## Timetable

| Week | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start | Mar 3 | Mar 10 | Mar 17 <br> Assignment 1 due | Mar 24 <br> Assignment 2 due | March $31$ | Apr 7 <br> Assignment <br> 3 due | April 14 |
| Mon 14:1015:00 | Intro lecture | L3 | L5 | L7 | L9 | Spare | L11 |
| Tues 14:1015:00 | L1 <br> Assignment 1 set | L4 <br> Assignment <br> 2 set | L6 <br> Assignment <br> 3 set | L8 <br> Assignment <br> 4 set | L10 | spare | T6 |
| Weds 14:1015:00 | L2 | Spare | Spare | Spare | Spare | Spare | Spare |
| $\begin{aligned} & \text { Tutorial } \\ & \text { Fri } \\ & \text { 14:10- } \\ & \text { 15:00 } \end{aligned}$ | T1 | T2 | T3 | T4 | T5 | Spare | Assignment <br> 4 due <br> Thursday <br> 17 April |

## Assignments and tutorial exercises

## All assignments due 5pm on day of week shown.

## Essay due 5pm Monday 5 May

## Assessment Summary

Assignment 1 20\%
Assignment 2 20\%

Assignment 3 20\%
Assignment 4 20\%
Essay 20\%

Index notation; Rotational transformations; Euler vector
Prove Kronecker is a tensor; lead rubber bearing, stress force across a plane

Strain gauges - principal axes, simple shear
Hooke's Law, tensor calculus
due 5 May.

## MATH/GPHS 322/323 Tensors Module

## Assignment 2 due Monday 24 March; Notes Chapter 1 and start of Chapter 2.

(1) Show formally that the Kronecker Delta $\delta_{i j}$ is a tensor; i.e. for any (orthogonal) transformation of the coordinate system given by $\mathrm{a}_{\mathrm{pq}}$, show that $\delta_{\mathrm{ij}}$ satisfies:

$$
\delta_{i j}^{\prime}=a_{i p} a_{j q} \delta_{p q}
$$

(2) Show formally that the index set defined by $\mathrm{x}_{\mathrm{j}}=1, \mathrm{j}=1,2,3$ for every set of Cartesian coordinate axes, is not a tensor. NB if it fails the test for any one transformation, it is not a tensor.
(3) Lead rubber bearings for damping earthquake motions have been fitted to the columns of the Rankine Brown building and Te Papa. They are tested by applying a load W equal to the share of the weight of the building and then applying a shear force $S$ to simulate earthquake forces:


A lead rubber bearing is modelled as a homogeneous cuboid $1 \mathrm{~m} \times 1 \mathrm{~m}$ bearing area by 0.5 m high. If $\mathrm{W}=50$ MN and $\mathrm{S}=10 \mathrm{MN}$,
(i) What additional forces must be applied to keep the block in equilibrium? (i.e. stop the block rotating or accelerating)?
(ii) Write down the stress tensor for the bearing.
(iii) Find the Principal Axes of the stress tensor and the Principal Stresses.

(iv) Find the stress force F per unit area inside the block across a plane with its normal in the $\mathrm{x}_{1} \mathrm{x}_{2}$ plane, making an angle $\theta$ with the $\mathrm{x}_{1}$ axis i.e. $\mathbf{n}=(\cos \theta, \sin \theta, 0)$.
(v) Write down expressions for the Normal, N, and total Shear, $\mathrm{S}_{\mathrm{T}}$, components of F , and find the orientation(s) of the plane which makes the magnitude of each, separately, a maximum.
(vi) Hence find the maximum Shear and Normal stresses in the block.

## Hints:

1. To find the shear force, find the direction of the total Shear force, and take the scalar product with $F$.
2. Write the expressions for $|\mathrm{N}|$ and $\left|S_{T}\right|$ in terms of $2 \theta$ before differentiating to find the maxima.

## Tutorial Two 14 March AND Tutorial Three 21 March

(0) Complete any questions from Tutorial one.
(1) Construct transformation matrices A for giving the coordinates of a vector $\mathbf{p}$ in a new coordinate system, using the convention $\mathbf{p}$ (new) $=\mathrm{A}^{\mathrm{T}} \mathbf{p}$ (old), for:
(a) Rotation through $\theta^{\circ}$ about $\mathbf{x 1}$ axis,
(b) Rotation through $\theta^{\circ}$ about $\mathbf{x} \mathbf{2}$ axis,
(c) Rotation through $\theta^{\circ}$ about $\mathbf{x} \mathbf{3}$ axis
2. Show formally that the Alternating Tensor $\varepsilon_{\mathrm{ijk}}$ is a tensor; i.e. for any (orthogonal) transformation of the coordinate system given by $\mathrm{a}_{\mathrm{pq}}$, show that $\varepsilon_{\mathrm{ijk}}$ satisfies:
$\varepsilon^{\prime}{ }_{i j k}=a_{i p} a_{j q} a_{k r} \varepsilon_{\mathrm{pqr}}$
3. If a continuum is subject to a stress $S_{i j}$ at a point $P$, find expressions for the Normal and total Shear components of force across any plane through $P$.
4. $\quad$ S is given by
$\mathrm{S}=\left[\begin{array}{lll}\mathrm{S}_{1} & 0 & 0 \\ 0 & \mathrm{~S}_{2} & 0 \\ 0 & 0 & 0\end{array}\right]$
Find the Normal N and total Shear force S components across a plane with normal $\underline{\mathbf{n}}^{\mathrm{T}}=(\cos \theta, \sin \theta, 0)$.

Hence show that the pair of values $(N, S)$ lie on a circle in the $N, S$ plane centred at $\left\{\left(S_{1}+S_{2}\right) / 2,0\right\}$ with radius $\left|S_{1}-S_{2}\right| / 2$ (This is called the Mohr Circle). Hence find the magnitudes of the maximum Normal and Shear stresses, and the directions they act in.
5. If $\mathbf{F}$ is the stress force exerted across a plane $P$, show that the stress force exerted across any plane that contains $\mathbf{F}$ lies in the plane of P .

