
41

4. Planar Graphs I: Basics and Planar Duals

Let H be a graph. Informally, we are interested in the question: can H be
drawn in the plane (i.e. on a piece of paper) such that no pair of edges cross?

To describe this more formally, we define the notion of a planar embedding as
follows. A planar embedding of H is a pair of functions (f, g) where f maps
each vertex of H to a point in the plane, and g maps each edge of H to a simple
curve in the plane, such that:

(i) for an edge e of H with ends u and v, the curve g(e) is from the point
f(u) to the point f(v), and

(ii) the only points on the plane where two distinct curves g(e1) and g(e2)
meet is at a point f(u) for some vertex u of H.

A plane graph is a graph together with a planar embedding of the graph.

Note that we can have a planar embedding of a graph with loops, where the
embedding maps a loop edge to a simple curve that starts and ends at the
same point.

A plane graph is a graph with extra structure (that describes how to draw the
graph in the plane without crossing edges).

If we have a plane graph G, then the graph we obtain by ignoring the planar
embedding is called the underlying graph of G. For simplicity, when we refer to
edges/vertices/cycles (and so on) of a plane graph G, we are really referring to
edges/vertices/cycles (and so on) of the underlying graph of G.

A planar graph is a graph that has a planar embedding. In other words, a graph
is planar if it is the underlying graph of some plane graph. In particular, if G
is a plane graph, then the underlying graph of G is planar.

Suppose G is a plane graph, with underlying graph H and embedding (f, g).
Often we will be interested in the points or curves that vertices or edges of
H are mapped to by f or g respectively. For simplicity, when we refer to the
embedding of a set of vertices or edges in a plane graph, we mean the points or
curves that these vertices or edges are mapped to by f or g respectively.

Topological Issues. Discussion of plane graphs necessarily involves the study
of the topology of the plane. To do so in a rigorous manner is well beyond the
scope of the course.
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A curve is a continuous image of a closed unit line segment. A closed curve is
a continuous image of a circle. A curve or a closed curve is simple if it does not
intersect itself. The next elementary fact is fundamental.

Lemma 4.1. The edges of any cycle in a plane graph form a simple closed
curve.

A subset X of the plane is arcwise-connected if any two points in X can be
connected by a curve contained entirely in X. The next result is one of the
most fundamental theorems of topology.

Theorem 4.2 (The Jordan Curve Theorem). Any simple closed curve in the
plane partitions the rest of the plane into two disjoint arcwise-connected open
sets.

The Jordan Curve Theorem may seem obvious, but in fact it is quite tricky to
prove. Indeed, the first person to notice that it needed a proof was Bolzano in
the early 1800s.

The two sets into which a simple closed curve C partitions the rest of the
plane are called the interior and the exterior, and are denoted by int(C) and
ext(C) respectively. We let Int(C) = int(C) ∪ C, and let Ext(C) = ext(C) ∪
C (topologically, Int(C) and Ext(C) are the closures of int(C) and ext(C),
respectively). Observe that Int(C) ∩ Ext(C) = C.

To prove that a graph is planar, it suffices to give a planar embedding. But
it’s a different issue proving that a graph is not planar. We’ll develop tools
for doing this. However, with a careful use of The Jordan Curve Theorem and
Lemma 4.1, in some cases it is possible to do this in a way that might even keep
the more pedantically minded happy.

Theorem 4.3. K3,3 is non-planar.

Proof. Consider K3,3, with the vertices labelled as in the following drawing.
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The outer cycle along the vertices u, v, w, x, y, z, u is a Hamiltonian cycle of
K3,3, that is, it is a cycle on vertex set V (K3,3). By Lemma 4.1, in any planar
embedding, the edges of a cycle must be a simple closed curve. Suppose there
is a planar embedding of K3,3, and let C be the simple closed curve for this
Hamiltonian cycle. By the Jordan Curve Theorem, C partitions the rest of the
plane into two arcwise-connected regions, int(C) and ext(C). By the definition
of a planar embedding, the edges ux, vy, and wz must lie entirely in either
int(C) or ext(C). So (at least) two of these edges lie in one of these regions.
But then these two edges must cross. From this contradiction, we deduce that
there is no planar embedding of K3,3; that is, K3,3 is not planar. □

What about K5? Some of you might have seen in MATH161 a proof that K5

is non-planar using a corollary of Euler’s Formula. We haven’t seen these tools
yet in MATH361.

Exercise 4.4. Prove K5 is non-planar (without using Euler’s formula).

Subdivisions: Let G be a graph with an edge e = uv. Let H be the graph
obtained from G by removing the edge e, adding a new vertex w, and adding
edges e′ = uw and e′′ = wv. We call this operation an edge subdivision, and say
that H is obtained from G by subdividing e. Note that w has degree two in H,
while all all other vertices have the same degree as in G.

→ Despite the slightly unwieldy definition, an edge subdivision is really an
elementary operation: intuitively, we are just putting a new vertex “on”
an existing edge.

Lemma 4.5. If H is obtained from a graph G by subdividing the edge e ∈ E(G),
with new edges e′ and e′′, then G ∼= H/e′ ∼= H/e′′.

If the graph H is obtained from G by a sequence of edge subdivisions, then we
say that H is a subdivision of G.

Lemma 4.6. Let H be a subdivision of a graph G. Then H is planar if and
only if G is planar.

Spherical Embeddings: As well as drawing graphs in the plane we can draw
them in other surfaces, for example, a Möbius band, the torus, or the Klein
bottle. The study of such embeddings is the beautiful branch of mathematics
known called topological graph theory. Unfortunately, to take that mathematical
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journey we really do need to treat the topology seriously and that makes much
of it beyond the scope of MATH361. However, one surface that is of particular
interest is the surface of the 3-dimensional sphere. It turns out that the graphs
embeddable on this surface belong to a familiar class.

Theorem 4.7. A graph is embeddable on the plane if and only if it is embeddable
on the sphere.

It is not hard to see intuitively why Theorem 4.7 is true. A formal proof
using projective geometry is also not too difficult. One advantage of spherical
embeddings is that they are more symmetric than planar embeddings as there
is no special “outer face”.

Faces: Let G be a plane graph. Since the embedding of the edges of a cycle of
G is a simple closed curve, they partition the rest of the plane into two arcwise-
connected open sets (the interior and the exterior of the curve). It follows that,
considering the embedding of all of the edges of G, we obtain a partition of
the rest of the plane into a collection of arcwise-connected open sets, which are
called the faces of G (or the faces of the planar embedding of G). We denote
by F (G) the set of faces of G. Each plane graph has exactly one unbounded
face called the outer face.

The boundary of a face f ofG is the boundary of the open set f in the topological
sense. This boundary corresponds to a closed walk in the underlying graph,
which we (usually) regard as a subgraph (consisting of the vertices and edges of
the closed walk). We say that the face f is incident with the vertices and edges
in this closed walk. Two distinct faces are adjacent if their boundaries have an
edge in common. For a face f , we denote the edges in the boundary of f by
∂(f).

The next theorem can be proved using essentially the same techniques as The-
orem 4.7.

Theorem 4.8. Let G be a planar graph and let f be a face in some planar
embedding of G. Then there exists a planar embedding of G in which the outer
face has the same boundary as f .

We next give a few more intuitively obvious facts without proof.

Lemma 4.9. Let G be a plane graph.

(i) If G is a forest, then G has exactly one face.
(ii) If G is connected, and f is a face of G, then G[∂(f)] is connected.
(iii) If e is a bridge of G, then e is incident with exactly one face; otherwise

e is incident with two faces.
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Something for the Connoisseur: To prove the above things properly, we
need more topology. Indeed for some of them we need the following theorem.

Theorem 4.10 (The Jordan–Schönflies Theorem). Any homeomorphism of a
simple closed curve in the plane onto another simple closed curve in the plane
can be extended to a homeomorphism of the plane.

What does this say? Imagine I have two simple closed curves — which we can
think of as being made of rubber. Then a homeomorphism of one to the other
is a way of stretching the rubber to change one into the other. To understand
what a homeomorphism of the plane is, you have to imagine the whole plane
being a rubber sheet. If you can get from one curve to the other by stretching
the rubber band, you can extend that to a stretch of the whole rubber sheet!

Topology is an amazing subject. It studies geometric properties that have
nothing to do with distances, angles, etc. The development of topology is one
of the highlights of twentieth century mathematics. There is a careful treatment
of the topological aspects of planar graphs in the textbook Graph Theory by
Diestel. The textbook Graphs and Surfaces by Mohar and Thomassen gives an
excellent treatment of the whole of topological graph theory.

More terminology: The degree of a face, denoted d(f), is the number of edges
on its boundary (that is, the cardinality of ∂(f)), except we count a bridge twice.

→ You might like to think of a bridge being counted twice because, as we
traverse the face boundary, we traverse each bridge twice.

For a graph G we have the following:

• E(G) is the set of edges of G,
• V (G) is the set of vertices of G, and
• d(v) is the degree of a vertex v in G.

If G is a plane graph we also have:

• F (G) is the set of faces of G, and
• d(f) is the degree of a face f of G.

Whitney’s Theorem. Looking at a plane graph, it is clear that the boundary
of a face is typically a cycle, although that’s not always the case as we’ve seen
when the graph has bridges.

But even when there are no bridges, we can have face boundaries that are not
cycles, for example if the graph has cut vertices. But Hassler Whitney, in 1932,
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proved that once we get to 2-connected graphs, the problem disappears, and all
face boundaries are cycles. Before we get to that result, we need a lemma.

Lemma 4.11. Let G be a plane graph, let e be an edge of G that is not a bridge
or a loop. Let f1 and f2 be the faces of G incident with e. Then there is a
planar embedding of G/e such that

(i) ∂(f1) \ {e} and ∂(f2) \ {e} are each the set of edges of a face boundary,
and

(ii) ∂(f) is the set of edges of a face boundary when f is a face of G such
that f /∈ {f1, f2}.

What happens if e is a bridge of G? What happens if e is a loop of G?

The next corollary is an immediate consequence of Lemma 4.11.

Corollary 4.12. If G is a planar graph, then any minor of G is planar.

And now we can prove Whitney’s Theorem.

Theorem 4.13 (Whitney, 1932). Let G be a loopless 2-connected plane graph.
Then every face boundary of G is a cycle.

Proof. The proof is by induction on the number of edges of G. Since G is 2-
connected, it has at least three vertices, and it follows that G has at least three
edges. If G has precisely three edges, then G ∼= K3. In this case, G is a plane
graph consisting of a single cycle. By the Jordan Curve Theorem, G has two
faces, and the boundary of each face is a cycle.

Now assume that G has more than three edges and that the theorem holds for
loopless 2-connected plane graphs with fewer edges than G. Let e = uv be an
edge of G. By Theorem 3.4, either G\e or G/e is 2-connected. We consider two
cases depending on whether or not G\e is 2-connected.

Assume that G\e is 2-connected. Consider a plane drawing of G. Deleting the
edge e gives a plane drawing of G\e. Because G is a plane graph, the vertices
u and v must lie on a common face boundary, as otherwise we would not be
able to insert the edge e. By the induction assumption, this face boundary is a
cycle. Say that a closed walk along the cycle visits the vertices in the following
sequence: u, x1, . . . xs, v, y1, . . . , yt, u. Then, since e = uv, we see that the two
face boundaries that contain e are the cycles corresponding to the closed walks
u, x1, . . . xs, u and v, y1, . . . , yt, v. All other face boundaries of G are also face
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boundaries of G\e, which are cycles of G\e by the induction assumption, and
hence also cycles of G. Thus the result holds if G\e is 2-connected.

Now assume that G\e is not 2-connected, so G/e is 2-connected by Theorem 3.4.
It follows, by Lemma 3.5, that e is not in a parallel pair, so G/e is loopless
(using the same argument as we employed in Theorem 3.7). Hence we can
apply the induction assumption on G/e. Let f1 and f2 be the two faces of G
incident with e, and note that e is not a bridge of G (since G is 2-connected,
using Lemma 2.18). Thus, there is a planar embedding of G/e as described in
Lemma 4.11. By the induction assumption, every face boundary of this planar
embedding of G/e is a cycle in G/e. Observe, in particular, that each face
boundary of G, other than those for f1 and f2, contains at most one of u and v.
First consider the face f1. By Lemma 4.11(i), ∂(f1) \ {e} is the set of edges of
a face boundary of G/e, so this set of edges induces a cycle of G/e. It follows,
by Lemma 1.12, that G[∂(f1)] is a cycle of G. Similarly, G[∂(f2)] is a cycle of
G. Now consider a face f of G other than f1 or f2. By Lemma 4.11(ii), the
boundary of f in G is also a face boundary of G/e, so G[∂(f)] is a cycle in G/e.
It follows, by Lemma 1.12, that G[∂(f)] is a cycle of G. □

Theorem 4.13 is a good example of how we gain structure by raising connectivity.
Put another way: with low connectivity, annoying junk can appear, but we can
get past the junk by raising the connectivity.

Planar Duals. Given a plane graph G, one can define another plane graph G∗,
with vertex set V (G∗) = {f ∗ : f ∈ F (G)} and edge set E(G∗) = {e∗ : e ∈
E(G)}, as follows:

• If e ∈ E(G) is incident to faces f and g in G, then f ∗ and g∗ are incident
with e∗ in G∗.

• In the planar embedding of G∗, for each f ∗ ∈ V (G∗) we choose a point
in f .

• In the planar embedding of G∗, for each edge e∗ with ends f ∗ and g∗

(where f ∗ = g∗ only if e∗ is a loop), we find a curve from f ∗ to g∗ that
crosses e but no other edge (of G or G∗).

We call G∗ the planar dual of the plane graph G.

→ If e is a bridge of G, then e is incident with just one face, so that e∗ is
a loop of G∗. Moreover, if e is a loop of G, then e∗ is a bridge of G∗.
That is, loops and bridges swap roles in the planar dual.
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Recall that d(f) denotes the degree of a face in a plane graph, where we count
bridges twice.

Lemma 4.14 (The Handshaking Lemma for faces). Let G be a plane graph.
Then ∑

f∈F (G)

d(f) = 2|E(G)|.

Proof. For each face f of G, there is a vertex f ∗ in the dual G∗. Moreover,
d(f ∗) = d(f). Therefore ∑

f∈F (G)

d(f) =
∑

f∗∈V (G∗)

d(f ∗).

There is a one-to-one correspondence between the edges of G and G∗. Using
this fact, and the Handshaking Lemma, we obtain∑

f∈F (G)

d(f) =
∑

f∗∈V (G∗)

d(f ∗) = 2|E(G∗)| = 2|E(G)|.

□

There is an obvious natural correspondence between the edges of G and the
edges of G∗. Moreover, by construction, there is a natural correspondence
between the faces of G and the vertices of G∗.

What is the relationship between the vertices of G and the faces of G∗? We
might expect there to be a correspondence between these as well. However,
there is a complication, as illustrated by the next exercise.

Exercise 4.15. Find an example of a plane graph G with a planar dual G∗ such
that the number of vertices of G is not equal to the number of faces of G∗.

The problem is, of course, due to lack of connectivity. For a graph G that
solves Exercise 4.15, G is not connected. We will soon see that if we restrict
our attention to connected graphs, all will be fine.

Before we do that, we note a curious fact. Observe that, for a graph G that
solves Exercise 4.15, it is always the case that G∗ is connected even though G
is not connected.

Lemma 4.16. If G is a plane graph, then G∗ is connected.
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Proof. In this proof we use the fact that a path in G∗ can be thought of as a
sequence f1, f2, . . . , fn of faces in G such that, for all i ∈ {1, 2, . . . , n − 1}, the
faces fi and fi+1 are adjacent.

We use induction on the number of cycles of G. If G has no cycles, then G is a
forest. In this case, G has one face and G∗ consists of loops attached to a single
vertex. Thus G∗ is connected.

Now assume that G has a cycle and that the result holds for graphs with fewer
cycles than G. Let e be an edge in a cycle of G. As e is in a cycle, e is incident
with two faces f1 and f2. In G\e these faces become a single face f . By the
induction assumption, (G\e)∗ is connected.

Assume that g and h are faces of G such that {g, h}∩{f1, f2} = ∅. Since (G\e)∗
is connected, there is a path P in (G\e)∗ from g to h. If P does not contain f ,
then P is a path from g to h in G∗. Say P contains f . Let f ′ and f ′′ be the
faces appearing immediately before and after f in P , respectively. In G, the
faces f ′ and f ′′ are adjacent to either f1 or f2.

Up to symmetry, it suffices to consider the following two cases.

Case 1: f ′ and f ′′ are both adjacent to f1. In this case, replace the subpath
f ′, f, f ′′ of P by f ′, f1, f

′′, to obtain a path from g to h in G∗.

Case 2: f ′ is adjacent to f1 and f ′′ is adjacent to f2. In this case we get the
desired path by replacing the subpath f ′, f, f ′′ of P by f ′, f1, f2, f

′′.

We now consider the case where {g, h} ∩ {f1, f2} ≠ ∅. Observe that f1, f2 is
a path from f1 to f2, so that handles the situation where {g, h} = {f1, f2}.
We are left, up to symmetry, with the case where g = f1 and h /∈ {f1, f2}. In
this case, let g′ be a face other than f2 that is adjacent to f1. Then f1, g

′ is a
path. Moreover, by the earlier argument, there is a path in G∗ from g′ to h.
Combining these paths gives the desired path from f1 to h in G∗.

We have now shown that there is a path between every pair of vertices in G∗

(or faces in G), so G∗ is connected. The result follows by induction. □

Connectivity Saves the Day: We get past any “Exercise 4.15 example”, by
requiring that our plane graphs are connected.

For a vertex v of a graph G, let ∂(v) denote the set of edges incident with v.

Lemma 4.17. Let G be a connected plane graph.
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(i) If v is a vertex of G, then {e∗ : e ∈ ∂(v)} is the set of edges in the
boundary of a face of G∗.

(ii) If v∗ is a face of G∗, then {e : e∗ ∈ ∂(v∗)} is the set of edges incident
with a vertex in G.

Via Lemma 4.17, we see that once we are in the world of connected graphs there
is also a natural correspondence between the vertices of G and the faces of G∗.

Recall that for a plane graph G, we defined the dual G∗ to have vertex set
V (G∗) = {f ∗ : f ∈ F (G)} and edge set E(G∗) = {e∗ : e ∈ E(G)}.

We now consider G∗∗, by which we mean the graph (G∗)∗. We define (x∗)∗ to
be x, for x ∈ F (G) ∪ E(G). In this way, the edge set of G∗∗ is

E(G∗∗) = {e : e∗ ∈ E(G∗)} = E(G),

and the vertex set of G∗∗ is

V (G∗∗) = {v : v∗ ∈ F (G∗)} = V (G).

Using this correspondence we now have:

Theorem 4.18. If G is a connected plane graph, then G∗∗ = G.

We can say G∗∗ = G here so long as we use the natural correspondences be-
tween edges, vertices and faces discussed above. (We have not even defined
isomorphism for plane graphs.)

Deletion-Contraction Duality. Contraction and deletion seem to be very
different operations. But it turns out that they are related under duality.

Lemma 4.19. Let G be a connected plane graph, and let e be an edge of G that
is not a bridge. Then

(G\e)∗ = G∗/e∗.

Proof. As e is not a bridge, it is incident to two distinct faces f1 and f2 in G.
In G\e these two faces become a single face f . Moreover, a face g is adjacent
to f in G\e if and only if it is adjacent to either f1 or f2 in G. Otherwise, the
adjacencies of faces do not change.

In other words, in (G\e)∗, the two vertices f ∗
1 and f ∗

2 merge to become a single
vertex f ∗. Moreover, a vertex g∗ is adjacent to f ∗ if and only if it is adjacent to
either f ∗

1 or f ∗
2 in G∗. Otherwise the adjacencies of vertices in G∗ do not change.

This is precisely the definition of the contraction of the edge e∗ in G∗. □
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What is the lemma saying? It says that you get the same answer if you either

• start with G, delete e, and then take the dual; or
• start with G, take the dual, and then contract e∗.

We also have

Lemma 4.20. Let G be a connected plane graph and let e be a non-loop edge
of G. Then

(G/e)∗ = G∗\e∗.

Proof. By Lemma 4.19, we have

(G∗\e∗)∗ = G∗∗/e∗∗ = G/e.

Now
(G/e)∗ = ((G∗\e∗)∗)∗ = G∗\e∗.

□

We can apply Lemmas 4.19 and 4.20 to prove that 2-connectivity is preserved
under duality, provided that the plane graph has enough faces. This turns out
to be very useful.

Theorem 4.21. Let G be a loopless 2-connected plane graph with at least three
faces. Then G∗ is loopless and 2-connected.

We are almost in a position to prove Theorem 4.21. It will help to note one
more lemma. The idea for this lemma is that while removing edges from a graph
can reduce connectivity, putting edges back can only increase connectivity.

Lemma 4.22. Let G be a graph with no bridges, and let e be an edge of G. If
either G\e or G/e is 2-connected, then G is also 2-connected.

Proof. [redacted] □

Proof of Theorem 4.21. Assume that G = (V,E) is a 2-connected plane graph
with no loops. Then G has at least three vertices and has no bridges, so it has
at least three edges. If |E| ≤ 2, then the theorem is easily checked to hold.
Assume that |E| > 2 and, for induction, that the theorem holds for graphs with
fewer edges than G.

As loops and bridges interchange under duality we know that G∗ has no loops
or bridges. Let e be an edge of G. By Theorem 3.4, either G\e or G/e is 2-
connected. But if G\e is not 2-connected, then G/e is loopless, by Lemma 3.5.
So either G\e or G/e is 2-connected and loopless.
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Assume that G\e is 2-connected and loopless. By the induction assumption,
(G\e)∗ is 2-connected and loopless. By Lemma 4.19 (G\e)∗ = G∗/e∗. Thus
G∗/e∗ is 2-connected and loopless. By Lemma 4.22, G∗ is 2-connected and
loopless.

The argument is very similar when G/e is 2-connected and loopless. Assume
that G/e is 2-connected and loopless. By the induction assumption, (G/e)∗

is 2-connected and loopless. By Lemma 4.19 (G/e)∗ = G∗\e∗. Thus G∗\e∗ is
2-connected and loopless. By Lemma 4.22, G∗ is 2-connected and loopless.

The result now follows by induction. □

Duality is Cool: Dualities of one type or another occur frequently in math-
ematics. Essentially, an operation Φ on a set X is said to be a “duality” if
we always have Φ(Φ(X)) = X. Reflection in geometry is a duality. Taking
inverses in algebraic structures — for example taking matrix inverses — give
other dualitys. Having a duality is almost always useful.

One particular advantage of planar graph duality is that we can use it to go
bargain hunting. In particular, we are often in a “buy one get one free” situation.
We will give an example. First we need to learn a few things.

Recall that, for X ⊆ V (G), we write G[X] to denote the induced subgraph on
vertex set X and edge set consisting of the edges of G whose ends are contained
in X.

A bond of a connected graph is a minimal set of edges whose deletion disconnects
the graph. For the remainder of this section, it is easier for us to view a cycle
as a set of edges (rather than a subgraph). Then, it turns out that cycles and
bonds interchange under duality. First we need a lemma.

Lemma 4.23. Let G be a plane graph and let C be a cycle of G. Let X∗ be the
set of vertices of G∗ that lie in int(C), and let Y ∗ be the set of vertices of G∗

that lie in ext(C). Then G∗[X∗] and G∗[Y ∗] are connected.

For a subset S of E(G), let S∗ denote the subset {e∗ : e ∈ S}.
Theorem 4.24. Let G be a connected plane graph with planar dual G∗.

(i) If C is a cycle of G, then C∗ is a bond of G∗.
(ii) If B is a bond of G, then B∗ is a cycle of G∗.

Proof. Consider (i). Say C is a cycle of G = (V,E). Let X∗ be the set of vertices
of G∗ in int(C) and let Y ∗ be the vertices in ext(C). We have V ∗ = X∗ ∪ Y ∗.
By Lemma 4.23, G∗[X∗] and G∗[Y ∗] are connected graphs.
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Every path in G∗ from a vertex in X∗ to one in Y ∗ must contain an edge in C∗,
so G∗\C∗ is not connected. So C∗ is a set of edges that disconnects the graph
G∗; next we will show it is a minimal set with the property. Let e∗ = u∗v∗ be
an edge of C∗, where u∗ ∈ X∗ and v∗ ∈ Y ∗, and consider G∗\(C∗ \ {e∗}); in
other words, we put an edge of C∗ back into the graph. We have paths between
pairs of vertices in X∗ as G∗[X∗] is connected and the same holds for pairs of
vertices in Y ∗. If x∗ and y∗ are vertices in X∗ and Y ∗ respectively, then we get
a path from x∗ to y∗ by combining a path from x∗ to u∗ with a path from v∗ to
y∗ and using the edge e∗. This shows that G∗\(C∗ \ {e∗}) is connected for any
e∗ ∈ C∗, so C∗ is a minimal set of edges that disconnects G∗. In other words,
C∗ is a bond of G∗, as required.

The proof of (ii) is left as an exercise. □

Now let’s go bargain hunting. First of all we’ll buy something.

Lemma 4.25. Let G be a graph, and let C and D be edge sets of cycles of G
that both contain the edge e. Then (C ∪D) \ {e} contains the set of edges of a
cycle.

Proof. Say e = uv. Let u, v, x1, x2, . . . , xs, u be the sequence of vertices traversed
by the cycle with edge set C, and let v, u, y1, y2, . . . , yt, v be the sequence of
vertices traversed by the cycle with edge set D. Now consider a walk W along
the following sequence of vertices: u, y1, . . . , yt, v, x1, . . . , xs, u. This is a closed
walk as the vertex u is repeated, that traverses only edges in (C ∪ D) \ {e}.
If W is not a cycle, there is some other repeated vertex, so there is a proper
subsequence of W , still traversing only edges in (C ∪D)\{e}, that corresponds
to a closed walk. Let W ′ be a minimal closed subsequence of W with this
property. Then W ′ is a cycle, as otherwise contains a smaller closed walk. This
shows that (C ∪D) \ {e} contains the set of edges of a cycle. □

We now get the following for free.

Corollary 4.26. Let G be a connected planar graph and let A and B be bonds
of G that both contain the edge e. Then (A ∪B) \ {e} contains a bond.

Proof. Say A and B are bonds of G containing the edge e. By Theorem 4.24
A∗ and B∗ are cycles of G∗ containing the edge e∗. By Lemma 4.25, there is a
cycle C∗ of G∗ contained in (A∗ ∪ B∗)− {e∗}. By Theorem 4.24, (C∗)∗ = C is
a bond of G contained in (A ∪B) \ {e}. □

Wow! That was a real bargain. And there are plenty of others to be hunted.
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→ You might notice that Corollary 4.26 holds even if G is not planar. Tutte
observed the same thing back in the 1940s. In fact, he noticed that a
lot of results that you get for free for planar graphs, using planar graph
duality, also worked for non-planar graphs. He decided that there must
be a more general duality going on that works even when graphs are
non-planar. This led to his interest in the theory of matroids. Those of
you who plan to do honours can find out all about matroids by enrolling
in MATH432.

Who was Bill Tutte? One of the greatest mathematicians of the twentieth
century, Tutte proved many deep theorems in graph theory as well as funda-
mental theorems in matroid theory. He is the unsung hero of the Bletchley Park
codebreakers in the Second World War as you can see here. His Wikipedia
page makes interesting reading.

http://www.bbc.com/news/uk-england-suffolk-29064159
https://en.wikipedia.org/wiki/W._T._Tutte
https://en.wikipedia.org/wiki/W._T._Tutte

