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5. Planar Graphs II: Euler’s Formula and Kuratowski’s Theorem

Equivalent Planar Embeddings. Two planar embeddings of a graph G are
equivalent if they have the same set of face boundaries; otherwise they are
inequivalent.

Here is an example of two inequivalent embeddings of a graph:

On the other hand, here is an example of two equivalent embeddings of K4:

Note that in one embedding abc is the outer face, while in the other cfd is the
outer face. For the equivalence of planar embeddings, we only care about the
set of all face boundaries: there is nothing special about the outer face.

You might prefer to think of these embeddings as being equivalent or in-
equivalent on the sphere, where there is no distinguished outer face.

Inequivalent planar embeddings can be a pain. When can we guarantee that a
planar graph has no inequivalent planar embeddings? As per usual, our strategy
is to raise connectivity, but there is a catch.

Exercise 5.1. Give an example of a 2-connected planar graph with inequivalent
planar embeddings.
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Even 3-connectivity does not resolve things for us.

Exercise 5.2. Give an example of a 3-connected planar graph with inequivalent
planar embeddings.

However, it turns out that the only problems with 3-connected graphs are caused
by loops and parallel edges. We say that a graph G has a unique planar embed-
ding if any two planar embeddings of G are equivalent.

Theorem 5.3 (Whitney, 1933). Let G be a simple 3-connected planar graph.
Then G has a unique planar embedding.

Proof. The proof is by induction on the number of edges of G. Since G is 3-
connected, it has at least four vertices. Each vertex has degree at least three,
so, by the Handshaking Lemma, G has at least six edges. If G has precisely
six edges, then G is K4, and one can check that the theorem holds in this case.
Now assume that G has more than six edges and that the theorem holds for
graphs with fewer edges than G.

[redacted] □

Two inequivalent embeddings G1 and G2 of a planar graph G can have different
duals, where the underlying graphs of G∗

1 and G∗
2 are not even isomorphic.

However, it follows from Theorem 5.3 that a simple 3-connected planar graph
has a unique dual, as illustrated by the next corollary:

Corollary 5.4. Let G be a simple 3-connected planar graph, and let G1 and G2

be planar embeddings of G. Then G∗
1 = G∗

2.

→ Now, by Corollary 5.4, given a simple 3-connected planar graph G, we
can unambiguously refer to the dual G∗ (which is the dual of the plane
graph obtained using any planar embedding of G). In general (for a
planar graph that may not be 3-connected and simple), we can only
refer to the dual when we have a plane graph, which also describes the
particular planar embedding.

Euler’s Formula. This formula relates the number of edges, vertices and faces
of a planar graph.

Let G be a plane graph. We let v(G), e(G), and f(G) denote the number of
vertices, edges, and faces of G respectively.
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You may recall the proof of Euler’s Formula from MATH161. There, the treat-
ment was very informal; now we have a more secure foundation.

Theorem 5.5 (Euler’s Formula). Let G be a connected plane graph. Then

v(G)− e(G) + f(G) = 2.

Proof. The proof is by induction on the number of edges ofG. IfG is a connected
graph with no edges, then G consists of a single isolated vertex and the theorem
certainly holds. Assume then that G has at least one edge, and that the result
holds for graphs with fewer edges than G.

Let e be an edge of G. First suppose that e is not a loop. Observe, by
Lemma 4.11, that the faces of G/e are either faces of G whose boundary does
not contain e, or faces of G whose boundary does contain e but with e removed.
This means that

f(G/e) = f(G).

Also, since e is not a loop,

v(G/e) = v(G)− 1

and

e(G/e) = e(G)− 1.

The graph G is connected, so by Lemma 3.10, G/e is connected. By the induc-
tion assumption,

v(G/e)− e(G/e) + f(G/e) = 2.

Hence we have

(v(G)− 1)− (e(G)− 1) + f(G) = 2,

that is,

v(G)− e(G) + f(G) = 2.

On the other hand, when e is a loop, then v(G/e) = v(G), f(G/e) = f(G)− 1,
and e(G/e) = e(G)− 1. By a similar argument,

v(G/e)− e(G/e) + f(G/e) = 2,

so

v(G)− (e(G)− 1) + (f(G)− 1) = 2,

implying

v(G)− e(G) + f(G) = 2.

The result now follows by induction. □
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Euler proved this theorem in 1752, but he didn’t do it in the setting of graphs.
Rather, he proved it for polyhedra. It’s not difficult to see that given a poly-
hedron, we can find a corresponding plane graph that preserves its edges, faces
and vertices, and the incidences between these. However, not all connected
plane graphs arise from polyhedra, so Theorem 5.5 is a little more general than
Euler’s original result.

Euler’s Formula has many useful corollaries.

Corollary 5.6. Let G be a connected planar graph. Then every planar embed-
ding of G has the same number of faces.

Proof. [redacted] □

Corollary 5.7. Let G be a simple planar graph with at least three vertices.
Then e(G) ≤ 3v(G)− 6.

Proof. [redacted] □

Corollary 5.7 is extremely useful. For example, we know that Kn has n(n−1)/2
edges; that is it has a quadratic number of edges. If n is large, then

n(n− 1)/2 ≫ 3n− 6

(that is to say, n(n− 1)/2 is much larger than 3n− 6). Hence, when n is large,
the vast majority of graphs on n vertices are not planar.

We can also use Corollary 5.7 to prove that every simple planar graph has a
vertex of degree 5 or less. You may have seen, in MATH161, that this is a key
ingredient towards proving that planar graphs are 5-colourable.

Also, Corollary 5.7 gives a useful way to prove that a graph is not planar.

Corollary 5.8. K5 is not planar.

Proof. [redacted] □

Note, however, that Corollary 5.7 is not always helpful. Consider K3,3. This
graph has 6 vertices and 9 edges, and 9 ≤ 3 · 6 − 6 = 12. Corollary 5.7 is not
a characterisation of planarity (it is not an “if and only if” theorem). It says
that if e > 3v − 6, then the graph is not planar. If e ≤ 3v − 6, then it tells us
nothing.

Having said that, there is a cunning way to use Euler’s formula to prove that
K3,3 is not planar.
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Exercise 5.9. Use Euler’s formula to prove that K3,3 is not planar.

Wagner’s Theorem. For graphs G and H, we say that G has H as a minor
if G has a minor isomorphic to H.

We know that K5 and K3,3 are not planar. We also know that any minor of a
planar graph is also planar. It follows that any graph that has K5 or K3,3 as a
minor cannot be planar. Remarkably, the converse is also true: any non-planar
graph must have either K5 or K3,3 as a minor.

Theorem 5.10 (Wagner 1937). A graph is planar if and only if it has neither
K5 nor K3,3 as a minor.

The goal of this section is to prove Wagner’s Theorem. However, it is worth
first reflecting on why this theorem is so fundamental.

We always had a clear way to prove that a graph was planar — simply find
a planar embedding. But it’s a more subtle thing to show that a graph is
not planar. Euler’s Formula helps at times, but there are plenty of non-planar
graphs that satisfy Euler’s Formula. With Wagner’s Theorem, we have a clear
strategy. For any graph G we can either find a planar embedding — proving
that G is planar — or we can find that G has a K5 or K3,3 minor — proving
that G is non-planar.

Of course, there still remains the algorithmic question. Can we design an algo-
rithm to find aK5- orK3,3-minor efficiently, even when given a large graph? The
short answer is that efficient algorithms are known, without being precise about
what we mean by “efficient”. The details, along with algorithmic issues related
to finding embeddings on surfaces and finding minors, however fascinating, are
(sadly) beyond the scope of this course.

There is another reason why Wagner’s Theorem is amazing. It’s truly a seminal
theorem, in the sense that it is a theorem from which many other things have
grown. To see why Wagner’s Theorem is seminal we need to discuss the Graph
Minors Project.

The Graph Minors Project. Let G be a class of graphs. Then G is minor-
closed if whenever G ∈ G and H is a minor of G, then H ∈ G.

We have seen that planar graphs are a minor-closed class of graphs. There are
many others. The graphs embeddable on any given surface — for example, the
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torus — form a minor-closed class. Forests form a minor-closed class; although
not a particularly interesting one.

Here is a particularly cool example. A graph is linklessly embeddable if it can
be embedded in R3 in such a way that no two cycles are linked (think of two
rubber-bands that are entwined and cannot be separated without cutting one
of them). Then the class of linklessly embeddable graphs is minor closed. In
the graph below the red and green cycles are linked.

Exercise 5.11. Prove that K5 is linklessly embeddable.

Exercise 5.12. Prove that neither the Petersen Graph (see figure below) nor
K6 is linklessly embeddable.

For a graph G, we say that H is a proper minor of G if H is a minor of G and
H ̸= G. Let G be a minor-closed class. Then an excluded minor for G is a graph
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G that does not belong to G but has the property that all proper minors of G
do belong to G.

In this language, Wagner’s Theorem says that K5 and K3,3 are the excluded
minors for planar graphs, so that planar graphs are characterised by a list of
two excluded minors. After a long series of difficult papers, over 20 years, the
mathematicians Neil Robertson and Paul Seymour eventually proved:

Theorem 5.13. Let G be a minor-closed class of graphs. Then G is charac-
terised by a finite list of excluded minors.

In other words there is a version of Wagner’s Theorem for every minor-closed
class of graphs. How long can the list of excluded minors be? Well that’s
another question. Consider graphs embeddable on the torus. It is known that
there are at least 16,629 excluded minors for this class. No one knows how
many more there are; but we do know the list is finite!

But we digress; let’s return to Wagner’s Theorem.

Proof of Wagner’s Theorem. We will need a few lemmas before giving the
proof of Wagner’s Theorem.

Let G be a graph with a vertex v. Recall that the neighbourhood of v is the set
of all vertices that are adjacent to v. We also say a vertex u in G is a neighbour
of v if u and v are adjacent; that is, u is in the neighbourhood of v.

Lemma 5.14. Let G be a loopless 3-connected planar graph. For any vertex v
in G, the vertices in the neighbourhood of v are contained in a cycle.

Proof. Since G is planar, it has a planar embedding. Let H be a plane graph
obtained from G together with any planar embedding, and let v be a vertex of
H. Then H−v is loopless and 2-connected, by Lemma 3.18. By Theorem 4.13,
the boundary of each face of H − v is a cycle. Let f be the face of H − v in
which the vertex v was situated. Then the boundary of f in H − v is a cycle,
C say, where C is also a cycle of H, and each neighbour of v in H is in C. □

Let G be a graph with a separation {A,B} of order 2 whose boundary is {u, v}.
Recall that G[A] is the induced subgraph of G on vertex set A. We define the
graph GA to be the graph obtained from G[A] by adding an edge joining u and
v. Similarly, we define GB to be the graph obtained from G[B] by adding an
edge joining u and v.

Lemma 5.15. Let G be a 2-connected graph with a proper separation {A,B}
of order 2. Then both GA and GB are isomorphic to proper minors of G.
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Proof. Say the boundary of {A,B} is {u, v}. Let EA be the edge set of G[A]
and let EB be the edge set of G[B]. By symmetry, it suffices to show that GA is
isomorphic to a proper minor of G. Note that the difference between G[A] and
GA is an extra edge joining u and v. Loosely speaking, we need to show that
we can delete or contract each edge of E(G) \ EA in a way that we introduce
this extra edge, thereby obtaining a minor isomorphic to GA.

Say w ∈ B\A. As G is 2-connected, G−u is connected, by Lemma 3.18, so there
is a path from w to v in G−u. All edges of this path are in E(G)\EA. Similarly,
there is a path from w to u that uses only edges in E(G)\EA. Combining these
paths we see that there is a walk — and hence a path P — from u to v that
uses only edges in E(G) \EA. We now obtain the required edge by contracting
all but one edge of P and deleting the other edges in E(G) \ EA. □

Lemma 5.16. Let G be a 2-connected graph with a separation {A,B} of order
2. If both GA and GB are planar, then G is planar.

A genuine rigorous proof of this lemma would require more topological tech-
niques than we have available to us. For intuition, however, take planar em-
beddings of GA and GB where the edge uv is on the outer face. Glue these
embeddings together along the edge e = uv. Voila! When we delete the edge e
we obtain a planar embedding of G.

We are ready to prove Wagner’s Theorem. We restate it here for convenience.

Theorem 5.10. A graph is planar if and only if it has neither K5 nor K3,3 as
a minor.

Proof. Assume that G is planar. By Corollary 4.12, every minor of G is planar.
Neither K5 nor K3,3 is planar. Hence G has neither K5 nor K3,3 as a minor.

The real task is to prove the converse. Assume that G is not planar. We need
to prove that G has either K5 or K3,3 as a minor. The proof is by induction
on the number of vertices of G. It is easily checked that the only non-planar
simple graph on five vertices (or fewer) is K5. Thus, when G has (at most) five
vertices, it has K5 as a minor. Assume now that G has more than five vertices
and, for induction, that any non-planar graph with fewer vertices than G has
K5 or K3,3 as a minor. We first handle the case where G is not 3-connected.

5.9.1. If G is not 3-connected, then G has K5 or K3,3 as a minor.

Subproof. Say thatG is not 3-connected. Then it has a proper separation {A,B}
that is either of order 0, 1, or 2. Say that {A,B} has order 0 or 1. Then G[A]
and G[B] are minors of G with fewer vertices than G. If both G[A] and G[B]
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are planar, then it is easily seen that G is planar. Hence we may assume that
G[A] is non-planar, so has K5 or K3,3 as a minor by the induction assumption,
so that G also has K5 or K3,3 as a minor.

If {A,B} has order 2, then, by Lemma 5.15, both GA and GB are isomorphic to
proper minors of G and have fewer vertices than G. If these graphs are planar,
then, by Lemma 5.16, G is planar. As G is not planar one of them, say GA, is
not planar. Hence, by the induction assumption GA, and hence also G, has K5

or K3,3 as a minor. �

Now consider the case that G is 3-connected. Before we head into the details,
it will be useful to keep in mind the following drawings of K5 and K3,3.

By Theorem 3.21, G has an edge e = rb such that G/e is 3-connected. If G/e
is not planar, then, by the induction assumption, it either has K5 or K3,3 as a
minor, and so too does G. Hence we may assume that G/e is planar.

Let w denote the vertex that replaces {r, b} in G/e. By Lemma 5.14, the
neighbours of w are in a cycle C of G/e. Let R and B denote the set of edges
of G incident with r and b, but excluding e, respectively. Thus R∪B is the set
of edges incident with w in G/e. We will say that a vertex of C is red if it is
incident with an edge in R and is blue if it is incident with an edge in B. Note
that a vertex can be both red and blue. We say that a vertex of C is coloured
if it is either red or blue.

The following diagram shows one possibility for the part of G/e near the vertex
w. The outer cycle is C, the central vertex w, and we have coloured the edges
incident with w using the above colour coding.

Both r and b have degree at least three in G, as otherwise G is not 3-connected.
Hence |R| ≥ 2 and |B| ≥ 2.

5.9.2. If C has at least four coloured vertices, then G has K3,3 as a minor.

Subproof. There is a natural cyclic order on the vertices of C as given by the
cycle. Consider the cyclic order induced by just the coloured vertices; i.e., the
cyclic order where we traverse the cycle but skip any vertex that is not coloured.
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(We still have the freedom to go in either direction, or start at any coloured
vertex we choose.) Say that we have such a cyclic order (v1, v2, . . . , vi, . . . , vt)
where v1 and vi may be red, blue or both red and blue; v2, . . . , vi−1 are red but
not blue; and vi+1, . . . , vt are blue, but not red. Then it is readily checked that
G is planar (for example, see the picture below).

Now assume C has at least four coloured vertices. As G is not planar, we do
not have a cyclic order in the way described above. In this case, there exist
indices j, k, l,m with 1 ≤ j < k < l < m ≤ t such that vj and vl are red, while
vk and vm are blue.

Delete all edges of G apart from the edges in C, the edges rvj, bvk, rvl, bvm and
e, to obtain the graph illustrated on the right-hand side above. We may now
contract surplus edges from C (incident with a vertex of degree 2) to obtain a
K3,3-minor. �

5.9.3. If C has exactly three coloured vertices, then G has K5 as a minor.

Subproof. Suppose the three coloured vertices v1, v2, v3 are not all coloured both
red and blue. Without loss of generality, the vertex v2 is coloured red but not



65

blue. Then (v1, v2, v3) is a cyclic ordering as described in 5.9.2, that certifies
that G is planar; a contradiction.

Hence all three are coloured both red and blue and we obtain a K5-minor in a
similar way to the earlier case for K3,3. �

To finish off, we note that if C has only one or two coloured vertices, then these
vertices are a vertex cut in G of size at most two, contradicting the fact that G
is 3-connected. Hence G either has K3,3 or K5 as a minor, as required. □

Kuratowski’s Theorem. Wagner’s Theorem was proved in 1937. However,
despite a somewhat different formulation, it can be seen to be equivalent to a
related theorem proved by Kuratowski in 1930.

Kuratowski actually wasn’t the only one to prove this theorem: the same
theorem was proved by Orrin Frink, Paul Smith and Lev Pontryagin at
about the same time, although none of them published their proof.

Let G be a graph. Recall that a graph G′ is a subdivision of G if G′ can be
obtained from G by subdividing edges. We say that a graph H is a topological
minor of G if G contains a subgraph that is a subdivision of H. Usually we
are just interested in topological minors up to isomorphism: we say that H
has G as a topological minor if G contains a subgraph that is isomorphic to a
subdivision of H.

Theorem 5.16 (Kuratowski’s Theorem). A graph G is planar if and only if G
does not have K5 or K3,3 as a topological minor.

We will obtain Kuratowski’s Theorem as a corollary of Wagner’s Theorem. We
need a few more bits of information. First, we observe that, loosely speaking,
a topological minor is a specific sort of minor.

Lemma 5.17. If H is a topological minor of G, then H is a minor of G.
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Proof. Say H is a topological minor of G. Then G contains a subgraph G′ that
is a subdivision of H. We now can contract edges from G′ (corresponding to
subdivided edges of H) to obtain the graph H. So H is indeed a minor of G. □

Observe that the converse of Lemma 5.17 does not hold in general.

Exercise 5.18. Give an example of graphs G and H such that G has H as a
minor, but G does not have H as a topological minor.

But the converse does hold for certain special graphs. A graph is cubic if every
vertex has degree 3.

Theorem 5.19. Let H be a cubic graph and let G be a graph that has H as a
minor. Then G has H as a topological minor.

Before the proof, we introduce a notion that can be thought of as the opposite
of contraction. Let w be a vertex of a graph G. Then a vertex split at w is
obtained as follows:

(i) Partition the non-loop edges of G incident with w into two parts Eu and
Ev.

(ii) For each loop e of G incident with w, add e to either Eu, to Ev, or to
both Eu and Ev. Call the resulting sets E ′

u and E ′
v.

(iii) Replace the vertex w with two new vertices u and v such that u is
incident with the edges in E ′

u and v is incident with the edges in E ′
v.

(iv) Add a new edge e joining u and v.

There is not a unique way to do a vertex split as we can have many choices for the
partition {Eu, Ev} (as well as which sets any loops are added to). Nonetheless,
it follows from the definition that G = G′/e if and only if G′ is obtained from
G by a vertex split where e is the new edge e.

→ If we perform a vertex split on a loopless graph, we don’t need to worry
about (ii). For loops, they can be split in a way that they remain a loop
(incident to either u, or to v) or that they are no longer a loop (they
have an end in u and an end if v).

Proof of Theorem 5.19. The graph G has a subgraph G′ such that H = G′/X
for some set of edges X. We need to show that G′ is a subdivision of H.
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From the above discussion we know that we can obtain G′ by a sequence of
vertex splits from H. Let w be a vertex of H. Since w has degree 3, any
partition {Eu, Ev} of the edges incident with w will be such that one of the sets,
has only one element, say f . In this case the vertex split simply subdivides the
edge f . In other words a vertex split at a degree-3 vertex is a subdivision.

It is also easily seen that a vertex split at a degree-2 vertex is a subdivision.
It follows that the sequence of vertex splits to obtain the graph G′ from H is
nothing more than a sequence of subdivisions. □

Note that K3,3 is cubic. Hence we have:

Corollary 5.20. If the graph G has K3,3 as a minor, then G has K3,3 as a
topological minor.

Of course, K5 is not cubic. Nonetheless we still have:

Corollary 5.21. If the graph G has K5 as a minor, then G has K5 or K3,3 as
a topological minor.

Proof. ConsiderK5. We first claim that any graph obtained fromK5 by splitting
vertices either has K3,3 as a minor or is a subdivision of K5.

First consider a graph obtained from K5 by a single vertex split at a vertex u.
As u has degree 4, we can either partition the edges into two 2-elements sets,
or into a singleton and a 3-element set. In the former case, it is easily checked
that the graph resulting from this vertex split has K3,3 as a minor (and after
any subsequent vertex splits we also retain the K3,3-minor, since these can be
“reversed” by contracting an edge). In the latter case, the resulting vertex
split corresponds to a subdivision. Note that this argument also applies to any
subdivision of K5. Hence it is indeed the case that the claim holds.

Now say that G has K5 as a minor. Then G has a subgraph H that can be
obtained from K5 by a sequence of vertex splits. By the above claim, H is either
a subdivision of K5 or it has K3,3 as a minor. In the former case, G has K5 as
a topological minor. In the latter case, by Corollary 5.20, H, and hence G, has
K3,3 as a topological minor. □

Proof of Kuratowski’s Theorem. Assume that G is not planar. By Wagner’s
Theorem, G contains either K5 or K3,3 as a minor. By Corollaries 5.20 and 5.21
G has either K5 or K3,3 as a topological minor.

On the other hand, if G has either K5 or K3,3 as a topological minor, then, by
Lemma 5.17, G has either K5 or K3,3 as a minor. Hence G is not planar. □
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The ∆Y exchange. This is an operation on graphs that arises in many sur-
prising situations, for example in knot theory and theoretical physics. We first
need some definitions. A triangle in a graph is a cycle with three edges. A triad
is the set of edges incident with a vertex of degree 3, where none of them are
parallel.

Let G be a graph with a triangle T on the vertices {u, v, w}. A ∆Y exchange
proceeds as follows:

• Add a new vertex z, together with edges uz, vz, and wz.
• Delete the edges uv, vw and uw.

We say that the resulting graph is obtained from G by a ∆Y exchange on T .

The Y∆ exchange is the reverse operation. Let u, v, w, z be vertices of G such
that uz, vz, and wz form a triad. A Y∆ exchange proceeds as follows:

• Add edges uv, vw and uw.
• Delete the vertex z (along with its incident edges uz, vz, and wz).

Obviously a Y∆ exchange is just the opposite of a ∆Y exchange. In essence
we are switching a triad to a triangle and visa versa. Two graphs are said to
be ∆Y equivalent if one can be obtained from the other by a sequence of ∆Y
and Y∆ exchanges.

Exercise 5.22. Prove that the Petersen Graph and K6 are ∆Y equivalent.

How interesting was that! It turns out that there are, up to isomorphism,
exactly seven graphs that are ∆Y equivalent to K6. This set of graphs is called
the Petersen Family.
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Why do we say “up to isomorphism”? If you start from K6 and look at
all the different graphs you can produce doing ∆Y and Y∆ exchanges you
will certainly get more than seven graphs; but quite a few are isomorphic to
each other. If you forget about the labelling, then you get seven genuinely
different graphs.

The next theorem was proved by Robertson, Seymour and Thomas in about
1992. The paper is available by clicking here.

Theorem 5.23. A graph is linklessly embeddable if and only if it has no member
of the Petersen family as a minor.

→ In other words, the members of the Petersen family are precisely the
excluded minors for the class of linklessly embeddable graphs!

Since we have introduced ∆Y exchanges we have an opportunity to discuss
another interesting class that arises in this context.

Y∆Y reducible Graphs. A series pair in a graph is a pair of edges e = uv
and f = vw, where v has degree 2 and e and f are not parallel. Note that when
an edge is subdivided, we get a series pair. A series-parallel reduction is any
one of the following operations.

• Delete a loop.
• Contract a bridge.
• Delete a member of a parallel pair of edges.
• Contract a member of a series pair of edges.

Let G and H be graphs. Then G is Y∆Y reducible to H if we can obtain H from
G by a series of ∆Y exchanges, Y∆ exchanges and series-parallel reductions.

We can now define an interesting class. A graph is Y∆Y reducible if it is Y∆Y
reducible to a graph with no edges.

Exercise 5.24. Prove that K4 is Y∆Y reducible.

That’s no coincidence. Indeed we have,

Theorem 5.25 (Epifanov 1966). Every planar graph is Y∆Y reducible.

http://www.sciencedirect.com/science/article/pii/S0095895685710325?via%3Dihub
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Corollary 5.26. Every simple planar graph with no bridges or series pairs
either has a triad or triangle.

It might be tempting to think that the Y∆Y -reducible graphs are just the class
of planar graphs. But that’s not true.

Exercise 5.27. Prove that both K5 and K3,3 are Y∆Y reducible.

So much for that theory. But here is some interesting news.

Exercise 5.28. Prove that no member of the Petersen family is Y∆Y reducible.

So Y∆Y -reducible graphs strictly contain planar graphs, but they do not con-
tain everything. Certainly Y∆Y reductions are not the same as taking minors,
so the next theorem is also somewhat surprising.

Theorem 5.29 (Truemper 1989). The class of Y∆Y -reducible graphs is minor
closed.

Now that we know that the class is minor closed we can ask what the excluded
minors for the class are. At one stage it was thought that maybe the excluded
minors were just the members of the Petersen family, so that Y∆Y -reducible
graphs and linklessly embeddable graphs were precisely the same class. But
Neil Robertson came up with a counterexample to that conjecture. It turns out
there are plenty of others.

Theorem 5.30 (Yaming Yi 2006). There are at least 68, 897, 913, 652 excluded
minors for the class of Y∆Y -reducible graphs.


