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1. Prove Exercise 1.2: “Let G be a graph with a walk W from a vertex u to a
vertex v. Then there is a path from u to v that uses a subset of the edges of W .”

Solution. Say W is u1, e1, u2, e2, . . . , un−1, en−1, un where u = u1 and v = un. If this
is not a path, then there exists i, j ∈ {1, 2, . . . , n} with i < j such that ui = uj. In
this case

u1, e1, u2, e2, . . . , ui, ej, uj+1, ej+1, uj+2, . . . , en−1, un

is also a walk from u to v, and this walk uses a proper subset of the edges of W .
In particular, the length of this path is shorter than that of W . We can repeat this
process for as long as we do not have a path. As each iteration reduces the length of
the walk, we cannot keep iterating forever, so the process must eventually arrive at
a path from u to v. □

The fact that a walk between vertices implies that there is a path between vertices
is fundamental. We will use it many times in this course.

2. The complement of a simple graph G = (V,E) is the simple graph G = (V,E),
where an edge xy (for any distinct x, y ∈ V ) is in E if and only if xy is not in E. A
simple graph is self-complementary if it is isomorphic to its complement. Prove:

(a) If G is a disconnected graph, then G is connected.

Solution. To see this, assume that G is disconnected. Then there is a partition
{X, Y } of V (G) (with X ̸= ∅ and Y ̸= ∅) such that no edge of G joins a
vertex in X to a vertex in Y ; for example, take X to be the vertex set of one
component C, and then let Y be the vertices of G that are not in C. This
means that, in G, there is an edge between every vertex in X and every vertex
in Y .

We’ll show that there is a path between any two vertices in G. Say u and
v are vertices of G. If one is in X and the other in Y , then there is an edge
between them, so there is certainly a walk from u to v. Otherwise we may
assume, without loss of generality, both u and v are in X. As Y is non-empty,
we can choose a vertex w in Y . Then u,w, v is the set of vertices in a path of
length two from u to v.
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We’ve now shown that there is a walk joining every pair of vertices in G,
so this graph is connected. This completes the proof. □

(b) Every non-empty self-complementary graph is connected. (Hint: use (a).)

Solution. Suppose that G is a non-empty graph (so G has at least one vertex).
If G is disconnected, then G is connected by (a), but then G ̸= G, so that G
is not self-complementary. We have shown that if G is disconnected, then it
is not self-complementary. Thus we have shown (via the contrapositive) that
every non-empty self-complementary graph is connected. □

(c) If G is self-complementary, then either |V | ≡ 0 mod 4 or |V | ≡ 1 mod 4.

Solution. Say G is self-complementary on n vertices. Then |E| = |E| and
|E| + |E| = |E(Kn)| = n(n − 1)/2. Hence |E| = n(n − 1)/4. For G to be
self-complementary, n(n− 1) must be divisible by 4. Say n = 4k+ t, where k
is a non-negative integer and t ∈ {0, 1, 2, 3}. Then

n(n− 1) = (4k + t)(4k + t− 1) = 4(4k2 + 2kt− k) + t(t− 1)

which is divisible by 4 if and only if t(t − 1) is divisible by 4. By checking
the value of t(t − 1) for each t ∈ {0, 1, 2, 3}, we see that t ∈ {0, 1}. That is,
we have shown that G has either 4k or 4k+1 vertices, for some non-negative
integer k, as required. □

3. Let s and t be positive integers with s ≤ t. Recall that Ps is the path graph on s
vertices. Give a formula for the minimum number of edges that need to be removed
from Kt so that it has a graph isomorphic to Ps as an induced subgraph.

Solution. The path graph Ps has s− 1 edges, whereas Ks has s(s− 1)/2 edges. After
choosing some set X of s vertices, on which we will look for the Ps induced subgraph,
we must remove all but s − 1 of the s(s − 1)/2 edges in G[X]. That is, we need to
remove at least

s(s− 1)/2− (s− 1) = (s− 1)(s− 2)/2

edges. □

4. The distance d(u, v) between two vertices in a graph G is defined as the length
of the shortest path that joins u and v. Prove that the distance satisfies the triangle
inequality, that is, prove that d(u,w) ≤ d(u, v) + d(v, w) for any three vertices u, v
and w of G.

Solution. Let P (u, v) and P (v, w) be shortest paths from u to v and v to w respec-
tively. We obtain a walk W (u,w) from u to w by combining P (u, v) and P (v, w) in an
obvious way. Now the length of W (u,w) is equal to d(u, v)+d(v, w). Now W (u,w) is
walk, but it need not be a path. However, by Exercise 1.2 (see Q1) there is a subset
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of edges that induces a path. Therefore there is a path from u to w whose length is
at most the length of W (u,w). Hence d(u,w) ≤ d(u, v) + d(v, w) as required. □

5. Let u be a vertex of odd degree in the graph G. Prove that there is a path from
u to another vertex of odd degree in G.

Solution. Construct a random walk starting at u, with the constraint that we are
never allowed to use an edge twice. Each time the walk enters a vertex of even degree
it is possible to find an edge to leave the vertex and continue the walk. Eventually
we must get stuck as G has only a finite number of edges. By the above observation
we get stuck at a vertex, v say, of odd degree.

We have a walk from u to v, where v has odd degree. By Exercise 1.2 (see Q1), there
is a path from u to v. □

6. We know that trees with at least two vertices have at least two leaves. But
typically trees have more leaves than that.

(a) Show that if a tree has a vertex of degree k, then it has at least k leaves.

Solution. Let G be a tree with a vertex v of degree k. Let e1, e2, . . . , ek be the
edges incident with v. For i ∈ {1, 2, . . . , k}, let Pi be a maximal path that
begins v, ei, . . .. Suppose that the path Pi ends at the vertex vi. Then vi has
degree at least one, as it is adjacent to a vertex in Pi. Note that vi is not
adjacent to any other vertex in Pi, for otherwise G has a cycle, contradicting
that G is a tree. If vi has degree at least two, then we could extend the path
Pi. But this contradicts that Pi is maximal. We deduce that vi has degree
one – that is, it is a leaf.

We need to show that the set {v1, v2, . . . , vk} has k elements. If not, then
there is an i ̸= j such that vi = vj. In this case the path Pi meets the path Pj

at some vertex w. We now have a cycle in the tree by taking Pi from v to w
and returning to v using the path Pj, contradicting the fact that trees have
no cycles. Hence the elements of {v1, v2, . . . , vk} are all distinct, so that the
tree has at least k leaves. □

(b) Let T be a tree with n vertices, k leaves, and a vertex with degree k, where
k ≥ 2. Suppose that n > k + 1. Prove that T has a vertex of degree two.

Solution. Let S be the set of vertices of T that are not leaves. Then |S| =
n − k > 1. Let u be the vertex in S with degree k. Each other vertex in S
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has degree at least two (since it is not a leaf). Thus we have∑
v∈V (T )

d(v) ≥ k + 2(|S| − 1) + k(0.1)

= k + 2(n− k − 1) + k = 2n− 2.

Equality holds in (0.1) if and only if all vertices in S \ {u} have degree 2.
Since T is a tree with n vertices, it has n− 1 edges (by Theorem 2.5). So, by
the Handshaking Lemma∑

v∈V (T )

d(v) = 2(n− 1) = 2(n− 1).

This shows that equality does hold in (0.1), so each vertex in S \ {u} has
degree 2. In particular, since |S| > 1, there is at least one vertex in T with
degree 2. □

7. A graph is k-regular if every vertex has degree k. Prove or disprove the following:

(a) If G is a k-regular bipartite graph, with k ≥ 2, then G has no bridges.

Solution. This is true: we give a proof below.
Let G be a k-regular bipartite graph, with k ≥ 2, and suppose that G

has a bridge e = uv. Then G\e has a component C with u ∈ V (C) and
v /∈ V (C). The graph C is bipartite (since G is bipartite, it is 2-colourable,
and this 2-colouring also induces a 2-colouring of C). Since C is bipartite,
there exist disjoint sets A and B such that A∪B = V (C) and each edge of C
has one end in A and the other end in B. Without loss of generality, assume
u ∈ A. Consider the graph C. In this graph, the vertex u has degree k − 1,
whereas every other vertex has degree k. Thus the sum of the degrees of the
vertices in A is k|A| − 1, whereas the sum of the degrees of the vertices in B
is k|B|. Since every edge of C joins a vertex in A to a vertex in B, we have
k|A| − 1 = k|B|. So k(|A| − |B|) = 1. But |A| − |B| and k are integers and
k ≥ 2, so this is a contradiction. This proves that if G is a k-regular bipartite
graph with k ≥ 2, then G has no bridges. □

(b) If G is a k-regular graph, with k ≥ 2, then G has no bridges.

Solution. This is false. One counterexample can be obtained as follows. Start
with K4 and subdivide1 a single edge. The resulting graph H has 4 vertices
of degree 3, and a unique vertex with degree 2. Take two copies of this graph,
and add an edge e between the two vertices with degree 2. Call the resulting
graph G. Then e is a bridge of G, and G is 3-regular. □

1To subdivide an edge e = uv, we replace the edge e with a path of length two, via a new vertex,
w say.


