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1. (Exercise 2.7) Prove Theorem 2.6: “Let G be a forest with n vertices and c
components. Then G has n− c edges.”

Solution. We use induction on the number of edges in G. First, observe that the
theorem holds when G has no edges since, in this case, each vertex is in a component
by itself, in which case the number of vertices, n, equals the number of components,
c, so n− c = 0.

Now suppose G has m edges, where m ≥ 1, and that the theorem holds for any forest
with m− 1 edges. Let H be a component of G with at least one edge. Then H is a
tree with at least two vertices, so H has a leaf (by Lemma 2.3). Let v be a leaf of H,
and let e be the pendant edge incident with v. Now, G − v has n − 1 vertices, and
m− 1 edges since v has degree one. By Lemma 2.14, v is not a cut vertex, so G− v
has c components (as G has c components). By the induction assumption, G− v has
(n − 1) − c edges. As G has one extra edge, e, it has n − c edges, as required. The
result follows by induction. □

Note: the proof of Theorem 2.5 in lectures (and the course notes) used strong induc-
tion on n, whereas here we use (ordinary) induction on m. In particular, in order to
apply the induction assumption, we pick a leaf to delete, so that the number of edges
is decreased by exactly one.

2. Prove Lemma 3.1:

“Let G be a connected graph, and let e be an edge of G. Then G/e is
connected.”

(Hint: You might like to use Lemma 2.10, which appears in Tutorial Q4.)

Solution. Say e is a loop of G. As G is connected, for any pair of vertices x and y in
G, there is a path from x to y. As e is a loop, this path does not contain e and it
remains a path in G/e (recalling that G/e ∼= G\e). Hence G/e is connected.
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Now assume that e is not a loop of G. By Lemma 2.10, there is a spanning tree of
G that contains e. Let T be the edges of this spanning tree. Then, by Lemma 2.13,
T \ {e} is the set of edges of a spanning tree of G/e. As G/e has a spanning tree,
this graph is connected (by Theorem 2.8). □

3. (Exercise 3.6) Prove Lemma 3.5: “Let G be a 2-connected graph. If e and f are
parallel edges in G, then G\e is 2-connected.”

Note: it may be tempting to use Theorem 3.7 here, but this is a a cheat since we
used Lemma 3.5 to prove Theorem 3.7.

Solution. Suppose that e and f are parallel edges in G. To show that G\e is 2-
connected, we will show that G\e has at least three vertices, it is connected, and it
has no cut vertices.

Firstly, since G is 2-connected, it has at least three vertices, so G\e does too.

Secondly, since G is connected, there is a path between every pair of vertices in G. If
this path contains e, then we can replace it with f in order to obtain a path in G\e.
This shows that G\e is connected.

Finally, towards a contradiction, suppose that G\e has a cut vertex v. Then G\e
is connected but (G\e) − v is disconnected. Let a and b be vertices in different
components of (G\e)− v. Then there is no path from a to b in (G\e)− v.

Since G is 2-connected, G−v is connected (see Exercise 3.3). So there is a path from
a to b in G − v. If e is in this path, we can replace it with f , and thereby obtain
a path from a to b in (G\e) − v. But we saw (in the previous paragraph) that no
such path exists, so this is a contradiction. Therefore, G\e has no cut vertices. This
completes the proof that G\e is 2-connected. □

4. Prove Corollary 3.8: “Let u and v be vertices of a 2-connected graph G. Then
there is a cycle of G that contains both u and v.” (Hint: you may use Theorem 3.7.)

Solution. We may assume that G is loopless (as if it holds for the graph obtained
from G by deleting all the loops, then it also holds for G). Since G is 2-connected,
it has at least three vertices, and is connected. Therefore, by Theorem 2.8, it has a
spanning tree, and so G has at least two edges (by Theorem 2.5). If G has a leaf,
then it has a pendant edge e, and there is no cycle containing e and any other edge
of G, which contradicts Theorem 3.7. This shows that every vertex of G has degree
at least two. Let e and f be distinct edges incident with u and v respectively (such
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edges exist, even in the case that u = v, since each vertex has degree at least two).
By Theorem 3.7, there is a cycle C of G that contains both e and f . Then C contains
both u and v. □

5. (Exercise 3.10) Prove that if G1 and G2 are consistent connected graphs with at
least one vertex in common, then G1 ∪G2 is connected.

Solution. We need to show that there is a walk between every pair of vertices in
G1 ∪ G2. Let u and v be any two vertices in G1 ∪ G2. If u and v are both in G1,
then there is a path (and walk) between u and v in G1, since G1 is connected, and
this is also a path (and walk) in G1 ∪G2. Similarly, there is a walk between u and v
in G1 ∪G2 when {u, v} ⊆ V (G2). So suppose, without loss of generality, u ∈ V (G1)
and v ∈ V (G2). Let w be a vertex in V (G1) ∩ V (G2). Then there is a path from u
to w in G1 (since u and w are vertices of G1 and G1 is connected), and similarly a
path from w to v in G2. Concatenating these paths, we have a walk from u to v in
G1 ∪G2. Since there is a walk between every pair of vertices in G1 ∪G2, this graph
is connected, as required. □

6. (Exercise 3.15(i)) Prove Lemma 3.14(i):

Let G be a loopless graph, and let B(G) be the block-cut graph of G.
Then B(G) is a forest.

Solution. Towards a contradiction, suppose B(G) contains a cycle. Since B(G) is
bipartite and simple, any cycle has length at least four. Thus, for some t ≥ 2,
there is a sequence v1, B1, v2, B2, . . . , vt, Bt, v1 such that Bi contains {vi, vi+1} for
i ∈ {1, 2, . . . , t − 1}, and Bt contains {v1, vt}. Since each block Bi is connected, by
definition, there is a path between any pair of vertices in Bi. Thus, there is a path
Pi in Bi from vi to vi+1 for each i ∈ {1, 2, . . . , t − 1}, and also a path Pt from vt to
v1 in Bt. The concatenation of P1, P2, . . . , Pt is now a closed walk in G (recall, a
closed walk is a walk that begins and ends at the same vertex). Let C be a cycle
that is contained in this closed walk. Let e be an arbitrary edge in C. Then e is an
edge of the path Pi for some i ∈ {1, 2, . . . , t}. Moreover, since Pi is a path but C is a
cycle, we can find an edge f of C that is not in the path Pi. Recalling that each edge
of G belongs to a unique block (by Lemma 3.9(ii)), we have that e is in the block
Bi, but f is not in the block Bi, where C contains both e and f . The cycle C is a
biconnected subgraph of G, so it is contained in a block B of G. Since e belongs to
B and Bi, we have B = Bi (by Lemma 3.9(ii)), but this contradicts that f is an edge
of B that is not in Bi. From this contradiction, we deduce that B(G) has no cycles,
so B(G) is a forest. □
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7. Let G be a loopless graph. We say that a block of G is a leaf block if it contains
precisely one cut vertex of G. Prove that every loopless connected graph with at least
three vertices that is not 2-connected has at least two distinct leaf blocks.

Solution. Let G be a graph that is connected but not 2-connected, and |V (G)| ≥ 3.
Consider the block-cut graph B(G) of G. By Lemma 3.14(i) (see Q6), B(G) is a
forest. Since G is not 2-connected and |V (G)| ≥ 3, it has at least one cut vertex v.
Consider the component T of B(G) containing v (here, we could use Lemma 3.14(ii)
that says that B(G) has just one component since G is connected, but I will bypass
this since it is not something we have proved). Each cut vertex of G belongs to
at least two blocks (see Lemma 3.12 or Tutorial Q9), so each vertex of B(G) that
corresponds to a cut vertex has degree at least two. In particular, v has degree at
least two in T , so T is a tree on at least three vertices. Therefore T has at least two
leaves (by Lemma 2.3). As each cut vertex of G corresponds to a vertex of degree at
least two in B(G), these two leaves correspond to blocks of G that contain precisely
one cut vertex. Thus G has at least two leaf blocks. □


