MATH 322/323 Module 1 Cartesian Tensors Mar 5 – May 5 2014

Week		_			_	_	7
	1	2	3	4	5	6	
Start	Mar 3	Mar 10	Mar 17 Assignment 1 due	Mar 24 Assignment 2 due	March 31	Apr 7 Assignment 3 due	April 14
Mon							L11
14:10- 15:00	Intro lecture	L3	L5	L7	L9	Spare	
Tues 14:10- 15:00	L1 Assignment	L4 Assignment	L6 Assignment	L8 Assignment	L10	spare	Т6
	1 set	2 set	3 set	4 set			
Weds 14:10- 15:00	L2	Spare	Spare	Spare	Spare	Spare	Spare
Tutorial Fri 14:10- 15:00	T1	T2	Т3	T4	T5	Spare	Assignment 4 due Thursday 17 April

Timetable

Assignments and tutorial exercises

All assignments due 5pm on day of week shown.

Essay due 5pm Monday 5 May

Assessment Summary

Essay	20%	due 5 May.
Assignment 4	- 20%	Hooke's Law, tensor calculus
Assignment 3	20%	Strain gauges – principal axes, simple shear
Assignment 2	20%	Prove Kronecker is a tensor; lead rubber bearing, stress force across a plane
Assignment 1	20%	Index notation; Rotational transformations; Euler vector

Assignment 2 due Monday 24 March; Notes Chapter 1 and start of Chapter 2.

(1) Show formally that the Kronecker Delta δ_{ij} is a tensor; i.e. for any (orthogonal) transformation of the coordinate system given by a_{pq} , show that δ_{ij} satisfies:

$$\delta'_{ij} = a_{ip} a_{jq} \delta_{pq}$$

(2) Show formally that the index set defined by $x_j = 1$, j = 1,2,3 for *every* set of Cartesian coordinate axes, is *not* a tensor. NB if it fails the test for any one transformation, it is not a tensor.

(3) Lead rubber bearings for damping earthquake motions have been fitted to the columns of the Rankine Brown building and Te Papa. They are tested by applying a load W equal to the share of the weight of the building and then applying a shear force S to simulate earthquake forces:

A lead rubber bearing is modelled as a homogeneous cuboid $1m \ge 1m$ bearing area by 0.5 m high. If W = 50 MN and S = 10 MN,

(i) What additional forces must be applied to keep the block in equilibrium? (i.e. stop the block rotating or accelerating)?

- (ii) Write down the stress tensor for the bearing.
- (iii) Find the Principal Axes of the stress tensor and the Principal Stresses.

- (iv) Find the stress force F per unit area inside the block across a plane with its normal in the x₁ x₂ plane, making an angle θ with the x₁ axis i.e. $\mathbf{n} = (\cos \theta, \sin \theta, 0)$.
- (v) Write down expressions for the Normal, N, and total Shear, S_T, components of F, and find the orientation(s) of the plane which makes the *magnitude* of each, separately, a maximum.
- (vi) Hence find the maximum Shear and Normal stresses in the block.

Hints:

- 1. To find the shear force, find the direction of the total Shear force, and take the scalar product with F.
- 2. Write the expressions for |N| and $|S_{T}\,|\,$ in terms of 20 before differentiating to find the maxima.

Tutorial Two 14 March AND Tutorial Three 21 March

- (0) Complete any questions from Tutorial one.
- (1) Construct transformation matrices A for giving the coordinates of a vector $\underline{\mathbf{p}}$ in a new coordinate system, using the convention $\underline{\mathbf{p}}$ (new) = A^T $\underline{\mathbf{p}}$ (old), for:
- (a) Rotation through θ° about **x1** axis,
- (b) Rotation through θ^{o} about **x2** axis,
- (c) Rotation through θ^{o} about **x3** axis
- 2. Show formally that the Alternating Tensor ε_{ijk} is a tensor; i.e. for any (orthogonal) transformation of the coordinate system given by a pq, show that ε_{ijk} satisfies:

 $\varepsilon'_{ijk} = a_{ip}a_{jq}a_{kr}\varepsilon_{pqr}$

- 3. If a continuum is subject to a stress S_{ij} at a point P, find expressions for the Normal and total Shear components of force across any plane through P.
- 4. S is given by

S	=	S_1	0	0
		0	\mathbf{S}_2	0
		0	0	0
		· · · · · · · · · · · · · · · · · · ·		

Find the Normal N and total Shear force S components across a plane with normal $\underline{\mathbf{n}}^{T} = (\cos \theta, \sin \theta, 0).$

Hence show that the pair of values (N, S) lie on a circle in the N, S plane centred at $\{(S_1 + S_2)/2, 0\}$ with radius $|S_1 - S_2|/2$ (This is called the Mohr Circle). Hence find the magnitudes of the maximum Normal and Shear stresses, and the directions they act in.

5. If **F** is the stress force exerted across a plane P, show that the stress force exerted across any plane that contains **F** lies in the plane of P.