . ∆ a 1   -       W 2 3 . ∆ a 2  

 
Which looks like a cross product; indeed – 
 

W ∆ a = det   x 1   x 2 
   x 3 

   
-W 2 3 -W 3 1 -W 1 2  
  ∆ a 1   ∆ a 2   ∆ a 3  

 
  =   ω  X  ∆ a 
 
(NB by x i  we mean the unit vector in the direction of the x i  axis.) 
 
So the W effect of the deformation on ∆ a is the same as that produced by a cross product 
with the associated vector. 
 
We can interpret ω  X  ∆ a easily.  Recall that a cross product is a vector perpendicular to both 
ω and  ∆ a, and it is small by assumption.  So ω  X  ∆ a represents a component of ∆ u (the 
displacement of the vector ∆ a ) at right angles to ∆ a and ω : 

ω  X  ∆ a 

θ 

 
 
 
 

  
 
 
 
 
 
 
 
 
From the figure, ω  X  ∆ a r
in the limit as  t  → 0 , or  ∆
 
So we can interpret W ∆ a (
continuum, relative to the r
rotation is 
 

φ =   | ω  X  ∆ a |/ (
 
where θ is the angle betwee
information about the rotati
surface, we cannot by conv

 

ω

∆ a 

P0 

epresents a rotation of the end of  ∆ a about the vector ω ; at least, 
 u →  0. 

which is the same as ω  X  ∆ a) as a (rigid) rotation of the 
eference point P0 as origin, about an axis ω at P0.  The amount of 

 sin θ | ∆ a | )  =  | ω | (true for φ small). 

n ω and ∆ a .In practical problems, we may or may not have 
on.  Eg, if we are interested in the deformation of the Earth’s 
entional terrestrial surveying estimate how much rotation has 
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occurred, unless we have measurements of some quantity relative to an external frame of 
reference – such as astronomical observations, Global Positioning System, or palaeomagnetic 
observations that show the rotation relative to the Earth’s magnetic pole. 
 
More about rotations 
 
First, we can use the alternating tensor to write the cross product, so: 
 
 ω  X  ∆ a  =   ε i  j k ω j ∆ a k 
 
Since we can rotate our coordinate system to any orientation we please without ‘upsetting’ 
our physical quantities, rotate it so that ω becomes the x 3 axis.  Now a rotation of the body 
about the x 3 axis by φ is described by the orthogonal matrix R 
 
 R = cos φ -sin φ 0 
   sin φ cos φ 0 
   0 0 1 
 
If φ is small, then sinφ  ~ φ, and cosφ  ~ 1 (to the first order in φ ). So: 
 
 Rφ ~ 1 -φ 0 (to the first order in φ ) 
   φ 1 0 
   0 0 1 
 
ie a position ∆ a in the body is rotated to  ∆ a ′ given by: 
 
 ∆ a ′i = Rφ i  j ∆ a j = ∆ a 1 -  φ ∆ a 2   (5) 
      ∆ a 2 + φ ∆ a 1 
      ∆ a 3  
 
From the previous result: 
 
 ∆ a ′i = ∆ a i +   φ ε i  j  k (x 3)j ∆ a k 
  
x 3 = (0, 0, 1) T , so this gives: 
 
 ∆ a ′i = ∆ a i +   φ ε i  3 k ∆ a k 

 

  = δ i  k  ∆ a k + φ ε 3 k i ∆ a k   (cyclic permutation of indices of φ ε i  j  k ) 
 

  = ( δ i  k + φ ε 3 k i ) ∆ a k    
  
which, by inspection, corresponds to eqn 5.  We shall want this formulation of rotation in a 
moment. 
 
The strain tensor E 
 
What kinds of displacement can a continuum undergo?  There are only three: Displacement of 
the origin - which we have eliminated by moving with P0 – Rotation, represented by W, and 
Distortion – ie change  of shape and/or volume. 
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Therefore, since E + W described the whole (Lagrangian) displacement, the Distortion must 
be described by E. 
 
[NB: we could prove that no part of E could contribute to a further rotation, by showing that 
rotations are only represented by antisymmetric matrices.  An exercise for the reader!] 
 
We will call E the strain of the continuum.  We have already shown that it is a tensor.  
Remember that E is symmetric. 
 
Strain tensor E in a new coordinate system 
 
Since E is real and symmetric, by the theorem for real symmetric matrices there exists an 
orthogonal (3 x 3) transformation A which gives  
 

A T E A  =  Λ        (6) 
 
where Λ  is a diagonal, 3 x 3  matrix whose entries are the eigenvalues of E.  By the theorem, 
E completely determines A.  We know from our discussion of transformations in Part 1 that 
the columns of A = (α1 ,   α2 ,  α3 ) can be interpreted as a new set of axes. 
 
The tensor transformation corresponding to eqn 6 is written: 
 
 Λ i  j = E ' i  j =  a i  p a i  q E p  q     (6a) 
 
where a i  p = A p  i .   
So an equivalent statement of the theorem, as it applies to any real symmetric second order 
tensor E, is that we can find a coordinate system, from the eigenvectors of E, in which the 
tensor is a diagonal tensor.  This is clearly a convenient form to work with (three quantities to 
deal with instead of 6).  Moreover, by the Fundamental Principle the properties of the tensor 
are unaltered by the coordinate system.  Therefore we are perfectly at liberty to choose to 
operate in this convenient coordinate system. 
 
We can thus use the (α1 ,   α2 ,  α3 ) coordinate system to describe the deformation of the 
continuum.  Make the transformations to the new system: 
 
 ∆a → A T ∆a  =   ∆a ',  
   

∆u → A T ∆u  =   ∆u '. 
 
so that the strain part of the displacement equation: 
 
 ∆u = E  ∆a 
 
becomes: 
 
 A T ∆u = A T E  ∆a 
 

 = A T E  ( A A T )  ∆a    (because A A T = I)  
 
 = (A T E A )(A T ∆a) 

 
ie ∆u ' = Λ  ∆a ' 
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ie ∆u ' = λ1 , 0,  0     ∆a ' 
    0,  λ2 , 0   

0,  0,   λ3  
    

is the equation that describes the strain deformation of the continuum in this coordinate 
system.  As noted before, we have the simplified circumstances that Λ is a diagonal matrix. 
 
The axes (α1 ,   α2 ,  α3 ) are called the Principal Axes of the deformation and the diagonal 
elements λ1 , λ2 ,  and λ3 are called the Principal Strains. 
 
Deformation of a unit sphere 
 
It is easy to analyse the effect of Strain using the Principal Axes system, where (dropping the 
primes ') 
 
 ∆u  = Λ  ∆a          (7) 
 
 Λ = λ1 , 0,  0          (7a) 
    0,  λ2 , 0   

0,  0,   λ3  
    

 
So now consider an imaginary sphere (like our imaginary matchbox), of radius 1, embedded 
in the continuum at t = 0. 
 
 
 
 
 
 
 
Any point on the sphere, at  ∆a , satisfies ∆a1

2  + ∆a2
2  + ∆a3

2  =  1 at t = 0.  After deformation 
(t = T), the point at ∆a has been moved to ∆a'  = ∆a  +  ∆u . 
 
 ∆u is given by eq 1: 
 
 ∆u  = Λ  ∆a           
 
  = λ1  ∆a1 
   λ2  ∆a2 

   λ3  ∆a3 
 
So ∆a'   =  ∆a   +   ∆u . 
 
  = (1  +  λ1  ) ∆a1 
   (1  +  λ2  ) ∆a2 

   (1  +  λ3  ) ∆a3 

Po

| ∆a | = 1 

 
So  ∆a1

2  + ∆a2
2  + ∆a3

2    
 

=   [ ∆a1' / (1  +  λ1  )] 2  + [ ∆a2' / (1  +  λ2  )] 2  + [ ∆a3' / (1  +  λ3  )] 2   =  1 
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which is the equation of an ellipsoid, whose Principal Axes align with the Principal Axes of 
Strain, and whose semi-axes are: 
 
  (1  +  λ1  ) ,   (1  +  λ2  ) ,   (1  +  λ3  )    
 
Suppressing one dimension (and exaggerating the strain, which is small): 
 
 

1

(1  +  λ2  ) 
 
 
 
 
 
 
 
 

(1  +  λ1  )  
 
 
Several results follow: 
 
(i) If λ2  , λ3   =  0, λ1  ≠  0, then the only deformation is in the x1 direction, where a  
length L is deformed to a length (1  +  λ1  ) L, so the fractional change in length (ie the 1-D 
strain) is: 
 
 [(1  +  λ1  ) L  -  L  ] / L = λ1   
 
That is, λ1  is the strain according to the usual 1-D definition of strain. 
 
Notice that an extension is positive and a contraction negative. 
 
(ii) The fractional change in volume – or the volumetric strain, called the Dilatation - 
 

=  (volume of ellipsoid – volume of sphere)/(volume of sphere) 
 
= ( 4/3 π (1  +  λ1  ) (1  +  λ2  ) (1  +  λ3  )  -  4/3 π 13 )/ (4/3 π 13) 
 
= (1  +  λ1  ) (1  +  λ2  ) (1  +  λ3  )  -  1 

 
If (as we usually assume) the strains are small compared to 1, then we can ignore terms like 
λ1 λ2  in the expansion of (1  +  λ1  ) (1  +  λ2  ) (1  +  λ3  ).  So the Dilatation is approximately: 
 

 = (1  +  λ1    +  λ2    +  λ3  )  -  1 
 
 =  λ1    +  λ2    +  λ3 

 
which is the Trace of  Λ.  
 
Invariants of E 
 
We need to go back a bit and consider more of the consequences of the equation 6: 
 
 A T E A   =   Λ  
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The columns αi of A are the eigenvectors of E corresponding to eigenvalues λi .  So we can 
find the eigenvalues of E, i.e. the Principal Strains, by solving the Characteristic Equation: 
  
 |  E  -  λ I  |  =  0   
 
That is (remembering that E is symmetric!): 
 
 E11 - λ  E12  E13  = 0 
 
 E12  E22 - λ  E23 
 
 E13  E23  E33 - λ 
 
ie   (E11 - λ ) [ (E22 - λ) (E33 - λ) - E23 2]  

+ E12 [E13 E23  - E12 (E33 - λ)]   
+ E13 [E12 E23 - E13 (E22 - λ )]    =  0 

 
ie   - λ3    

+ λ2 [E11 + E22 + E33 ]   
+ λ [E12

2
     +  E13

2  +  E23
2

  -  E11 E33  -  E11  E22    -  E11
 E33]   

+ [E11E22E33  +  E12  E13  E23  + E13  E12  E23 - E23
2 E11 -  E12

2 E33  -  E13
2  E22 ]  = 0 (8) 

 
which is of course a cubic, which will in general have three complex roots.  As we have seen, 
E being symmetric guarantees that the roots are real.  Note that the coefficient of λ2  is Trace 
(E) and that the coefficient of λ0 (=1) is | E |. 
 
Now since eq 8 has three real roots (call them λ1  , λ2  , λ3 ), we can write eq 8 equivalently as: 
 

  - (λ  -  λ1  ) (λ  -  λ2  ) (λ  -  λ3  )  =  0 
  
which is identically equal to eq 8.  Compare the multipliers of λ2 : 
 

 λ1    +  λ2    +  λ3  =  E11 + E22 + E33 
 
This must be true for any coordinate system ie the Trace of E is invariant to changes of 
coordinates, and is indeed called an invariant of E.  The multipliers of λ1 and λ0 are similarly  
invariants of E. 
 
However, our particular interest is in Trace (E) which we have just proved to be equal to the 
dilatation in every coordinate system. 
 
Deviatoric Strain 
 
Put δ (for dilatation)  =  λ1    +  λ2    +  λ3  =  E11 + E22 + E33 

 
And subtract δ/3 I from E to make E * : 
 
 E = (E  -  δ/3 I)   +  δ/3 I 
 
  =  E *  +  δ/3 I 
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E *  is called the Deviatoric Strain.  Note that Trace (E *) = Trace (E) – 3 x δ/3 = 0; ie the 
dilatation of E * is 0.  So E * describes the deformation of the continuum without volume 
change. 
 
Now: A T E A   =   Λ  = A T (E *  + δ/3 I ) A   
     = A T E *A  + A T δ/3 I  A   
     = A T E *A  + δ/3  A T A   
     = A T E *A  + δ/3  I   
 
So:  A T E *A   = Λ  - δ/3  I    
 
   = λ1 –δ/3  0  0      
     0    λ2 – δ/3  0   

0    0     λ3 – δ/3 
 
 
which is diagonal.  So E and E * have the same Principal Axes. 
 
General equation for the Principal Axes in Plane strain 
 
We shall now consider the components of E in a plane.  If there is no deformation in the 3rd 
direction, this is called Plane Strain.  It has engineering applications e.g. in assessing the 
deformation of sheets of materials, and in the deformation of the Earth. 
 
We assume that there is no deformation in the a3 direction, nor dependence of strain in any 
other direction on the a3  direction.  So: 
 
 E = E11 E12 0 
   E12 E22 0 
   0 0 0 
 
And we solve: 
 
 E α = λ α, ie 
 
 E11 E12 0 α1 = λ α1   (9) 
 E12 E22 0 α2  λ α2  
 0 0 0 α3  λ α3  
 
The last row gives 0 = λ α3 .  Therefore α3 = 0, since λ ≠ 0 .  So the Principal Axes with non-
trivial λ ≠ 0 lie in the a1 , a2 plane.  The third one is perpendicular to them, and must 
therefore be a3.  So in the case of Plane Strain we can suppress the 3rd row and column of E . 
 
Then the first two rows of  eq 4 give: 
 

E11 α1 + E12 α2  = λ α1    (10a)  
E12 α1 + E22 α2  = λ α2    (10b) 

 
Dividing (10a) by α1 and (10b) by α2 and equating: 
 

E11  + E12 α2  /α1 =  λ  = E22  + E12 α1  /α2  (11) 
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Now α2  /α1 = tan φ ; 
 
 
 
 
 
 
 
 
 
 
which is the tangent of the angle between the Princi
want.  Substitute α2  /α1 = tan φ   in eq 11: 
 

E11  + E12 tan φ = E22  + E
 
So: tan φ (E11  - E22)  = E12  (1 - tan 2 φ  )   
 
Therefore: 
 
 2 tan φ / (1 - tan 2 φ  )  =  2 E12 / (E11  - E22 )
 
Now the LHS is tan 2 φ . 
 
So: φ  =  ½ tan -1 { 2 E12 / (E11  - E22 ) }  
 
is the angle that (one of) the Principal Axes makes w
remembering.  Note that tan 2 (φ  +  π/2 ) = tan ( 2 φ
 
ie  φ  +  π/2  is also a solution of eq 12 which, of cou
Axis at π/2 to the first Principal Axis. 
 
Isotropic Tensors 
 
A material is isotropic if its physical properties are t
we measure the extension of a steel plate in respons
in different directions, we would expect the strain to
expect the steel to be isotropic. Glass is isotropic, w
 
Isotropy is an important property of materials and fi
to spend a little time characterising isotropic tensors
 
Precisely, we say that a tensor is isotropic if its com
(rotational) orthogonal transformations.  Like the pr
the tensor in different orientations, we get the same 
 
Isotropic tensors of zero rank. 
 
These are scalars, which are the same in every coord
rank is isotropic. 
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α 

φ 

pal Axis and the a1 axis, which is what we 

a1 

12 / tan φ  (11a) 

  

  (12) 

ith the a1 axis.  This useful result is worth 
  +  π)  =  tan 2 φ  =  2 E12 / (E11  - E22 )  

rse, gives the angle of second Principal 

he same in any direction.  For example, if 
e to a force of the same magnitude applied 
 be the same in each case.  We would 
ood is not.   

elds described by tensors, so we are going 
. 

ponents are unaltered in value by 
operties of a steel plate, if we determine 
components. 

inate system.  So every tensor of zero 



Isotropic tensors of rank 1. 
 
Let vector v be isotropic.  Since it is a tensor, then 
 
 v 'i =   a i  j v j      (1) 
 
for any orthogonal rotation a i  j .  Since it is isotropic, we require 
 
 v 'i = v i 
 
for any orthogonal transformation.   
 
Therefore consider a 180 degree rotation about the x 1 axis: 
 
 a180 i  j = 1 0 0 
   0 -1 0 
   0 0 -1 
 
From eqn 1, 
 v '2 = -  v 2 

v '3 = -  v 3 
 
Hence v 2  = v 3 = 0.  Similarly for v 1.  Hence there are no (non-trivial) isotropic vectors of 
rank 1. 
 
Isotropic tensors of rank 2. 
 
The Kroneker (identity) tensor is isotropic.  Proof – 
 
 δ ' i  j =  a i  p a j  q δ p  q      
 
  =  a i  p a j  p  
 
  =  δ i  j    because a i  j is orthogonal. 
 
It can be shown that every second order tensor of rank 2 is of the form k δ i  j , where k is a 
scalar. 
 
Outline of proof 
 
Let b i  j be a general isotropic tensor of rank 2. 
 
(i) b i  j is diagonal.  Rotate b i  j by 180 degrees about the x 1 axis: 
 
 b 'i  j = a180 i  p  a180 j  q b p  q   
 
so b '1  2 = a180 1  1 a180 2  2 b 1  2 + zero terms     
 

= -  b 1  2  
 
Since b 'i  j is isotropic, b 1  2 must be zero; similarly for other off-diagonal terms. 
 
(ii)  Now consider a small rotation θ of the axes about the x 3 axis.  Recall our development of 
an expression for the rotation of a body if θ is small:  
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 Rθ ~ 1 θ 0 (to the first order in θ ) 
   -θ 1 0 
   0 0 1 
 
This is a rotation of the body through -θ, or the axes through θ.  The transformation in tensor 
notation is  
 
 Rθ

i  k = ( δ i  k - θ ε 3 k i )  = ( δ i  k + θ ε 3 i  k)  
 
And we have 
 
 b 'i  j = Rθ i  p Rθ

j  q b p  q   
 
  = ( δ i  p + θ ε 3 i  p) ( δ j  q + θ ε 3 j  q) b p  q  
 
  = δ i  p δ j  q b p  q + θ ε 3 i  p δ j  q b p  q + θ δ i  p  ε 3 j  q b p  q + θ 2 ε 3 i  p  ε 3 j  q b 
p  q 
 
  = b i  j + θ (ε 3 i  p b p  j +  ε 3 j  q b i  q )  (neglecting  θ 2) 
 
  = b i  j  since it is isotropic. 
 
Therefore: 
 (ε 3 i  p b p  j +  ε 3 j  q b i  q )  =  0 
 
Take i = 1, j = 2: 
 
 (ε 3 1  p b p  2 +  ε 3 2  q b 1  q )  =  0 
 
which has non-zero terms only for p = 2 and q = 1; hence 
 
 (ε 3 1  2 b 2  2 +  ε 3 2  1 b 1  1 )  =  0 
 
or 
 + b 2  2 - b 1  1   =  0 
or 
    b 2  2 = b 1  1    
 
Similarly for b 3 3 .  I.e. the diagonal terms are that same and we can write: 
 
 b i  j  = k δ i  j  
 
as required. 
 
Isotropic tensors of rank 3 
 
The alternating tensor ε i j  k is isotropic.  All other isotropic tensors of rank 3 are multiples of 
it.  The proof is similar to that for isotropic tensors of rank 2 (see Fung ‘A first course in 
continuum mechanics’, p140). 
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Isotropic tensors of rank 4 
 
These will be important to us, because of their implications for the relationship between stress 
and strain - Hooke's Law - in an isotropic medium. 
 
Since δ i  j is isotropic, it is easily shown, using the same procedure as for δ i  j , that   
δ i  j δ k  m ,   δ i  k δ j  m + δ i  m δ j   k  and δ i  k δ j  m - δ i  m  δ j   k  =   ε s  i   j ε s  k  m are also isotropic. 
 
Furthermore, a general isotropic tensor of rank 4, say u i  j  k  m ,  can be written in the form: 
 
 u i  j  k  m = λ δ i  j δ k  m + µ ( δ i  k δ j  m + δ i  m δ j   k ) +  ν ( δ i  k δ j  m - δ i  m  δ j   k  ) 
 
Furthermore, if u i  j  k  m  has symmetry properties: u i  j  k  m  = u j  i  k  m  and u i  j  k  m  = u i  j  m  k , 
Then 
 u i  j  k  m = λ δ i  j δ k  m + µ ( δ i  k δ j  m + δ i  m δ j   k )  
 
is the general form of an isotropic, symmetric tensor of rank 4, where λ  and µ  are arbitrary 
constants. 
 
(We will not prove this.  The argument follows along the lines of the proof for tensors of rank 
2 – see Fung ‘A first course in continuum mechanics’, p141.) 
 

Bringing together Stress and Strain - Hooke’s Law 
 
We are now able to properly consider Hooke’s law in its most general form, which can be 
stated as:  “Stress (as a tensor) is linearly related to strain (as a tensor)”.  That is - 
 
 S i j  =  C i j k l  E k l  (summation over k, l) 
 
where the 3 4  = 81 coefficients C i  j k l are independent of E and S, but may depend on 
location in the medium (so they may not be “constants”). 
 
A material obeying Hooke’s Law is called elastic.  Hooke’s Law applies quite well to real 
materials when the strains are small. 
 
C i j k l is a 4th order tensor i.e. it transforms according to: 
 
 C i j k l ′ =  a i p a j q a k r a l s   C p q r s 
 
We will not prove this, but it follows from the definition of C i j k l and that E and S are both 
tensors. 
 
Reducing the number of coefficients C i j k l 
 
(i)  Symmetry of S i j  and  E k l 
 
Since S i j  is symmetric, S i j  = S j i , 
 
then: C i j k l  E k l  =  C j i k l  E k l        
 
and since E k l is symmetric, 
 
then: C i j k l  E k l  =  C i j k l  E l k  =  (renaming) C i j l k  E k l     
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so there are only really 6 independent ‘ i, j ‘ parts of C and only 6 independent  ‘k , l ‘ parts.  
So we have reduced the number of coefficients C i j k l  to 6 x 6  =  36.  This is a completely 
general result, resulting from the symmetry of stress and strain. 
 
 (ii)  In an Isotropic medium, the Principal Axes of E and S coincide.  This is important: it 
means that we can infer the Principal Axes of Stress from measurements of the strain tensor, 
which are often much easier to make. 
 
Proof: Choose the axes to be the Principal Strain Axes, so that E k l is diagonal  
(E  k l = 0, k ≠ l). 
 
Then: S i j  =  C i j k l  E k l  =  C i j 1 1  E 1 1  +  C i j 2 2  E 2 2  +  C i j 3 3  E 3 3 
 
(other terms in the summation are zero). 
 
Now rotate the axes through 180 degrees about the x 3  axis.  This is achieved with the 
transformation: 
 
 
 a180 i  j = -1 0 0 
   0 -1 0 
   0 0 1 
 
ie a  i p = + 1 for i = p, a  i p = 0 otherwise. 
 
We now invoke the assumption of isotropy and require that C i j k l is unchanged by this 
rotation ie the relationship between components of stress and strain is the same whether we 
take the + x or – x direction, etc.  So: 
 
C i j k l ′  =  C i j k l 
  
So in the rotated coordinate system: 
 
 S i j′ =  C i j k l  ′ E k l  ′  =  C i j k l  E k l  ′ 
 
and: 
 E k l  ′  = -1 0 0 E 1 l  0 0 -1 0 0 
   0 -1 0 0 E 2 2 0 0 -1 0 
   0 0 1 0 0 E 3 3 0 0 1 
  
 
  = E 1 l  0 0  
   0 E 2 2 0  
   0 0 E 3 3  
 
  =  E k l     
So: 
 S i j′ = C i j k l  E k l  = S i j ,  
 
ie S i j is unchanged by the rotation. 
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But: 
 S i j ′  =  -1 0 0 S 1 l  S 1 2 S 1 3 -1 0 0 
   0 -1 0 S 2 l S 2 2 S 2 3 0 -1 0 
   0 0 1 S 3 l S 3 2 S 3 3 0 0 1 
  
 
  = S 1 l  S 1 2 -S 1 3  
   S 2 l S 2 2 -S 2 3  
   -S 3 l -S 3 2  S 3 3  
 
So: -S 3 l = S 3 l  ⇒   S 3 l = 0, and  -S 3 2 = S 3 2  ⇒   S 3 2 = 0, 
 
And rotation through 180 degrees about another axis would give S 1 2 = 0 as well.  So we have 
that S i j is diagonal ie it is in its Principal Axis form, like E. QED. 
 
(iii)  Form of C i j k l and Hooke’s law for an Isotropic medium 
 
For an isotropic medium, and because of the symmetry of S and E, we have that C i j k m can be 
written with complete generality as: 
 
 C i  j  k  m = λ δ i  j δ k  m + µ ( δ i  k δ j  m + δ i  m δ j   k )  
 
Thus 
 S i j   =  {λ δ i  j δ k  m + µ ( δ i  k δ j  m + δ i  m δ j   k ) }  E k m 
 
  =  λ δ i  j δ k  m E k m + µ ( δ i  k δ j  m E k m + δ i  m δ j   k E k m ) 
 
Since δ i  j is the identity, 
 
 S i j   =  λ δ i  j E k k + µ ( E i j  + E i  j ) 
 
i.e. 
 
 S i j   =  λ δ i  j E k k + 2 µ E i j      (2) 
 
where E k k  is the dilatation = E 1 1 + E 2 2  + E 3 3 
 
This then is the general form of Hooke’s law for isotropic materials.  It has just two 
parameters – the Lamé constants λ and µ (remember – they could depend on position within 
the material). 
 
The ratio of any stress component to a corresponding strain component is called an elastic 
modulus.   
 
e.g. S 1 2 =  2 µ E 1 2    (δ 1 2 = 0) 
  
so: S 1 2 / E 1 2    =  2 µ ;  µ  is called the Shear Modulus. 
 
NB the ‘2’ arises historically from the definition of E i j , which has the ½ ; viz: 
 
 E i j  = ½ ( ∂ u i /∂ x j + ∂ u j /∂ x i ) 
 
So: S i j =  µ ( ∂ u i /∂ x j + ∂ u j /∂ x i ) +  λ ∂ u k /∂ x k δ i j   
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e.g. 2  
 S i i   =  λ δ i  i E k k + 2 µ E i i   
 
  =  (re-labeling E i i)  λ 3  E k k + 2 µ E k k 
 
  =  (3 λ  + 2 µ ) E k k 
 
S i i  is the sum of the diagonal elements of S, and is analogous to the dilatation.  The pressure 
p is defined to be – 
 
 p  =  - 1/3 S i i  ( = - mean normal stress) 
 
(Remember tensions are positive, compressions negative). 
 
So the ratio:  -p/E k k is that ratio of (-)pressure to volumetric change = (λ   + 2/3 µ).  This is 
called the Bulk Modulus,  often denoted by  κ. 
 
e.g. 3 Uniaxial extension occurs when S 1 1 ≠ 0 and S i  j = 0 for i, j  ≠  1, 1.  
 
The ratio S 1 1  /E 1 1   in uniaxial extension is called Young’s Modulus (see assignment). 
 
Newtonian Fluid 
 
A Newtonian fluid is a viscous fluid in which the shear stress is linearly proportional to the 
rate of deformation.  It is a useful model for many applications, for stiff fluids e.g. the Earth’s 
mantle. 
 
First, in place of the strain tensor E i j we define a rate of strain tensor V i j where we have 
replaced displacements u i in the definition of E i j by velocities v i: 
 
 V i j  =  ½ (∂ v i /∂ x j + ∂ v j /∂ x i) 
 
(think of the displacements in the derivation of E i j occurring in unit time). 
 
Then the full constitutive relationship between stress and rate of strain for a Newtonian Fluid 
is: 
 
 S i j   =  - p δ i  j   +  D i j k l  V k l   
 
Where p is, again, the pressure, and we have a set of constants D i j k l in place of C i j k l in 
Hooke’s law.  For an isotropic fluid, this reduces (similarly to an isotropic elastic solid), to: 
 
 S i j   =  - p δ i  j   + λ δ i  j V k k + 2 µ V i j   
 
Contracting this gives: 
 
 S i i   =  - p δ i  i   + λ δ i  j V k k + 2 µ V i i   
 
  =  -  3 p   + (3 λ + 2 µ )V k k   
 
So the identification of p = - 1/3 S i i is equivalent to requiring  
 

(3 λ + 2 µ ) = 0 or λ = - 2/3 µ 
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which implies that the rate of dilatation is not affected by the pressure. 
 
So we have: 
  

 S i j   =  - p δ i  j   + 2 µ V i j  - 2/3 µ δ i  j V k k    (3) 
 
A fluid obeying eqn(3) is called a Stokes fluid after the 19th applied mathematician George 
Stokes. µ is called the viscosity.  If in eqn(2) µ = 0, we have a non-viscous fluid, with 
constitutive equation: 

 S i j   =  - p δ i  j      (4) 
 

An Introduction to Tensor Calculus 
 
We have already met the derivatives of tensors, and shown that the new entity that results 
from differentiating a tensor X i j term by term; e.g. 
 
 ∂ X i j /∂ x k  
 
is a tensor (in this case of rank 3).  And we have identified the derivatives from vector 
calculus  - 
 
Gradient of a scalar ϕ – tensor of rank 1: grad ϕ =  ∂ ϕ /∂ x k  
 
Divergence of a vector v k  – scalar:  ∂ v k /∂ x k  
 
Curl of a vector v k  – vector:   =  ε i j k ∂ v k / ∂ x  j  
 
Integrals of tensors 
 
In a similar way we can identify various integrals of tensors (illustrated with tensors of rank 
2) e.g. 
   b 
Line integrals  ∫ X i j d l 
   a 
 
Area integrals  ∫∫ X i j d S 
   S 
 
Volume integrals ∫∫∫ X i j d V 
   V 
 
There may be contractions.  E.g. if X i j = v i  n j , where n j  is the normal to a surface S, then  
 

  ∫∫ v i  n i d S 
   S 
is the (scalar) flux of v i through S. 
 
It may be that the integrating variable is a tensor e.g  

  E i j 
W  =    ∫    S kl dE kl 
 0 

(W is the strain potential energy per unit volume of an elastic material).   
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This is understood to be the sum of 3 x 3 = 9 separate integrals: 
3  3 E i j 

W  =   Σ  Σ ∫    S kl dE kl 
k=1 l=1 0 

 
Gauss’s Theorem 
 
Gauss’s theorem is one of the most useful theorems in applied mathematics.  We will derive a 
more general result than normally presented. 
 
Consider a convex region V (i.e. no re-entrants or holes) bounded by a surface S. (A non-
convex surface can usually be split up into a finite number of convex ones). 
 
Let A(x 1, x 2, x 3) be continuously differentiable in V. 
 

n i ** 

n i * 

L 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider the volume integral: 
 
   ∫∫∫ ∂ A(x 1, x 2, x 3) /∂ x 1   dx
   V 
Integrate this along the line segment L drawn above
 
 ∫∫∫ ∂ A(x 1, x 2, x 3) /∂ x 1  dx 1 dx 2 dx 3  =  
 V      
Where A* and A** are the values of A at the ends o
of the tubes across V.  Let the areas of the ends of o
 
Now dS* and dS** are the projections of dx 2 dx 3 o
at the ends are n i *and n i ** , then dS* is the projec
so  

dx 2 dx 3  =  dS* cos(angle between n i * and
 
and dS** is the projection of dx 2 dx 3 in the (-1, 0, 0
 
dx 2 dx 3  =  dS** cos(angle between n i ** and (-1, 0
So 

∫∫ (A* dx 2 dx 3  – A** dx 2 dx 3  = ∫∫ (
S     S 
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rea of all the ends 
 

.  If the normals 
, 0, 0) direction, 

 n 1 ** (5) 



 
The *’s simply mark particular ends of tubes.   As we move over S we can write the RHS of 
eqn(5) as 
 
 ∫∫ A n 1 dS  
 S 
i.e.  
 ∫∫∫ ∂ A/∂ x 1  dV  =  ∫∫ A n 1 dS   
 V    S 
 
Similarly we can calculate ∂ A/∂ x 2 and ∂ A/∂ x 3 and get: 
 
 ∫∫∫ ∂ A/∂ x i  dV  =  ∫∫ A n i dS   
 V    S 
 
Now replace A with an arbitrary, continuously differentiable tensor X i j…n 
By the same argument we have: 
 
 ∫∫∫ ∂ X i j…n /∂ x k  dV  =  ∫∫ X i j…n n k dS   
 V    S 
 
This is the most general form of Gauss’s Theorem. 
 
E.g. 1 let the tensor be a vector v k   Then: 
 
 ∫∫∫ ∂ v k /∂ x k  dV  =  ∫∫ v k n k dS   
 V    S 
 
which is the familiar “Gauss’s Flux Law”: 
 
 ∫∫∫ div v  dV  =  ∫∫ v • n dS   
 V   S 
 

 
Equations of motion of a continuum 

 
Equation of continuity (Conservation of mass) 
 
Our first application of Gauss’s Law is the important Equation of Continuity for a continuum, 
which is equivalent to a statement that mass is conserved. 
 
Consider a fixed volume of space τ, with matter of (varying) density ρ(x) .  The mass inside τ 
at t = 0 is 
 

 M = ∫ ∫ ∫ ρ(x) dx 1 dx 2 dx 3 
       τ 
 
The rate of increase of mass in τ  is 
 

 dM /dt = d ( ∫ ∫ ∫  ρ(x) dx 1 dx 2 dx 3 ) / dt   
           τ 

 
  =  ∫ ∫ ∫  ∂  ρ(x) / ∂ t    dx 1 dx 2 dx 3    

       τ 
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(the rate of change at each point x ; τ fixed). 
 
Mass is conserved, so this change must equal the mass inflow through the surface S of τ: 
 

=  −  ∫ ∫ ρ(x) v j (x)  n j d S    
         S    
 
where v j (x) is the velocity of the flow (NB only the component normal to S flows in or out, 
hence the term v j (x) n j ; and we are interested in inflow, hence the minus sign). 
 
 n j  

v j (x) 
 
 
 
 
 
 
By Gauss’s Theorem, this flux is: 
 

−  ∫ ∫ ∫ ∂ { ρ(x) v j (x) } / ∂x j  dx 1 dx 2 dx 3 
      τ 
Hence: 
 

∫ ∫ ∫  ∂  ρ(x) / ∂ t   dx 1 dx 2 dx 3  +  ∫ ∫ ∫  ∂ (ρ(x) v j (x) ) / ∂x j  dx 1 dx 2 dx 3  =  0 
 τ      τ 

or 
 

∫ ∫ ∫  { ∂  ρ(x) / ∂ t   +  ∂ (ρ(x) v j (x) ) / ∂x j } dx 1 dx 2 dx 3  =  0 
 τ       

 
for any volume  τ.  So the expression in the { } must be zero everywhere in τ .  I.e. 
 

  ∂  ρ(x) / ∂ t   +  ∂ (ρ(x) v j (x) ) / ∂x j   =  0 
 
This is the Equation of Continuity.  Remember: this is a re-statement of the conservation of 
mass. 
 
We can differentiate the second term and get the equivalent expression: 
 

  ∂  ρ(x) / ∂ t +  ∂ ρ(x) / ∂x j  v j (x)  + ρ(x)  ∂  v j (x) / ∂x j =  0 
 
which reduces to ∂ v j (x) / ∂x j =  0 for incompressible (ρ unchanging) fluids. 
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Extension to moving volume 
 
Consider now the problem of a volume τ moving with the continuum.  For any quantity  
X(x , t ) we want to be able to compute the total rate of change: 
 
 I  = d / dt { ∫ ∫ ∫  X(x , t )  dx 1 dx 2 dx 3 }  

    τ 
where we allow τ to change with time. 
 

n 

S (t) 

flow or deformation 
velocity v i   

τ ′(t + δ t) 

S ′(t + δ t)  
 
 
 
 
 
 
 
 
 
 
 
 
We calculate d / dt from first principles: 
 
 I =  lim   {  (1 / δt ) (∫ ∫ ∫  X(x , t + δt ) dx1dx2dx 3  -  ∫ ∫ ∫  X(x , t ) dx1dx2dx3)} 

 δt → 0              τ ′         τ 
 
(NB we are using fixed, or Eulerian coordinates). 
 
Write τ ′ = τ  +  δτ .  Then: 
 
 I =  lim   {  (1 / δt ) (∫ ∫ ∫  X(x , t + δt ) dx1dx2dx 3  -  ∫ ∫ ∫  X(x , t ) dx1dx2dx3 

 δt → 0               τ         τ 
+  ∫ ∫ ∫  X(x , t + δt) dx1dx2dx3)} 

           δτ 
 
 
 
The first two terms are: 
 
 I1 =  lim   {  (1 / δt ) (∫ ∫ ∫  [ X(x , t + δt )  -  X(x , t ) ] dx1dx2dx 3 )} 

 δt → 0              τ          
 
which (we hope, for 'well behaved' X) will converge to  
 
 I1 = ∫ ∫ ∫  ∂ X(x , t ) /  ∂t dx1dx2dx 3 

      τ          
 
i.e. take the limit inside the integral. 
 
The remaining term is: 
 

I2 = lim   (1 / δt )   ∫ ∫ ∫  X(x , t + δt) dx1dx2dx3 
 δt → 0        δτ 
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Now consider an element dS of S.   
 

n 
 
 
 
 
 
 
 
 
 
 
The volume dx1dx2dx3 swep
is so small that  ∂ X / ∂x i   <
across dx1dx2dx3 (but let it 
 
 X(x , t + δt) dx1dx2
 
Thus: 

I2 =  lim
  δt 

 
 =  lim
  δt 

 
=    ∫ 

     S
 

= (Gauss)  
      

 
 
So, putting it all together: 
 

d /dt  ∫ ∫ ∫  X(x , t
  τ  
      

 =   ∫ ∫ ∫   {  ∂ X
   τ 
which is the result we were
 
Equations of motion of a c
 
Now suppose we have body
area i.e.  T i =  S i  j n j per u

 
F i  = ∫ ∫ ∫   ρ G

      τ  
 

 

v • n δt
v 

dx1dx2dx3 =  dS n • v δt 
dS 

t out by dS in  δt  is given by dS n • v δt.  Assume that  dx1dx2dx3  
<  ∂ X / ∂ t in δτ.  So take the spatial variation of X to be zero 

vary with dS).  Therefore an element of the integral I2 is: 

dx3 = X(x , t + δt) n • v dS δt 

    (1 / δt )   ∫ ∫ X(x , t + δt) n • v dS δt 
→ 0        S 

     ∫ ∫ X(x , t + δt) n • v dS  
→ 0    S 

∫  { X(x , t ) v } • n  dS  
 

∫ ∫ ∫  ∂ ( X(x , t) v i) / ∂x i  dτ 
  τ 

 ) dτ   =  ∫ ∫ ∫  ∂ X(x , t ) / ∂t  dτ  +  ∫ ∫ ∫  ∂ / ∂x i ( X(x , t) v i) dτ 
       τ           τ 

  
 / ∂t +  ∂ / ∂x i ( X v i) }  dτ    (6) 

 seeking. 

ontinuum 

 forces G i  /unit mass inside τ and surface stress forces T i per unit 
nit area on the surface A of τ.  The total force F i on τ is therefore: 

 i dτ  +  ∫ ∫  S i  j n j  dA  
     A 
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Apply Gauss’s Theorem to each component of T  i : 
 
F i  = ∫ ∫ ∫   ρ G i dτ  +  ∫ ∫ ∫   ∂ S i  j / ∂x j  dτ  

      τ       τ 
 

 = ∫ ∫ ∫   {  ρ G i dτ  +  ∂ S i  j / ∂x j }  dτ  
      τ   
This is the total force on τ ;  so it must equal the rate of change of momentum of τ, given by: 
 

d /dt  ∫ ∫ ∫ ( ρ v i ) dτ   
   τ 
(ρdτ  = mass; times velocity v i ). 
 
Now apply equation 6 to each component of momentum X i  = ρ v i  : 
 

∫ ∫ ∫   {  ρ G i dτ  +  ∂ / ∂x j  S i  j }  dτ   =  d/dt ∫ ∫ ∫ ( ρ v i ) dτ   
  τ      τ   
 
      = ∫ ∫ ∫   {  ∂ ρ v i / ∂t +  ∂ (ρ v i v j / ∂x j) }  dτ 
          τ 
 
Or: ∫ ∫ ∫   {  ρ G i  +  ∂ / ∂x j  S i  j −  [ ∂ ρ v i / ∂t +  ∂ (ρ v i v j )/ ∂x j] }  dτ  =  0 
   τ 
 
This applies to all volumes τ  of the continuum.  So the integrand must vanish everywhere: 
 
   ρ G i   +  ∂ S i  j / ∂x j −  ∂ ρ v i / ∂t −  ∂ (ρ v i v j) / ∂x j = 0 
 
Expand the derivatives: 
 
   ρ G i   +  ∂ S i  j / ∂x j − ρ  ∂ v i / ∂t  − v i  ∂ ρ / ∂t −  ∂ (ρ v i v j) / ∂x j  = 0 
 
But  v i  ∂ ρ / ∂t +  ∂ (ρ v i v j)  / ∂x j = v i  ∂ ρ / ∂t + v i  ∂ (ρ v j) / ∂x j +  ρv j ∂ v i / ∂x j  
 
     = v i  {∂ ρ / ∂t + ∂ / ∂x j (ρ v j) } +  ρv j ∂ v i / ∂x j  
 
And the term in { } is zero by the continuity equation.  So the equation of motion becomes: 
 
   ρ G i   +  ∂ S i  j / ∂x j −  ρ  ∂ v i / ∂t −  ρ v j ∂ v i / ∂x j  = 0 
 
Now the acceleration α i at a point is given by:  
 

α i =  d v i (x , t) / dt    =  ∂ v i / ∂t + ∂ v i / ∂x j  . ∂ x j / ∂t 
 
   =  ∂ v i / ∂t + v j ∂ v i / ∂x j 

 
So we have: 
 
   ρ G i   +  ∂ / ∂x j  S i  j −  ρ  α i = 0 
 

 28



Or:  
 
 
 
 
 
 

 
ρ α i  =  ρ G i   +  ∂ S i  j  / ∂x j    (Euler) 

 
Which is the ‘celebrated’ Eulerian equation of motion, telling us that the acceleration at a 
point in a continuum is due to the sum of the body forces plus the spatial rate of change of 
the stress forces. 
 
Navier’s equation 
 
We now combine Hooke’s Law for isotropic materials: 
 
 S i j =  2 µ E i j +  λ E k k δ i j   
 
with the equation of motion: 
 
 ρ α i  =  ρ G i   +  ∂ S i  j  / ∂x j    
 
to obtain the equation of motion for elastic materials.  We shall assume that µ and λ are 
constant (locally).  Differentiating Hooke’s Law gives: 
 
 ∂ S i  j  / ∂x j  =  2 µ ∂ E i j / ∂x j +  λ ∂ E k k / ∂x j  δ i j   
 
Now 
 E i j =   ½ ∂ ui / ∂ x j  + ½ ∂ uj / ∂ x i   
 
And 
 E k k =    ∂ uk / ∂ x k 
 
So we have (remembering the summation convention): 
 
 ∂ S i  j  / ∂x j  =   µ (∂ 2 ui /∂ x j ∂ x j + ∂ 2 uj / ∂ x i ∂x j ) + λ ∂ 2 uk / ∂ x k ∂x j  δ i j  
 

=   µ (∂ 2 ui /∂ x j ∂ x j + ∂ 2 uj / ∂ x i ∂x j )+ λ ∂ 2 uk / ∂ x k ∂x i     
 

(re-gathering) =   µ ∂ 2 ui /∂ x j ∂ x j + (µ  + λ )  ∂ 2 uk / ∂ x k ∂x i 
 
So Euler’s equation: 
 
 ρ α i   =  ρ G i  +  ∂ S i  j  / ∂x j   
gives 

ρ α i =  ρ G i +  µ ∂ 2 ui / ∂ x j ∂ x j + (µ  + λ )  ∂ 2 uk / ∂ x k ∂x i  (7) 
 

NB  ∂ 2   / ∂ x j ∂ x j   =  ∇2  , and ∂ 2 uk / ∂ x k ∂x i  =  ∇ ∇ • u ; so we can write eqn(7) in 
vector notation as: 
  

ρ α =  ρ G   +  µ ∇2   u + (µ  + λ )  ∇ ∇ • u      (7*) 
 

Either way, eqn (7) is Navier’s Equation. 
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We now assume that body forces are negligible (the principal one in practice is often gravity) 
and if we consider: 

α i   =  d 2 ui (x , t) / dt 2 
 
  =  d (∂  ui / ∂ t  +  ∂  ui / ∂ x j . d x j / dt  ) / dt 
 

=  d (∂  ui / ∂ t  +  0  ) / dt   (because the x j are fixed), 
 
=  ∂ 2  ui / ∂ t 2   +  ∂  (∂  ui / ∂ t) / ∂ x j . d x j  
 

  =  ∂ 2  ui / ∂ t 2 
 
for the same reason. 
 
So we get: 
 
 
 
 
 
 
 
 
 
Navier-St
 
In place o
 
 S
 
So: 

∂
 
=
 
=

 
(for µ and
 

ρ
 

These are
continuity

 
 
These equ
water cur
difficult t
 

ρ
 
the third t
gradient ∂

 

 
ρ  ∂ 2  ui / ∂ t 2  =  µ ∂ 2 ui / ∂ x j ∂ x j + (µ  + λ )  ∂ 2 uk / ∂ x k ∂x i    
 
(Navier’s equation without body forces) 
okes equation for fluid flow 

f Hooke’s law, we apply Euler’s equation to the constituent equation for fluids: 

 i j   =  - p δ i  j   + λ δ i  j (∂ v k /∂ x k +  µ (∂ v i /∂ x j + ∂ v j /∂ x i ) 

 S i  j  / ∂x j   

   - ∂ p / ∂x j δ i  j   + µ (∂ 2 vi /∂ x j ∂ x j + ∂ 2 vj / ∂ x i ∂x j ) + λ ∂ 2 vk / ∂ x k ∂x j  δ i j  

   - ∂ p / ∂x i   + µ ∂ 2 vi /∂ x j ∂ x j  + (λ  + µ) ∂ 2 vk / ∂ x k ∂x i   

 λ constant).  And Euler’s equation gives: 

 α i  =  ρ G i   - ∂ p / ∂x i   + µ ∂ 2 vi /∂ x j ∂ x j  + (λ  + µ) ∂ 2 vk / ∂ x k ∂x i 
 

 the Navier-Stokes equations for constant µ and λ .  The motion must also satisfy the 
 equation: 

  ∂  ρ / ∂ t   +  ∂ (ρ v j ) / ∂x j   =  0 

ations cover a huge range of fluid flows, from atmospheric circulations, through 
rents, eddies and waves, to slow flows of treacly fluids.  They are in general very 
o solve.  e.g for steady flow ( α i  =  0) in an incompressible fluid (∂ vk / ∂ x k = 0 ),  

 G i   - ∂ p / ∂x i   + µ ∂ 2 vi /∂ x j ∂ x j  = 0 

erm is the Laplacian  ∇2 vi  .The flow is driven by body forces G i and the pressure 
 p / ∂x i . 
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