MATH 361	Test	6 April 2023

Name:
ID number: \qquad

- Duration: 50 MINUTES.

50 Marks

- There are FIVE questions, on FIVE pages. Attempt every question in the spaces provided. Use the reverse side if you run out of space.
- Write your name and ID number in the spaces provided.

Question 1.
(a) State the Handshaking Lemma.
(b) Let G be a connected graph. Give the definition of a spanning tree of G.
(c) Let G be a graph. Prove that G is a forest if and only if every edge of G is a bridge.

Question 2.

(a) Let G be a graph. Give the definition of a vertex cut of G.
\square
(b) Let G be a simple graph. Give the definition of a block of G.
\square
(c) Let G be a graph. Are the following statements true or false? Justify your answer with an explanation if true, or give a counterexample if false.
(i) If H is a subgraph of G, then H is an induced subgraph of G.
\square
(ii) If H is an induced subgraph of G, then H is a minor of G.
\square
(iii) If G is simple and 2-connected, then G has exactly one block.

Question 3.

(a) By drawing an appropriate graph, give a clearly illustrated example of the following:

- a graph with exactly one cut vertex and exactly one bridge.
(b) Let G be a 3 -connected graph with a vertex v. Prove that $G-v$ is 2 -connected. [6]

Question 4.

(a) Are the following statements true or false? Justify your answer with an explanation if true, or give a counterexample if false.
(i) If G is a 3 -connected graph with at least five vertices, and e is an edge of G, then G / e is 3-connected.
(ii) For every integer $k \geq 2$, there exists a k-connected graph with precisely $k+1$ vertices.
\square
(b) Let G be a graph and let X and Y be subsets of $V(G)$. Menger's Theorem states that the maximum number of vertex-disjoint (X, Y)-paths is equal to the minimum order of a separation that separates X from Y.
(i) Define what is meant by an (X, Y)-path.
\square
(ii) Define what it means for a separation $\{A, B\}$ to separate X from Y.
\square
(iii) Explain why it follows from Menger's theorem that if G is 2-connected and X and Y each have size two, then there are two vertex-disjoint (X, Y)-paths in G.
(a) Define a plane graph (you may make reference to a planar embedding without defining this term).
\square
(b) Define the degree of a face in a plane graph.
\square
(c) By drawing an appropriate graph, give clearly illustrated examples of the following:
(i) A connected plane graph with a face whose boundary is not a cycle.
\qquad
(ii) A plane graph G such that $\left(G^{*}\right)^{*} \neq G$.

This page is deliberately left blank, for extra working.

