Inequivalent representations of matroids with no $U_{3,6}$-minor

Dillon Mayhew

With Jim Geelen and Geoff Whittle.

Equivalence of representations

Let M be a matroid. Let A and A^{\prime} be matrices over a field, \mathbb{F}, that represent M. Columns are labelled with elements of $E(M)$.
A and A^{\prime} are equivalent if one is obtained from the other by:

- adding a row to another,
- scaling rows/columns by numbers in $\mathbb{F}-\{0\}$,
- permuting rows,
- permuting columns and column labels,
- deleting/adding zero rows,
- applying an automorphism of \mathbb{F} entrywise.

If M is GF (q)-representable, let $n_{q}(M)$ be the number of equivalence classes of matrices that represent M over $\operatorname{GF}(q)$.

Kahn's conjecture

Theorem (White - 1971)
$n_{2}(M)=1$ for any $G F(2)$-representable matroid M.
Theorem (Brylawski and Lucas - 1976)
$n_{3}(M)=1$ for any $G F(3)$-representable matroid M.

Kahn's conjecture

Theorem (White - 1971)
$n_{2}(M)=1$ for any GF(2)-representable matroid M.
Theorem (Brylawski and Lucas - 1976)
$n_{3}(M)=1$ for any $\operatorname{GF}(3)$-representable matroid M.
Theorem (Kahn - 1988)
$n_{4}(M)=1$ for any 3-connected GF(4)-representable matroid M.

Kahn's conjecture

Conjecture (Kahn - 1988)

Let q be any prime power. There exists an integer N_{q} such that

$$
n_{q}(M) \leq N_{q}
$$

for any 3-connected $G F(q)$-representable matroid M.

Kahn's conjecture

Theorem (Oxley, Vertigan, Whittle - 1996)
$n_{5}(M) \leq 6$ for any 3-connected GF(5)-representable matroid M.

Kahn's conjecture

free-swirl

free-spike

Kahn's conjecture

Theorem (Oxley, Vertigan, Whittle - 1996)
Let q be a prime power with $q>5$.
Assume $q-1$ is composite. If M is the rank- r free-swirl, then M is $\mathrm{GF}(q)$-representable and $n_{q}(M) \geq 2^{r}$.

Kahn's conjecture

Theorem (Oxley, Vertigan, Whittle - 1996)
Let q be a prime power with $q>5$.
Assume $q-1$ is composite. If M is the rank- r free-swirl, then M is $\mathrm{GF}(q)$-representable and $n_{q}(M) \geq 2^{r}$.
Assume $q-1$ is prime. If M is the rank- r free-spike, then M is GF (q)-representable and $n_{q}(M) \geq 2^{r-1}$.

Kahn's conjecture

Conjecture (Geelen, Oxley, Vertigan, Whittle - 2002)

Let q be a prime power, and let $r \geq 3$ be an integer. There exists an integer $N_{q, r}$ such that if M is a 3 -connected $\mathrm{GF}(q)$-representable matroid with no minor isomorphic to the rank- r free-swirl or free-spike, then

$$
n_{q}(M) \leq N_{q, r}
$$

Kahn's conjecture

Note that the rank-3 free-swirl and the rank-3 free-spike are both isomorphic to $U_{3,6}$.

Fixed elements

Let e, e^{\prime} be elements in the matroid M. If the transposition of e and e^{\prime} is an automorphism of M, e and e^{\prime} are clones.

Fixed elements

Let e, e^{\prime} be elements in the matroid M. If the transposition of e and e^{\prime} is an automorphism of M, e and e^{\prime} are clones.

If e is an element of M, and M^{\prime} is a single-element extension of M by e^{\prime} such that e and e^{\prime} are clones, then M^{\prime} is a clonal extension.

Fixed elements

Let e, e^{\prime} be elements in the matroid M. If the transposition of e and e^{\prime} is an automorphism of M, e and e^{\prime} are clones.
If e is an element of M, and M^{\prime} is a single-element extension of M by e^{\prime} such that e and e^{\prime} are clones, then M^{\prime} is a clonal extension.

If such an M^{\prime} exists with $\left\{e, e^{\prime}\right\}$ independent, then e is free, otherwise e is fixed.

Fixed elements

Assume e is fixed in M, and both

$$
\left[\begin{array}{l|l}
& e \\
A & \mathbf{x}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l|l}
e \\
A & \mathbf{x}^{\prime}
\end{array}\right]
$$

represent M.

Fixed elements

Assume e is fixed in M, and both

$$
\left[\begin{array}{l|l}
& e \\
A & \mathbf{x}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c|c}
e \\
A & \mathbf{x}^{\prime}
\end{array}\right]
$$

represent M.
Then

$$
\mathbf{x}^{\prime}=\lambda \mathbf{x}
$$

for some non-zero λ.

Fixed elements

Assume e is fixed in M, and both

$$
\left[\begin{array}{l|l}
& e \\
A & \mathbf{x}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l|l}
e \\
A & \mathbf{x}^{\prime}
\end{array}\right]
$$

represent M.
Then

$$
\mathbf{x}^{\prime}=\lambda \mathbf{x}
$$

for some non-zero λ.
So in this case,

$$
n_{q}(M) \leq n_{q}(M \backslash e)
$$

If e is cofixed (fixed in $\left.M^{*}\right)$, then $n_{q}(M) \leq n_{q}(M / e)$.

Totally free matroids

Assume we want to bound $n_{q}(M)$ for a 3-connected GF(q)-representable matroid M.

If M^{\prime} is 3-connected, and is produced from M by a sequence of:

- deleting a fixed element, where the deletion is 3-connected up to series pairs,
- contracting a cofixed element, where the contraction is 3-connected up to parallel pairs,
then $n_{q}(M) \leq n_{q}\left(M^{\prime}\right)$.

Totally free matroids

Assume we want to bound $n_{q}(M)$ for a 3-connected GF(q)-representable matroid M.

If M^{\prime} is 3 -connected, and is produced from M by a sequence of:

- deleting a fixed element, where the deletion is 3-connected up to series pairs,
- contracting a cofixed element, where the contraction is 3-connected up to parallel pairs,
then $n_{q}(M) \leq n_{q}\left(M^{\prime}\right)$.
M^{\prime} is totally free if no further moves of this type can be performed.

Totally free matroids

Assume we want to bound $n_{q}(M)$ for a 3-connected GF(q)-representable matroid M.

If M^{\prime} is 3 -connected, and is produced from M by a sequence of:

- deleting a fixed element, where the deletion is 3-connected up to series pairs,
- contracting a cofixed element, where the contraction is 3-connected up to parallel pairs,
then $n_{q}(M) \leq n_{q}\left(M^{\prime}\right)$.
M^{\prime} is totally free if no further moves of this type can be performed.

Definition

M^{\prime} is totally free if $\left|E\left(M^{\prime}\right)\right| \geq 4, M^{\prime}$ is 3-connected, and $\operatorname{co}\left(M^{\prime} \backslash e\right)$ is not 3-connected whenever e is fixed, and $\operatorname{si}\left(M^{\prime} / e\right)$ is not 3 -connected whenever e is cofixed.

Totally free matroids

Let \mathcal{M} be a minor-closed class of matroids. Let q be a prime power.

If $\left\{M_{1}, \ldots, M_{n}\right\}$ is the set of totally free $\mathrm{GF}(q)$-representable matroids in \mathcal{M}, then

$$
n_{q}(M) \leq \max \left\{n_{q}\left(M_{1}\right), \ldots, n_{q}\left(M_{n}\right)\right\}
$$

for every 3-connected $\operatorname{GF}(q)$-representable matroid, $M \in \mathcal{M}$.

Totally free matroids

Let \mathcal{M} be a minor-closed class of matroids. Let q be a prime power.

If $\left\{M_{1}, \ldots, M_{n}\right\}$ is the set of totally free $\mathrm{GF}(q)$-representable matroids in \mathcal{M}, then

$$
n_{q}(M) \leq \max \left\{n_{q}\left(M_{1}\right), \ldots, n_{q}\left(M_{n}\right)\right\}
$$

for every 3-connected $\operatorname{GF}(q)$-representable matroid, $M \in \mathcal{M}$.
Theorem (Geelen, Oxley, Vertigan, Whittle - 2002)
Let M be a totally free matroid with $|E(M)| \geq 5$. Either:

- $M \backslash e$ is totally free for some $e \in E(M)$,
- M / e is totally free for some $e \in E(M)$,
- $E(M)$ is a union of 2-element clonal classes, and $M \backslash e / e^{\prime}$ is totally free for any clonal class $\left\{e, e^{\prime}\right\}$.

Quasi-lines

A $\Delta-Y$ exchange replaces a triangle with a triad.
A segment-cosegment exchange replaces a k-element line with a k-element coline.

A quasi-line is produced by starting with $U_{2, k}(k \geq 4)$, and repeatedly applying segment-cosegment exchanges and the dual operation.

Quasi-lines

A $\Delta-Y$ exchange replaces a triangle with a triad.
A segment-cosegment exchange replaces a k-element line with a k-element coline.

A quasi-line is produced by starting with $U_{2, k}(k \geq 4)$, and repeatedly applying segment-cosegment exchanges and the dual operation.

Theorem (Oxley, Semple, Vertigan - 2000)
Every quasi-line is uniquely described by a reduced del-con tree.

Quasi-lines

Theorem (Geelen, Mayhew, Whittle - 2004)
The following are equivalent:

- M is a totally free matroid with no $U_{3,6}$-minor,
- M is a quasi-line.

Proof

- Quasi-lines are totally free and have no $U_{3,6}$-minors. Easy.

Proof

- Quasi-lines are totally free and have no $U_{3,6}$-minors. Easy.
- Let M be a minimal counterexample. M is totally free with no $U_{3,6}$-minor, but M is not a quasi-line.

Proof

- Quasi-lines are totally free and have no $U_{3,6}$-minors. Easy.
- Let M be a minimal counterexample. M is totally free with no $U_{3,6}$-minor, but M is not a quasi-line.
- M has no triangles and no triads.

Proof

- Quasi-lines are totally free and have no $U_{3,6}$-minors. Easy.
- Let M be a minimal counterexample. M is totally free with no $U_{3,6}$-minor, but M is not a quasi-line.
- M has no triangles and no triads.
- Up to duality, there is an element e such that $M \backslash e$ is totally free, and hence a quasi-line.

Proof

- Quasi-lines are totally free and have no $U_{3,6}$-minors. Easy.
- Let M be a minimal counterexample. M is totally free with no $U_{3,6}$-minor, but M is not a quasi-line.
- M has no triangles and no triads.
- Up to duality, there is an element e such that $M \backslash e$ is totally free, and hence a quasi-line.
- We prove that M / e is also totally free, and hence a quasi-line.

Proof

- Consider a longest path in the reduced del-con tree corresponding to M / e.

Proof

- Consider a longest path in the reduced del-con tree corresponding to M / e.

$$
F_{u}!-(\bigcirc)-\varrho-\emptyset-\ominus-F_{v}
$$

- The ends of the path are lines, since M and M / e have no triads. Let these lines be F_{u} and F_{v}.

Proof

- Consider a longest path in the reduced del-con tree corresponding to M / e.

$$
F_{u}!-(\bigcirc)-\emptyset-\emptyset-Q-F_{v}
$$

- The ends of the path are lines, since M and M / e have no triads. Let these lines be F_{u} and F_{v}.
- Since M has no triangles, $F_{u} \cup e$ and $F_{v} \cup e$ are rank-3 cyclic flats of M.

Proof

- Consider a longest path in the reduced del-con tree corresponding to M / e.

$$
F_{u}!-(\cdot)-\emptyset-\emptyset-0-F_{v}
$$

- The ends of the path are lines, since M and M / e have no triads. Let these lines be F_{u} and F_{v}.
- Since M has no triangles, $F_{u} \cup e$ and $F_{v} \cup e$ are rank-3 cyclic flats of M.
- If $r\left(F_{u} \cup F_{v} \cup\{e\}\right)=5$, then e is fixed, a contradiction, as $M \backslash e$ is 3-connected.

Proof

- Consider a longest path in the reduced del-con tree corresponding to M / e.

$$
F_{u}!-(\cdot)-!-\left(-Q-F_{v}\right.
$$

- The ends of the path are lines, since M and M / e have no triads. Let these lines be F_{u} and F_{v}.
- Since M has no triangles, $F_{u} \cup e$ and $F_{v} \cup e$ are rank-3 cyclic flats of M.
- If $r\left(F_{u} \cup F_{v} \cup\{e\}\right)=5$, then e is fixed, a contradiction, as $M \backslash e$ is 3-connected.
- Thus $r\left(F_{u} \cup F_{v} \cup\{e\}\right)=4$, and M / e is represented by this tree.

$$
F_{u}!-\theta-\emptyset!F_{v}
$$

Proof

- We have proved $r(M)=4$. By duality, $r\left(M^{*}\right)=4$, and $|E(M)|=8$.
- The rest is straightforward case-analysis.

Proof

- We have proved $r(M)=4$. By duality, $r\left(M^{*}\right)=4$, and $|E(M)|=8$.
- The rest is straightforward case-analysis.

Representations of a quasi-line are in correspondence with the rank-2 uniform matroid from which it is constructed.

Theorem (Geelen, Mayhew, Whittle - 2004)

Let M be a 3-connected $G F(q)$-representable matroid with no $U_{3,6}$-minor. Then

$$
n_{q}(M) \leq n_{q}\left(U_{2, q+1}\right)=(q-2)!
$$

The general conjecture

Conjecture (Geelen, Oxley, Vertigan, Whittle - 2002)

Let q be a prime power, and let $r \geq 3$ be an integer. There exists an integer $N_{q, r}$ such that if M is a 3 -connected $\mathrm{GF}(q)$-representable matroid with no minor isomorphic to the rank- r free-swirl or free-spike, then

$$
n_{q}(M) \leq N_{q, r} .
$$

The general conjecture

Theorem (Geelen, Whittle - 2013)
If p is a prime, then there is an integer N_{p} such that

$$
n_{p}(M) \leq N_{p}
$$

for every 4-connected GF (p)-representable matroid M.

The general conjecture

This conjecture follows as a corollary.
Conjecture (Geelen, Oxley, Vertigan, Whittle - 2002)
Let q be a prime power, and let $r \geq 3$ be an integer. There exists an integer $N_{q, r}$ such that if M is a 3 -connected $\mathrm{GF}(q)$-representable matroid with no minor isomorphic to the rank- r free-swirl or free-spike, then

$$
n_{q}(M) \leq N_{q, r} .
$$

The general conjecture

This conjecture also follows as a corollary.

Theorem (Geelen, Whittle - 2013)

Let q be a prime power, and let $r \geq 3$ be an integer. There exists an integer $N_{q, r}$ such that if M is a 3 -connected GF(q)-representable matroid with no minor isomorphic to the rank- r free-swirl or free-spike, then

$$
n_{q}(M) \leq N_{q, r} .
$$

