Victoria University of Wellington
 School of Mathematics and Statistics

MATH $361 \quad$ Assignment 1 T1 2024

Due 3pm Monday 11 March

1. Prove Exercise 1.2: "Let G be a graph with a walk W from a vertex u to a vertex v. Then there is a path from u to v that uses a subset of the edges of W."
2. The complement of a simple graph $G=(V, E)$ is the simple graph $\bar{G}=(V, \bar{E})$, where an edge $x y$ (for any distinct $x, y \in V$) is in \bar{E} if and only if $x y$ is not in E. A simple graph is self-complementary if it is isomorphic to its complement. Prove:
(a) If G is a disconnected graph, then \bar{G} is connected.
(b) Every non-empty self-complementary graph is connected. (Hint: use (a).)
(c) If G is self-complementary, then either $|V| \equiv 0 \bmod 4$ or $|V| \equiv 1 \bmod 4$.
3. Let s and t be positive integers with $s \leq t$. Recall that P_{s} is the path graph on s vertices. Give a formula for the minimum number of edges that need to be removed from K_{t} so that it has a graph isomorphic to P_{s} as an induced subgraph.
4. The distance $d(u, v)$ between two vertices in a graph G is defined as the length of the shortest path that joins u and v. Prove that the distance satisfies the triangle inequality, that is, prove that $d(u, w) \leq d(u, v)+d(v, w)$ for any three vertices u, v and w of G.
5. Let u be a vertex of odd degree in the graph G. Prove that there is a path from u to another vertex of odd degree in G.
6. We know that trees with at least two vertices have at least two leaves. But typically trees have more leaves than that.
(a) Show that if a tree has a vertex of degree k, then it has at least k leaves.
(b) Let T be a tree with n vertices, k leaves, and a vertex with degree k, where $k \geq 2$. Suppose that $n>k+1$. Prove that T has a vertex of degree two.
7. A graph is k-regular if every vertex has degree k. Prove or disprove the following:
(a) If G is a k-regular bipartite graph, with $k \geq 2$, then G has no bridges.
(b) If G is a k-regular graph, with $k \geq 2$, then G has no bridges.

Tutorial exercises:

1. Prove Theorem 1.5: "For any graph G with vertex set V, the relation \sim is an equivalence relation on V."
2. Prove Theorem 1.6: "For each positive integer n, the complete graph K_{n} has $n(n-1) / 2$ edges."
3. The complement of a simple graph $G=(V, E)$ is the simple graph $\bar{G}=(V, \bar{E})$, where an edge $x y$ (for any distinct $x, y \in V$) is in \bar{E} if and only if $x y$ is not in E. A simple graph is self-complementary if it is isomorphic to its complement.
(a) Give an example of a graph that is self-complementary.
(b) Prove that every self-complementary graph with $4 k+1$ vertices has a vertex of degree $2 k$ (where k is a non-negative integer).
4. Let s and t be positive integers. Recall that P_{s} is the path graph on s vertices.
(a) For what values of s and t (if any) is P_{s} an induced subgraph of K_{t} ?
(b) For what values of s and t is P_{s} a subgraph of K_{t} ?
(c) For the values of s and t given in (b), provide a formula for the number of edges that need to be removed from K_{t} to obtain P_{s} as a subgraph.
5. Recall that an Eulerian walk in a graph is a walk that uses each edge exactly once. Recall that a connected graph has an Eulerian walk if and only if it has either 0 or 2 vertices of odd degree. What happens if, instead, we look for a walk that uses each edge exactly twice - once in each direction? Prove or disprove that every connected graph contains such a walk.
6. Prove Lemma 2.3: "Let T be a tree with at least two vertices. Then T has at least two leaves."
7. Prove Lemma 2.4: "Let G be a connected graph. If e is a bridge of G, then $G \backslash e$ has exactly two components."
8. A saturated hydrocarbon is a molecule $C_{m} H_{n}$ is which every carbon atom has four bonds, every hydrogen atom has one bond, and no sequence of bonds forms a cycle. Show that, for any positive integer m, the molecule $C_{m} H_{n}$ can exist if and only if $n=2 m+2$.
9. It is a famous theorem in graph theory that K_{n} has n^{n-2} spanning trees.
(a) Verify the theorem for K_{2}, K_{3} and K_{4}.
(b) What about K_{1} ?
(c) Can you think of strategies for proving the theorem in general?
