MATH 361	Test	6 April 2023
Name:	ID number:	
• Duration: 50 MINUT	ES.	50 Marks
	tions, on FIVE pages. Attempt ev rerse side if you run out of space.	very question in the spaces
• Write your name and	ID number in the spaces provided.	
Question 1.		(9 marks)
(a) State the Handshakin	g Lemma.	[2]
(b) Let G be a connected	graph. Give the definition of a spa	anning tree of G . [1]

(c) Let G be a graph. Prove that G is a forest if and only if every edge of G is a bridge. [6] (a) Let G be a graph. Give the definition of a vertex cut of G.

[1]

(h)	Let	G be	a simple	graph	Give	the	definition	of a	block	of	G
	D)	Let	G DE	a simple	graph.	Give	one	deminition	or a	DIDEN	or	G.

[2]

- (c) Let G be a graph. Are the following statements true or false? Justify your answer with an explanation if true, or give a counterexample if false.
 - (i) If H is a subgraph of G, then H is an induced subgraph of G. [3]

(ii) If H is an induced subgraph of G, then H is a minor of G.

(iii) If G is simple and 2-connected, then G has exactly one block.

[3]

[3]

Question 3.

- (a) By drawing an appropriate graph, give a clearly illustrated example of the following:
 - a graph with exactly one cut vertex and exactly one bridge.

[2]

(b) Let G be a 3-connected graph with a vertex v. Prove that G - v is 2-connected. [6]

Question 4.

[1]

- (a) Are the following statements true or false? Justify your answer with an explanation if true, or give a counterexample if false.
 - (i) If G is a 3-connected graph with at least five vertices, and e is an edge of G, then G/e is 3-connected. [3]

(ii) For every integer $k \ge 2$, there exists a k-connected graph with precisely k + 1 vertices. [3]

(b) Let G be a graph and let X and Y be subsets of V(G). Menger's Theorem states that the maximum number of vertex-disjoint (X, Y)-paths is equal to the minimum order of a separation that separates X from Y.

(i) Define what is meant by an (X, Y)-path.

(ii) Define what it means for a separation $\{A, B\}$ to separate X from Y. [1]

(iii) Explain why it follows from Menger's theorem that if G is 2-connected and Xand Y each have size two, then there are two vertex-disjoint (X, Y)-paths in G. [6]

(7 marks)

- (a) Define a *plane graph* (you may make reference to a *planar embedding* without defining this term). [1]
- (b) Define the *degree* of a face in a plane graph.

Question 5.

[1]

(c) By drawing an appropriate graph, give clearly illustrated examples of the following:

(i)	A connected plane graph with a face whose boundary is not a cycle.	[2]
-----	--	-----

(ii) A plane graph G such that $(G^*)^* \neq G$.

[3]

This page is deliberately left blank, for extra working.