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1. The Basics

A graph consists of a set V of vertices, a set E of edges, and an incidence function
that maps each edge in E to either one or two vertices in V .

We say “one vertex” but “two vertices”. To say that G = (V,E) is a graph
means that G is a graph with vertex set V and edge set E. Note that the
incidence function is implicit: we say that an edge e ∈ E is incident with a
vertex v ∈ V when v is one of the vertices that the incidence function maps e
to. Given a graph G where the vertex and edge set have not been specified, we
use the notation V (G) to refer to the vertex set, and E(G) to refer to the edge
set.

It is possible to have graphs with an infinite number of vertices or edges, but,
in MATH361, all graphs will have a finite number of vertices and edges.

Intuitively we think of the vertices as points and the edges as curves joining the
points that they are incident to. (What about when an edge is only incident to
one vertex? We’ll come back to that in a moment.)

Graphs provide mathematical models of many, many real world situations. For
example, electricity grids, road maps, wiring diagrams, our brain, directory
structures in a computer, a computer network, flight routes, the internet, an
exam timetable, a map of the world, can all be thought of as graphs — and
these are just a few examples; there are heaps more.

• A nice thing about graphs is that we can draw pictures of them. This
will be vital to helping us think about graphs, but there is a danger.
Be aware that the same graph can have many different drawings which
look quite different. A graph only tells us which edges are incident with
which vertices. It tells us nothing about distance, angle, shape etc.

• It’s nice if you can draw a graph so that edges only cross at vertices,
but sometimes you cannot. Such is life. When you draw a graph, take
care to make your vertices clear, so that crossings are not confused with
vertices.
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A loop is an edge that is incident with only one vertex. When drawing a graph
with a loop, we draw the loop as a closed curve that starts and ends at the
one vertex it is incident to. Two distinct non-loop edges are parallel if they are
incident with the same pair of vertices. A simple graph is one that has no loops
or parallel edges. Simple graphs can be complicated! In a simple graph, we can
uniquely describe an edge by the pair of vertices it is incident to, so in this case
it is often to convenient to think of an edge as a pair of vertices.

Recall that a graph is equipped with an incidence function that tells us what
vertices are incident to each edge. When e is an edge of a graph that is incident
to the vertices u and v, we say that u and v are the ends of e; note that u = v
when e is a loop, otherwise u ̸= v. When e is a non-loop edge, we often use the
shorthand e = uv to mean that u and v are the ends of e. For a set of edges
F in a graph, the vertices incident with F is the union of the vertices incident
with each edge in F . We say two vertices u and v are adjacent if there exists
an edge e such that e is incident to u and v, otherwise they are non-adjacent.
We also say two edges e and f are adjacent if there exists a vertex v such that
e and f are both incident to v.

Warning: Graph terminology is not standard. Graph theory is a young subject
and has only been pursued seriously since the 20th century. This means that
the dust has yet to settle on terminology. If you read texts on graphs, you need
to make sure that you understand their terminology first. For example, what
we call a graph, many authors call a multigraph.

Walks, paths, and cycles. A walk in a graph is an alternating sequence of
vertices and edges

v1, e1, v2, e2, . . . , en−1, vn

such that each ei is incident with both vi and vi+1.

A path is a walk in which no vertex appears more than once. The length of a
walk (or path) is the number of edges in the walk (or path).

If the first and last vertex of a walk are equal, then it is a closed walk.

Take a closed walk with length at least one, in which only the first and last
vertex are equal. The edges and vertices of such a closed walk form a cycle.
Note that many different walks can describe the same cycle. (Why?)

Nag: The above structures are fundamental in graphs and if you don’t take
the trouble to learn exactly which is which, then understanding the lectures
will become very difficult. This is essentially true of all the definitions we will
encounter in graph theory.
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The following lemma is straightforward to prove; so much so that its proof is left
as an exercise. Nonetheless, it is saying something, and it’s worth internalising
what that is. (One way to do this is by having a go at proving it yourself!)

Lemma 1.1. Let G be a graph with a walk W from a vertex u to a vertex v.
Then there is a path from u to v that uses a subset of the edges of W .

Exercise 1.2. Prove Lemma 1.1.

Matrices associated with graphs. Let G = (V,E) be a graph, where V =
{v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. Then the incidence matrix of G is an
n×m matrix whose rows are labelled by V ; columns are labelled by E; and the
entry in the row labelled vi and column labelled ej is 1 if vi is incident with ej,
otherwise it is 0.

On the other hand, the adjacency matrix of G is the matrix whose rows and
columns are labelled by V where the entry in the row labelled vi and column
labelled vj is 1 if vi and vj are adjacent (i.e. there is an edge joining vi and vj),
otherwise it is 0.

→ For human understanding, the best way to describe a graph is by a
picture; for computers, the best way is by a matrix. This contrast occurs
throughout mathematics. For our own understanding, we need a way of
seeing structures intuitively, but for computation and precision we also
need a formal way of describing structures.

Vertex degree. The degree of a vertex v is the number of edges incident with
it. The degree of v is denoted d(v). Note that, by convention, a loop contributes
2 to the degree of a vertex.

Recall that if S is a set, then |S| denotes the number of elements in S, that is,
the size or cardinality of S.

Theorem 1.3 (The Handshaking Lemma). In a graph G = (V,E), the sum of
the degrees of the vertices is twice the number of edges. More precisely,∑

v∈V

d(v) = 2|E|.

Proof. To prove the Handshaking Lemma we use the modified incidence matrix
where the entry in the vi row and ej column is a 2 if ej is incident with vi and
vi is a loop, otherwise it is the same as in the standard incidence matrix.
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Consider the graph G = (V,E) and let M be the modified incidence matrix of
G. Let S be the sum of all the entries in M . We will find S in two different
ways.

The sum of the entries in each column of M is 2. There is one column for each
edge. Thus we get

S = 2|E|.

Consider the rows. The sum of the entries in a row labelled by a vertex v is
d(v) as the non-zero entries correspond to edges incident with v. Thus we get

S =
∑
v∈V

d(v).

This shows that
∑

v∈V d(v) = S = 2|E|, as required. □

Don’t think that just because the proof is short that it is uninteresting. It used
the technique of showing that two things were equal because they counted the
same thing in different ways.

Corollary 1.4. Every graph has an even number of vertices of odd degree.

Proof. Towards a contradiction, suppose that there exists a graph G that has an
odd number of vertices of odd degree. Then the sum of the degrees,

∑
v∈V (G) d(v),

is an odd number. But, by the Handshaking Lemma, this number is twice the
number of edges in G, which is an even number. This contradiction shows
that our initial assumption is false; that is, every graph has an even number of
vertices of odd degree. □

Subgraphs. Let G = (V,E) be a graph, and let V ′ ⊆ V and E ′ ⊆ E such
that the vertices incident with E ′ are contained in V ′. Then G′ = (V ′, E ′) is a
subgraph of G.

We can also consider subgraphs that are determined (“induced”) by just the
vertices. Let U ⊆ V . The subgraph of G induced by U , denoted G[U ], has
vertex set U and edge set consisting of the edges of G whose ends are contained
in U . (Note that, for a non-loop edge e = vw, both v and w must be in U for
the edge e to appear in G[U ].) We say that G[U ] is an induced subgraph of G.

We could also consider subgraphs induced by a set of edges. Let F ⊆ E. The
subgraph of G induced by F , denoted G[F ], has edge set F and vertex set
consisting of all vertices of G incident with at least one edge in F . We say that
G[F ] is an edge-induced subgraph of G.
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For clarity, we could call an “induced subgraph” a “vertex-induced subgraph”,
but it is standard practice to assume an “induced subgraph” is vertex induced
unless specified otherwise.

Remember how we said a cycle was a closed path where only the first and last
vertex are equal? From this perspective, a cycle of length t is an sequence
v1, e1, v2, e2, . . . , vt, et, v1 that alternates between vertices and edges. Often, it
is instead more useful to think of such a cycle as a subgraph on vertex set
{v1, . . . , vt} and edge set {e1, . . . , et}. Since a cycle is uniquely determined by
its edge set, other times it is more convenient to think of a cycle as a set of
edges. Although context will usually help, try to make clear if you are using
this viewpoint. Most commonly we will view a cycle as a subgraph.

Similarly, sometimes it is convenient to view a path v1, e1, v2, e2, . . . , vt, et, vt+1

as a subgraph with vertex set {v1, . . . , vt} and edge set {e1, . . . , et}, or simply
as a set of edges {e1, . . . , et}.

Connectivity. For any graph G with vertex set V , we now define a relation ∼
on V as follows: for u and v in V , we have u ∼ v if and only if there is a walk
from u to v.

Theorem 1.5. For any graph G with vertex set V , the relation ∼ is an equiv-
alence relation on V .

Proof. We need to prove that ∼ is reflexive, symmetric and transitive.

(i) The walk consisting of the vertex v by itself is a walk from v to v. Hence
v ∼ v so that ∼ is reflexive.

(ii) Suppose u ∼ v. Then there is a walk from u to v. If we write the vertices
and edges of this walk in reverse order we get a walk from v to u, so
that v ∼ u. Hence ∼ is symmetric.

(iii) Suppose u ∼ v and v ∼ w. Then, if we first do the walk from u to v and
follow it by the walk from v to w, we get a walk from u to w. Hence
u ∼ w so that ∼ is transitive.

As ∼ is reflexive, symmetric and transitive, it is an equivalence relation. □

Recall that associated with any equivalence relation ∼ on a set S, there is a
partition of S into subsets called equivalence classes. Members of the same
equivalence class are all related to each other.

Thus, for our equivalence relation ∼, there is a partition of V into equivalence
classes. Moreover, if Vi is an equivalence class of ∼, then there is a walk (and
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hence, by Lemma 1.1, a path) between any pair of vertices in Vi, while there is
no walk (or path) between a vertex in Vi and a vertex outside Vi.

Suppose that for a graph G, there are t equivalence classes of ∼, and these are
V1, V2, . . . , Vt. Then G[V1], G[V2], . . . , G[Vt] are called the components of G. We
have defined a component C to be an (induced) subgraph, so it is a graph in
its own right, with vertex set V (C) and edge set E(C).

→ Every edge of G belongs to precisely one of the components. So not only
can we refer to the component that a vertex of G belongs to, but we can
unambiguously refer to the component that an edge of G belongs to.

A graph is connected if it has exactly one component. Equivalently, a graph G
is connected if it has at least one vertex and there is a walk between every pair
of vertices in G. We say that a graph is disconnected if it has at least two
components.

A component C of a graph G is a maximal connected subgraph: there is no
connected subgraph of G whose vertex set contains V (C) and edge set contains
E(C) having more vertices or edges than C.

Often in mathematics, there is a trade-off between precision and intuition.
When first learning concepts, intuition is potentially more important. But
in order to really know something is true, we require precision in our proofs.
In these notes, we’ll use a box, like below, when we are wearing a “pedantic”
hat, rather than a “intuitive” hat. Perhaps on first read of these notes, these
might not seem so important, whereas on a later read, you might appreciate
the attention to detail.

We say that G = (∅, ∅) is the empty graph, and a graph is non-empty if it
has at least one vertex. Since the empty graph has zero components, under
our definitions it is neither connected nor disconnected! On the other hand,
any non-empty graph is either connected or disconnected (and not both).

Complete graphs. The simple graph with n vertices and all possible edges is
called the complete graph on n vertices and is denoted by Kn.

Theorem 1.6. For each positive integer n, the complete graph Kn has n(n−1)/2
edges.

Proof. We have n vertices and there is exactly one edge for each 2-element
subset of V . But the number of 2-element subsets of an n-element set is

(
n
2

)
.
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Moreover (
n

2

)
=

n(n− 1)

2
.

□

Can you draw K4 without edges crossing? What about K5?

Bipartite graphs. A graph G = (V,E) is bipartite if its vertex set V can be
partitioned into two sets V1 and V2 such that each edge of G joins a vertex in
V1 to a vertex in V2.

→ There is a potential trap in the above definition, due to the phrase “can
be partitioned”. Think about it!

The length of a cycle is the number of edges in the cycle. Since the number
of vertices in a cycle is the same as the number of edges (why?), we could
equivalently have said that the length is the number of vertices in the cycle.
(Note the difference with paths: there we must count the edges.)

Theorem 1.7. A graph G is bipartite if and only if G has no cycles of odd
length.

This theorem describes a fundamental property of bipartite graphs, but at the
moment we lack tools to help us prove it. We will build up some more theory
regarding trees, before proving this result in Section 2.

The complete bipartite graph Ks,t has vertex set V1∪V2, where |V1| = s, |V2| = t,
the sets V1 and V2 are disjoint, and there is a single edge between each vertex
in V1 and each vertex in V2.

Can you draw K2,5 without edges crossing? What about K3,3?

Theorem 1.8. For any positive integers s, t ≥ 1, the complete bipartite graph
Ks,t has st edges.

Proof. The graph Ks,t has s vertices of degree t and it has t vertices of degree
s. Therefore the sum of the degrees is st + st = 2st. It now follows from the
Handshaking Lemma that Ks,t has st edges. □
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Isomorphism. Previously, we said Kn was the simple graph with n vertices
and all possible edges. But consider K3. In fact there are an infinite number
of simple graphs with 3 vertices and all possible edges, having different vertex
sets.

Do we care? The point is that all of the different graphs with 3 vertices and all
possible edges, are “structurally the same”, or “the same apart from labelling”,
and so it is likely that you naturally, and correctly, focussed on the structural
property, rather than the labelling. We need to make this precise.

Throughout mathematics, the word we use to say “these two objects are struc-
turally the same, but possibly labelled in different ways” is isomorphic. What
this means depends on the type of structure we are talking about.

Recall that a function f : S → T is a bijection if it is both injective (one-to-
one) and surjective (onto); that is, for each member t of T , there is exactly one
member s of S such that f(s) = t.

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. Then an isomorphism between
G1 and G2 is a pair of bijections f : V1 → V2 and g : E1 → E2 such that e is
incident with v in G1 if and only if f(e) is incident with g(e) in G2.

The graphs G1 and G2 are isomorphic if there exists an isomorphism between
G1 and G2; we denote this as G1

∼= G2.

So what is Kn? It is the name for any simple graph isomorphic to one obtained
by choosing n vertices and adding all possible edges between them.

Notions of substructure. What does it mean for one graph to “contain”
another? The answer depends on the notion of substructure that we choose.
We have already seen two different notions of substructure, which we recall in
a moment.

We first consider what it means to delete an edge or vertex from a graph. If e is
an edge of a graph G, then G\e (“G delete e”) is the graph obtained by deleting
the edge e and leaving all other edges and vertices intact. If v is a vertex of G,
then G− v is the graph obtained from G by removing v and all edges incident
with v. (Note: when we delete a vertex, we must also delete all edges incident
with it.)

Now let G and H be graphs. Then H is a subgraph of G if V (H) ⊆ V (G) and
E(H) ⊆ E(G). Equivalently, H is a subgraph of G if H can be obtained from
G by deleting edges and vertices. On the other hand, H is an induced subgraph
of G if H can be obtained from G by deleting vertices (only).
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Note the difference: every induced subgraph is a subgraph, but not every sub-
graph is an induced subgraph. For example, let e be an edge of K5, so K5\e is
obtained from K5 by removing a single edge. Then K5\e is a subgraph of K5,
but not an induced subgraph.

What are the induced subgraphs of K5?

There is one more important notion of substructure that we will see: the notion
of a minor. First, we recall what it means to contract an edge.

Contraction and minors. We already know that if e is an edge of G, then
the deletion of e from G, denoted G\e, is the graph obtained by removing the
edge e (only).

There is another fundamental way to remove an edge from a graph. We first
give the formal definition. Recall that for sets X and Y , we use X \Y to denote
set difference, i.e. the set of elements in X that are not also in Y .

Let G = (V,E) be a graph, and let e = uv be an edge of G. The graph
G contract e, denoted G/e, is obtained as follows. The vertices of G/e are
(V \ {u, v}) ∪ {w}, where w is not in V . The edges of G/e are E \ {e}. We
can describe the incidence function as follows: for f ∈ E \ {e},

• if f is incident with either u or v in G, then f is incident with w in
G/e,

• if f is incident with z ∈ V \ {u, v} in G, then f is incident with z in
G/e.

A formal definition like this is useful in proofs because of its precision, but for
human understanding we need another way. To visualise contraction imagine
the edge e = uv shrinking until it squeezes the two vertices u and v together
into a new vertex which, in the above definition, we call w.

→ Often, when contracting an edge, we are only interested in the isomor-
phism class, so the name given to the vertex resulting from the con-
traction (i.e., w in the above definition) is not important. This is also
evident in the notation G/e. When the name given to this vertex is
important, be explicit!
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We say H is a minor of a graph G if H can be obtained from G by a (possibly
empty) sequence of edge deletions, edge contractions, and vertex deletions.

Minors will be important to us throughout this course. While edge deletion is
straightforward, contraction is more subtle. In what follows we start to develop
some basic properties of contraction.

Properties of contraction. Contracting an edge e = uv can sometimes seem
to significantly change the appearance of a graph, but the next lemma shows
that the parts of the graph that do not contain both u and v remain essentially
the same.

Lemma 1.9. Let G = (V,E) be a graph, and let e = uv be a non-loop edge of
G.

(i) Let U be a subset of V that contains at most one element of {u, v}. Then
G[U ] is isomorphic to a subgraph of (G/e)[U ].

(ii) Let F be a subset of E that is incident with at most one element of {u, v}
in G. Then G[F ] ∼= (G/e)[F ].

Proof. Let w be the vertex resulting from the contraction of e.

Consider (i). The induced subgraph G[U ] contains at most one of u and v.
Let H be the graph obtained from G[U ] by relabelling either u or v to w, if
such a vertex appears in G[U ]; otherwise let H = G[U ]. By the definition of
contraction, if e is an edge of H, then e is also an edge of (G/e)[U ], which is
incident to the same pair of vertices, except that u or v is replaced with w. Now
(i) follows.

Similarly, for (ii), the edge-induced subgraph G[F ] contains at most one of u
and v. By the definition of contraction, apart from relabelling either u or v
to w, the edge-vertex incidences do not change, so that the structure does not
change. □

→ The upshot of the last lemma is: the structures in a graph that change
in the contraction are those that contain both u and v.

Exercise 1.10. Show that “is isomorphic to a subgraph of” in Lemma 1.9(i)
cannot be replaced with “is isomorphic to”. In other words, give a counterex-
ample to the following statement: if U is a subset of V that contains at most
one element of {u, v}, then G[U ] ∼= (G/e)[U ].
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Why did we need to use isomorphism in Lemma 1.9, e.g. can we not replace
‘∼=’ with ‘=’ in (ii)? The reason we might not have equality is that we
give the new vertex, resulting from the contraction, a label different from
{u, v}. In the case that U (or F ) contains (or is incident with) u, then if
we relabelled the new vertex resulting from the contraction as u, the graphs
would indeed be equal.

What if we try to contract a loop?

Observation 1.11. Let G be a graph with a loop e. Then G/e ∼= G\e.

We leave this as an observation (with no proof), as it is a direct consequence of
the definition of contraction.

Lemma 1.12. Let G be a graph with a non-loop edge e = uv, and let C be a
subset of E(G) \ {e}. Then C is the set of edges of a cycle in G/e if and only
if either

(i) C ∪ {e} is the set of edges of a cycle in G, or
(ii) C is the set of edges of a cycle in G, and the vertices of this cycle contain

at most one element of {u, v}.

Proof. (⇐) Assume that (i) holds, so C ∪ {e} is the set of edges of a cycle
in G. Then C is the set of edges of a path from u to v in G. Say C =
u, e1, . . . , en, v. Let w be the vertex resulting from the contraction of e in G/e.
Then w, e1, . . . , en, w is a cycle in G/e, and the set of edges of this cycle is C.

Now assume that (ii) holds. By Lemma 1.9(ii), G[C] ∼= (G/e)[C], so C is the
set of edges of a cycle in G/e. This proves one direction.

(⇒) Conversely, assume that C is the set of edges of a cycle in G/e, and w is
the vertex resulting from the contraction of e. If w is not a vertex in (G/e)[C],
then G[C] is a cycle that does not contain u or v, so G[C] ∼= (G/e)[C] by
Lemma 1.9(ii), and (ii) holds. If w is a vertex of (G/e)[C] but G[C] only
contains one of u or v, then, similarly, (ii) holds. If w is a vertex of (G/e)[C]
and G[C] contains both u and v, then C is the set of edges of a path from u to
v in G. Then C ∪ {e} is the set of edges of a cycle in G, so (i) holds. □

Lemma 1.12 only concerns when e is not a loop – so what happens to cycles
when contracting a loop? We noted, as Observation 1.11, that when e is a
loop, G/e is just the same as G\e (up to the label of the vertex incident
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to e). So the cycles of G are just the cycles of G/e plus the extra cycle of
length one on the edge e.


