VICTORIA UNIVERSITY OF WELLINGTON SCHOOL OF MATHEMATICS AND STATISTICS

MATH 361

Assignment 1

T1 2024

Due 3pm Monday 11 March

1. Prove Exercise 1.2: "Let G be a graph with a walk W from a vertex u to a vertex v. Then there is a path from u to v that uses a subset of the edges of W."

2. The complement of a simple graph G = (V, E) is the simple graph $\overline{G} = (V, \overline{E})$, where an edge xy (for any distinct $x, y \in V$) is in \overline{E} if and only if xy is not in E. A simple graph is self-complementary if it is isomorphic to its complement. Prove:

- (a) If G is a disconnected graph, then \overline{G} is connected.
- (b) Every non-empty self-complementary graph is connected. (Hint: use (a).)
- (c) If G is self-complementary, then either $|V| \equiv 0 \mod 4$ or $|V| \equiv 1 \mod 4$.

3. Let s and t be positive integers with $s \leq t$. Recall that P_s is the path graph on s vertices. Give a formula for the minimum number of edges that need to be removed from K_t so that it has a graph isomorphic to P_s as an induced subgraph.

4. The distance d(u, v) between two vertices in a graph G is defined as the length of the shortest path that joins u and v. Prove that the distance satisfies the triangle inequality, that is, prove that $d(u, w) \leq d(u, v) + d(v, w)$ for any three vertices u, v and w of G.

5. Let u be a vertex of odd degree in the graph G. Prove that there is a path from u to another vertex of odd degree in G.

6. We know that trees with at least two vertices have at least two leaves. But typically trees have more leaves than that.

- (a) Show that if a tree has a vertex of degree k, then it has at least k leaves.
- (b) Let T be a tree with n vertices, k leaves, and a vertex with degree k, where $k \ge 2$. Suppose that n > k + 1. Prove that T has a vertex of degree two.

7. A graph is k-regular if every vertex has degree k. Prove or disprove the following:

- (a) If G is a k-regular bipartite graph, with $k \ge 2$, then G has no bridges.
- (b) If G is a k-regular graph, with $k \ge 2$, then G has no bridges.

TUTORIAL EXERCISES:

1. Prove Theorem 1.5: "For any graph G with vertex set V, the relation \sim is an equivalence relation on V."

2. Prove Theorem 1.6: "For each positive integer n, the complete graph K_n has n(n-1)/2 edges."

3. The complement of a simple graph G = (V, E) is the simple graph $\overline{G} = (V, \overline{E})$, where an edge xy (for any distinct $x, y \in V$) is in \overline{E} if and only if xy is not in E. A simple graph is self-complementary if it is isomorphic to its complement.

- (a) Give an example of a graph that is self-complementary.
- (b) Prove that every self-complementary graph with 4k + 1 vertices has a vertex of degree 2k (where k is a non-negative integer).

4. Let s and t be positive integers. Recall that P_s is the path graph on s vertices.

- (a) For what values of s and t (if any) is P_s an induced subgraph of K_t ?
- (b) For what values of s and t is P_s a subgraph of K_t ?
- (c) For the values of s and t given in (b), provide a formula for the number of edges that need to be removed from K_t to obtain P_s as a subgraph.

5. Recall that an *Eulerian walk* in a graph is a walk that uses each edge exactly once. Recall that a connected graph has an Eulerian walk if and only if it has either 0 or 2 vertices of odd degree. What happens if, instead, we look for a walk that uses each edge exactly twice — once in each direction? Prove or disprove that every connected graph contains such a walk.

6. Prove Lemma 2.3: "Let T be a tree with at least two vertices. Then T has at least two leaves."

7. Prove Lemma 2.4: "Let G be a connected graph. If e is a bridge of G, then $G \setminus e$ has exactly two components."

8. A saturated hydrocarbon is a molecule $C_m H_n$ is which every carbon atom has four bonds, every hydrogen atom has one bond, and no sequence of bonds forms a cycle. Show that, for any positive integer m, the molecule $C_m H_n$ can exist if and only if n = 2m + 2.

9. It is a famous theorem in graph theory that K_n has n^{n-2} spanning trees.

- (a) Verify the theorem for K_2 , K_3 and K_4 .
- (b) What about K_1 ?
- (c) Can you think of strategies for proving the theorem in general?