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DEGENERACY

The degeneracy D(G) of a graph G is defined by

D(G) = max
H⊆G

δ(H),

where δ(H) is the minimum degree of H and the maximum is taken
over all subgraphs of G.
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GREEDY ALGORITHM

Although the maximum is over all subgraphs, it is well known and
easy to show that a greedy algorithm can be used to determine D(G):

I Repeatedly delete a vertex of minimum degree
I Record the degree of each vertex as it is deleted
I Take the maximum of the recorded values
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EXAMPLE
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And we can stop now and conclude that D(G) = 3.
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CHROMATIC NUMBER

It is also well known that

χ(G) ≤ D(G) + 1.

A D(G) + 1-colouring of the graph can be determined just by
remembering the order in which vertices were removed to determine
D(G), and then colouring them in reverse order.

The value D(G) + 1 is often called the colouring number of G.

GORDON ROYLE CONTRACTION DEGENERACY



BOUNDED DEGENERACY

Degeneracy is one of parameters used by fixed-parameter complexity
theorists to stratify graphs into classes of increasing “complexity” for
algorithmic purposes.

I Forests are 1-degenerate, and conversely
I Series-parallel graphs are 2-degenerate (but not conversely)
I Planar graphs are at most 5-degenerate (but not conversely)
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MATULA NUMBER

In 1968, David Matula defined the parameter

Dm(G) = max
H⊆G

κ ′(H),

where κ ′(H) is the size of the minimum edge-cutset of H.

I Dm(G) can be calculated by the greedy algorithm
I A graph can be coloured in Dm(G) + 1 colours
I D(G) can be arbitrarily greater than Dm(G) (Woodall)
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FOR MATROIDS?

If M is a matroid, then we can define

Dm(M) = max
N∈R(M)

min
C∗∈C∗(N)

|C∗|

where
I R(M) is the set of restriction minors of M
I C∗(N) is the set of cocircuits of N

James showed that the chromatic number of a regular matroid is
bounded by Dm(M) + 1.
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CONTRACTION DEGENERACY

The contraction degeneracy C(G) of a graph G was explicitly named
by Bodlaender, Koster & Wolle:

C(G) = max
H�G

δ(H),

where δ(H) is the minimum degree of H and the maximum is taken
over all simple minors of G.

Unlike degeneracy, C(G) is NP-hard to compute.
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MINOR-CLOSED FAMILIES OF GRAPHS

Fijavž & Wood have recently studied the families of graphs

Xk = {G | C(G) ≤ k}.

Each Xk is minor-closed and so enjoys1 all of the properties implied
by the Graph Minor Theory of Robertson & Seymour.

So Xk can be defined by a finite collection of excluded minors:

X̂k = {G | C(G) > k and C(H) ≤ k for all H ≺ G}

1or should this be “endures”?
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SOME BASICS

I The class X1 consists of all forests and so X̂1 = {K3}.

I The class X2 is the series-parallel graphs and so X̂2 = {K4}.

I The class X3 has
X̂3 = {K5,K2,2,2}

where K2,2,2 is the octahedron.
I The class X4 has an unknown collection of excluded minors, but

Fijavž & Wood list nine in their paper.

PROBLEM

Determine X̂4
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REALIZABILITY

A graph G on n vertices is k-realizable if for every embedding

ϕ : G → Rn

there is an embedding
ϕ ′ : G → Rk

with the same edge lengths.

Maria Belk and Robert Connelly have shown that for k = 1, 2, 3 the
class Xk is equal to the class of k-realizable graphs.
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CHROMATIC ROOTS

The chromatic polynomial P(G, q) of a graph G counts the number of
proper q-colourings of G for integer values of q.

I (Woodall 1997, Thomassen 1997)
If every simple minor of a graph G has a vertex of degree at most
d, then P(G, q) > 0 for all real q ∈ (d,∞).

I (Mader 1967), There is a function f : N → N such that every
graph with minimum degree greater than f (d) has Kd as a minor.

Therefore any proper minor-closed family of graphs has bounded real
chromatic roots.
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AND FOR MATROIDS?

For matroids, we can define a parameter analogous to the contraction
degeneracy just by replacing minimum degree with minimum cocircuit
size and chromatic polynomial with characteristic polynomial:

We also have:
I (Oxley 1978) 2 If every simple minor of a matroid M has a

cocircuit of size at most d, then P(M, q) > 0 for all real
q ∈ (d,∞).

2With a prescience impressive even for James, he proved this more general result
two decades earlier than Woodall and Thomassen.
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MOST WANTED ANSWER

QUESTION

Is it true that any minor-closed class of binary matroids, not including
all graphs, has bounded real chromatic roots?

In particular, take the class to be cographic matroids, and resolve
Welsh’s question about whether real flow roots of graph are bounded.

This seems very plausible, but any proof would need to be quite
different to that for graphs as there is no analogue of Mader’s result.
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BACK TO CONTRACTION DEGENERACY

LetMk denote the set of binary matroids with the property that every
simple minor has a cocircuit of size at most k.

I M1 is the class of all forests
I M2 is the class of series-parallel graphs
I M̂3 = {K5,K2,2,2,F7,K∗3,3}

3

3I am no longer sure where I learned this
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BACK TO X̂4

Some excluded minors for X̂4 can immediately be found:

I The complete graph K6

I The complete multipartite graph K2,2,2,1

I The complete join C5 ∨ 3K1

I The icosahedron I
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MADER AGAIN

THEOREM (MADER)

A graph with minimum degree 5 has one of K6, C5 ∨ 3K1, I or
K2,2,2,1 − e as a minor.

So the remaining excluded minors for X4 must have K2,2,2,1 − e as a
minor, but not K2,2,2,1.

GORDON ROYLE CONTRACTION DEGENERACY



MORE PROPERTIES

Suppose G is an excluded minor for X4. Then

I G has minimum degree 5,
I the vertices of high degree form an independent set4,
I every edge of G lies in a triangle with a low degree vertex.

The common neighbours of the endpoints of the edge are the only
vertices whose degree drops on contraction.

4possibly empty
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COMPUTATION

The number of graphs of minimum degree 5 grows very rapidly.
However Brendan McKay’s geng program, which generates graphs
vertex-by-vertex, allows a user-specified pruning function to be
defined.

So the search is pruned as soon as there are:

I Adjacent vertices, each of degree more than 5
I Adjacent vertices, each of degree at least 5, with no common

neighbour

The survivors are checked for simple necessary conditions, with an
exhaustive program used for the final test.
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UP TO 14 VERTICES

The search is complete up to 14 vertices. Let e(n) denote the number
of edges of the smallest graph on n vertices with minimum degree 5.

n e(n) +0 +1 +2 +3
6 15 1
7 18 1
8 20 1
9 23
10 25 1
11 28 1 1
12 30 3 4 4
13 33 9 16 6
14 35 6 31 18 4

Is this escalating out of control or settling down?
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SETTLING DOWN?

By restricting to nearly 5-regular graphs, we can go a bit further

n e(n) +0 +1 +2 +3
6 15 1
7 18 1
8 20 1
9 23
10 25 1
11 28 1 1
12 30 3 4 4
13 33 9 16 6
14 35 6 31 18 4
15 38 27 31 9 1

This is not looking promising
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PERHAPS OK?

But if we look at the connectivity of the graphs, some patterns emerge.

Exactly six of the graphs are 5-connected: K6, K2,2,2,1, C5 ∨ 3K1, an
ugly 10-vertex graph, the icosahedron and a mutant icosahedron.
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THE REST

The remaining examples all have
I Connectivity exactly 1, 2 or 3
I A unique set of vertices of size κ whose removal disconnects the

graph
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GLUING

All of the excluded minors arise from gluing together gadgets in any
way that avoids the obvious forbidden configurations.

A gadget has minimum degree 5 except for a distinguished set L of
low-degree vertices, such that every contraction minor has a vertex of
degree at most 4 outside L.
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CAN WE FINISH?

I believe that the largest excluded minor has 25 vertices.

If I knew this for sure, I think that finding the remaining excluded
minors could be done.

GORDON ROYLE CONTRACTION DEGENERACY



WHAT ABOUT MATROIDS?

I know some interesting binary matroids in X̂4, such as M∗(P).

The icosahedron shows that we’re looking at matroids of rank up to
11 and size 30 at least, which is unlikely to work.
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HAPPY BIRTHDAY

Thanks for listening and Happy Birthday Geoff!
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