Inequivalent representations of matroids with no $U_{3,6}$ -minor

Dillon Mayhew

With Jim Geelen and Geoff Whittle.

Equivalence of representations

Let *M* be a matroid. Let *A* and *A'* be matrices over a field, \mathbb{F} , that represent *M*. Columns are labelled with elements of E(M).

A and A' are equivalent if one is obtained from the other by:

- adding a row to another,
- scaling rows/columns by numbers in $\mathbb{F} \{0\}$,
- permuting rows,
- permuting columns and column labels,
- deleting/adding zero rows,
- applying an automorphism of \mathbb{F} entrywise.

If *M* is GF(q)-representable, let $n_q(M)$ be the number of equivalence classes of matrices that represent *M* over GF(q).

Theorem (White -1971) $n_2(M) = 1$ for any GF(2)-representable matroid M.

Theorem (Brylawski and Lucas – 1976) $n_3(M) = 1$ for any GF(3)-representable matroid M.

Theorem (White – 1971)

 $n_2(M) = 1$ for any GF(2)-representable matroid M.

Theorem (Brylawski and Lucas – 1976) $n_3(M) = 1$ for any GF(3)-representable matroid M.

Theorem (Kahn – 1988) $n_4(M) = 1$ for any 3-connected GF(4)-representable matroid M.

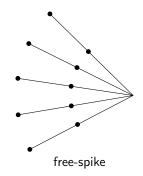
Conjecture (Kahn - 1988)

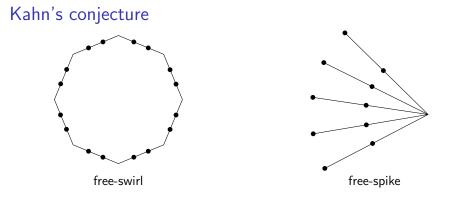
Let q be any prime power. There exists an integer N_q such that

 $n_q(M) \leq N_q$

for any 3-connected GF(q)-representable matroid M.

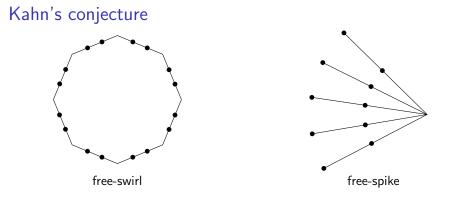
Theorem (Oxley, Vertigan, Whittle – 1996) $n_5(M) \le 6$ for any 3-connected GF(5)-representable matroid M.





Theorem (Oxley, Vertigan, Whittle – 1996)

Let q be a prime power with q > 5. Assume q - 1 is composite. If M is the rank-r free-swirl, then M is GF(q)-representable and $n_q(M) \ge 2^r$.



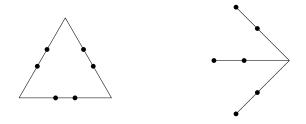
Theorem (Oxley, Vertigan, Whittle – 1996)

Let q be a prime power with q > 5. Assume q - 1 is composite. If M is the rank-r free-swirl, then M is GF(q)-representable and $n_q(M) \ge 2^r$. Assume q - 1 is prime. If M is the rank-r free-spike, then M is GF(q)-representable and $n_q(M) \ge 2^{r-1}$.

Conjecture (Geelen, Oxley, Vertigan, Whittle - 2002)

Let q be a prime power, and let $r \ge 3$ be an integer. There exists an integer $N_{q,r}$ such that if M is a 3-connected GF(q)-representable matroid with no minor isomorphic to the rank-r free-swirl or free-spike, then

 $n_q(M) \leq N_{q,r}.$



Note that the rank-3 free-swirl and the rank-3 free-spike are both isomorphic to $U_{3,6}$.

Let e, e' be elements in the matroid M. If the transposition of e and e' is an automorphism of M, e and e' are clones.

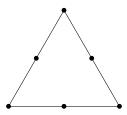
Let e, e' be elements in the matroid M. If the transposition of e and e' is an automorphism of M, e and e' are clones.

If e is an element of M, and M' is a single-element extension of M by e' such that e and e' are clones, then M' is a clonal extension.

Let e, e' be elements in the matroid M. If the transposition of e and e' is an automorphism of M, e and e' are clones.

If e is an element of M, and M' is a single-element extension of M by e' such that e and e' are clones, then M' is a clonal extension.

If such an M' exists with $\{e, e'\}$ independent, then e is free, otherwise e is fixed.



Assume e is fixed in M, and both

$$\left[\begin{array}{c|c} A & \mathbf{x} \end{array}\right] \quad \text{and} \quad \left[\begin{array}{c|c} A & \mathbf{x}' \end{array}\right]$$

represent M.

Assume e is fixed in M, and both

$$\left[\begin{array}{c|c} A & \mathbf{x} \\ A & \mathbf{x} \end{array}\right] \quad \text{and} \quad \left[\begin{array}{c|c} A & \mathbf{x}' \\ A & \mathbf{x}' \end{array}\right]$$

represent M.

Then

$$\mathbf{x}' = \lambda \mathbf{x}$$

for some non-zero λ .

Assume e is fixed in M, and both

$$\left[\begin{array}{c|c} A & \mathbf{x} \end{array}\right] \quad \text{and} \quad \left[\begin{array}{c|c} A & \mathbf{x}' \end{array}\right]$$

represent M.

Then

$$\mathbf{x}' = \lambda \mathbf{x}$$

for some non-zero λ .

So in this case,

$$n_q(M) \leq n_q(M \setminus e).$$

If e is cofixed (fixed in M^*), then $n_q(M) \le n_q(M/e)$.

Assume we want to bound $n_q(M)$ for a 3-connected GF(q)-representable matroid M.

If M' is 3-connected, and is produced from M by a sequence of:

- deleting a fixed element, where the deletion is 3-connected up to series pairs,
- contracting a cofixed element, where the contraction is 3-connected up to parallel pairs,

then $n_q(M) \leq n_q(M')$.

Assume we want to bound $n_q(M)$ for a 3-connected GF(q)-representable matroid M.

If M' is 3-connected, and is produced from M by a sequence of:

- deleting a fixed element, where the deletion is 3-connected up to series pairs,
- contracting a cofixed element, where the contraction is 3-connected up to parallel pairs,

then $n_q(M) \leq n_q(M')$.

M' is totally free if no further moves of this type can be performed.

Assume we want to bound $n_q(M)$ for a 3-connected GF(q)-representable matroid M.

If M' is 3-connected, and is produced from M by a sequence of:

- deleting a fixed element, where the deletion is 3-connected up to series pairs,
- contracting a cofixed element, where the contraction is 3-connected up to parallel pairs,

then $n_q(M) \leq n_q(M')$.

M' is totally free if no further moves of this type can be performed.

Definition

M' is totally free if $|E(M')| \ge 4$, M' is 3-connected, and $co(M' \setminus e)$ is not 3-connected whenever e is fixed, and si(M'/e) is not 3-connected whenever e is cofixed.

Let $\mathcal M$ be a minor-closed class of matroids. Let q be a prime power.

If $\{M_1, \dots, M_n\}$ is the set of totally free $\mathrm{GF}(q)$ -representable matroids in \mathcal{M} , then

$$n_q(M) \leq \max\{n_q(M_1), \dots, n_q(M_n)\}$$

for every 3-connected GF(q)-representable matroid, $M \in \mathcal{M}$.

Let \mathcal{M} be a minor-closed class of matroids. Let q be a prime power.

If $\{M_1, \dots, M_n\}$ is the set of totally free GF(q)-representable matroids in \mathcal{M} , then

$$n_q(M) \leq \max\{n_q(M_1), \dots, n_q(M_n)\}$$

for every 3-connected GF(q)-representable matroid, $M \in \mathcal{M}$.

Theorem (Geelen, Oxley, Vertigan, Whittle – 2002)

Let *M* be a totally free matroid with $|E(M)| \ge 5$. Either:

- $M \setminus e$ is totally free for some $e \in E(M)$,
- M/e is totally free for some $e \in E(M)$,
- ► E(M) is a union of 2-element clonal classes, and M\e/e' is totally free for any clonal class {e, e'}.

Quasi-lines

A Δ -Y exchange replaces a triangle with a triad.

A segment-cosegment exchange replaces a *k*-element line with a *k*-element coline.

A quasi-line is produced by starting with $U_{2,k}$ ($k \ge 4$), and repeatedly applying segment-cosegment exchanges and the dual operation.

Quasi-lines

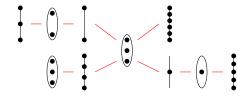
A Δ -Y exchange replaces a triangle with a triad.

A segment-cosegment exchange replaces a *k*-element line with a *k*-element coline.

A quasi-line is produced by starting with $U_{2,k}$ ($k \ge 4$), and repeatedly applying segment-cosegment exchanges and the dual operation.

Theorem (Oxley, Semple, Vertigan – 2000)

Every quasi-line is uniquely described by a reduced del-con tree.



Theorem (Geelen, Mayhew, Whittle - 2004)

The following are equivalent:

- M is a totally free matroid with no U_{3,6}-minor,
- M is a quasi-line.

• Quasi-lines are totally free and have no $U_{3,6}$ -minors. Easy.

- Quasi-lines are totally free and have no $U_{3,6}$ -minors. Easy.
- Let M be a minimal counterexample. M is totally free with no $U_{3,6}$ -minor, but M is not a quasi-line.

- Quasi-lines are totally free and have no $U_{3,6}$ -minors. Easy.
- ▶ Let *M* be a minimal counterexample. *M* is totally free with no U_{3,6}-minor, but *M* is not a quasi-line.
- *M* has no triangles and no triads.

- Quasi-lines are totally free and have no $U_{3,6}$ -minors. Easy.
- ▶ Let *M* be a minimal counterexample. *M* is totally free with no U_{3,6}-minor, but *M* is not a quasi-line.
- *M* has no triangles and no triads.
- ► Up to duality, there is an element e such that M\e is totally free, and hence a quasi-line.

- Quasi-lines are totally free and have no $U_{3,6}$ -minors. Easy.
- ▶ Let *M* be a minimal counterexample. *M* is totally free with no U_{3,6}-minor, but *M* is not a quasi-line.
- M has no triangles and no triads.
- ► Up to duality, there is an element e such that M\e is totally free, and hence a quasi-line.
- We prove that M/e is also totally free, and hence a quasi-line.

$$F_{\mu}$$
 F_{ν}

 Consider a longest path in the reduced del-con tree corresponding to *M*/*e*.

► The ends of the path are lines, since M and M/e have no triads. Let these lines be F_u and F_v.

$$F_u \left[- \bigcirc - \sub - \bigcirc - \sub - \circlearrowright - \circlearrowright F_v \right]$$

- ► The ends of the path are lines, since M and M/e have no triads. Let these lines be F_u and F_v.
- Since *M* has no triangles, $F_u \cup e$ and $F_v \cup e$ are rank-3 cyclic flats of *M*.

$$F_u \left[- \bigcirc - \sub - \bigcirc - \sub - \circlearrowright - \circlearrowright F_v \right]$$

- ► The ends of the path are lines, since M and M/e have no triads. Let these lines be F_u and F_v.
- ▶ Since *M* has no triangles, $F_u \cup e$ and $F_v \cup e$ are rank-3 cyclic flats of *M*.
- If r(F_u ∪ F_v ∪ {e}) = 5, then e is fixed, a contradiction, as M\e is 3-connected.

$$F_u$$
 F_v

- ► The ends of the path are lines, since M and M/e have no triads. Let these lines be F_u and F_v.
- ▶ Since *M* has no triangles, $F_u \cup e$ and $F_v \cup e$ are rank-3 cyclic flats of *M*.
- If r(F_u ∪ F_v ∪ {e}) = 5, then e is fixed, a contradiction, as M\e is 3-connected.
- ▶ Thus $r(F_u \cup F_v \cup \{e\}) = 4$, and M/e is represented by this tree.

- We have proved r(M) = 4. By duality, $r(M^*) = 4$, and |E(M)| = 8.
- > The rest is straightforward case-analysis.

- We have proved r(M) = 4. By duality, $r(M^*) = 4$, and |E(M)| = 8.
- The rest is straightforward case-analysis.

Representations of a quasi-line are in correspondence with the rank-2 uniform matroid from which it is constructed.

Theorem (Geelen, Mayhew, Whittle – 2004)

Let M be a 3-connected GF(q)-representable matroid with no $U_{3,6}$ -minor. Then

$$n_q(M) \le n_q(U_{2,q+1}) = (q-2)!$$

The general conjecture

Conjecture (Geelen, Oxley, Vertigan, Whittle - 2002)

Let q be a prime power, and let $r \ge 3$ be an integer. There exists an integer $N_{q,r}$ such that if M is a 3-connected GF(q)-representable matroid with no minor isomorphic to the rank-r free-swirl or free-spike, then

 $n_q(M) \leq N_{q,r}.$

The general conjecture

Theorem (Geelen, Whittle – 2013) If p is a prime, then there is an integer N_p such that $n_p(M) \le N_p$

for every 4-connected GF(p)-representable matroid M.

This conjecture follows as a corollary.

Conjecture (Geelen, Oxley, Vertigan, Whittle – 2002)

Let q be a prime power, and let $r \ge 3$ be an integer. There exists an integer $N_{q,r}$ such that if M is a 3-connected GF(q)-representable matroid with no minor isomorphic to the rank-r free-swirl or free-spike, then

 $n_q(M) \leq N_{q,r}.$

This conjecture also follows as a corollary.

Theorem (Geelen, Whittle - 2013)

Let q be a prime power, and let $r \ge 3$ be an integer. There exists an integer $N_{q,r}$ such that if M is a 3-connected GF(q)-representable matroid with no minor isomorphic to the rank-r free-swirl or free-spike, then

 $n_q(M) \leq N_{q,r}.$