Contraction Degeneracy

Gordon Royle

Centre for the Mathematics of Symmetry and Computation
School of Mathematics \& Statistics
University of Western Australia

Geoff-Fest 2015

Meeting Geoff 2004

AckNowLEDGEMENTS

This talk describes work in progress, initially stimulated by the paper

- Fijavž \& Wood, Graph Minors and Minimum Degree. and which has benefitted from discussions with
- Irene Pivotto,
- Douglas Woodall,
- Insert 〈Your name〉 here!

DEGENERACY

The degeneracy $D(G)$ of a graph G is defined by

$$
D(G)=\max _{H \subseteq G} \delta(H)
$$

where $\delta(H)$ is the minimum degree of H and the maximum is taken over all subgraphs of G.

Greedy Algorithm

Although the maximum is over all subgraphs, it is well known and easy to show that a greedy algorithm can be used to determine $D(G)$:

- Repeatedly delete a vertex of minimum degree
- Record the degree of each vertex as it is deleted
- Take the maximum of the recorded values

EXAMPLE

EXAMPLE

And we can stop now and conclude that $D(G)=3$.

Chromatic Number

It is also well known that

$$
\chi(G) \leq D(G)+1
$$

A $D(G)+1$-colouring of the graph can be determined just by remembering the order in which vertices were removed to determine $D(G)$, and then colouring them in reverse order.

The value $D(G)+1$ is often called the colouring number of G.

Bounded Degeneracy

Degeneracy is one of parameters used by fixed-parameter complexity theorists to stratify graphs into classes of increasing "complexity" for algorithmic purposes.

- Forests are 1-degenerate, and conversely
- Series-parallel graphs are 2-degenerate (but not conversely)
- Planar graphs are at most 5-degenerate (but not conversely)

MATULA NUMBER

In 1968, David Matula defined the parameter

$$
D_{m}(G)=\max _{H \subseteq G} \kappa^{\prime}(H),
$$

where $\kappa^{\prime}(H)$ is the size of the minimum edge-cutset of H.

- $D_{m}(G)$ can be calculated by the greedy algorithm
- A graph can be coloured in $D_{m}(G)+1$ colours
- $D(G)$ can be arbitrarily greater than $D_{m}(G)$ (Woodall)

FOR MATROIDS?

If M is a matroid, then we can define

$$
D_{m}(M)=\max _{N \in R(M)} \min _{C^{*} \in \mathcal{C}^{*}(N)}\left|C^{*}\right|
$$

where

- $R(M)$ is the set of restriction minors of M
- $\mathcal{C}^{*}(N)$ is the set of cocircuits of N

James showed that the chromatic number of a regular matroid is bounded by $D_{m}(M)+1$.

Contraction Degeneracy

The contraction degeneracy $C(G)$ of a graph G was explicitly named by Bodlaender, Koster \& Wolle:

$$
C(G)=\max _{H \preceq G} \delta(H),
$$

where $\delta(H)$ is the minimum degree of H and the maximum is taken over all simple minors of G.

Unlike degeneracy, $C(G)$ is NP-hard to compute.

Minor-Closed families Of GRaphs

Fijavž \& Wood have recently studied the families of graphs

$$
\mathcal{X}_{k}=\{G \mid C(G) \leq k\} .
$$

Each \mathcal{X}_{k} is minor-closed and so enjoys ${ }^{1}$ all of the properties implied by the Graph Minor Theory of Robertson \& Seymour.

So \mathcal{X}_{k} can be defined by a finite collection of excluded minors:

$$
\widehat{\mathcal{X}}_{k}=\{G \mid C(G)>k \text { and } C(H) \leq k \text { for all } H \prec G\}
$$

SOME BASICS

- The class \mathcal{X}_{1} consists of all forests and so $\widehat{\mathcal{X}}_{1}=\left\{K_{3}\right\}$.
- The class \mathcal{X}_{2} is the series-parallel graphs and so $\widehat{\mathcal{X}}_{2}=\left\{K_{4}\right\}$.
- The class \mathcal{X}_{3} has

$$
\widehat{\mathcal{X}}_{3}=\left\{K_{5}, K_{2,2,2}\right\}
$$

where $K_{2,2,2}$ is the octahedron.

- The class \mathcal{X}_{4} has an unknown collection of excluded minors, but Fijavž \& Wood list nine in their paper.

PRoblem

Determine $\widehat{\mathcal{X}}_{4}$

REALIZABILITY

A graph G on n vertices is k-realizable if for every embedding

$$
\varphi: G \rightarrow \mathbb{R}^{n}
$$

there is an embedding

$$
\varphi^{\prime}: G \rightarrow \mathbb{R}^{k}
$$

with the same edge lengths.

Maria Belk and Robert Connelly have shown that for $k=1,2,3$ the class \mathcal{X}_{k} is equal to the class of k-realizable graphs.

Chromatic Roots

The chromatic polynomial $P(G, q)$ of a graph G counts the number of proper q-colourings of G for integer values of q.

- (Woodall 1997, Thomassen 1997)

If every simple minor of a graph G has a vertex of degree at most d, then $P(G, q)>0$ for all real $q \in(d, \infty)$.

- (Mader 1967), There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that every graph with minimum degree greater than $f(d)$ has K_{d} as a minor.

Therefore any proper minor-closed family of graphs has bounded real chromatic roots.

AND FOR MATROIDS?

For matroids, we can define a parameter analogous to the contraction degeneracy just by replacing minimum degree with minimum cocircuit size and chromatic polynomial with characteristic polynomial:

We also have:

- (Oxley 1978) ${ }^{2}$ If every simple minor of a matroid M has a cocircuit of size at most d, then $P(M, q)>0$ for all real $q \in(d, \infty)$.

[^0]
MOST WANTED ANSWER

QUESTION

Is it true that any minor-closed class of binary matroids, not including all graphs, has bounded real chromatic roots?

In particular, take the class to be cographic matroids, and resolve Welsh's question about whether real flow roots of graph are bounded.

This seems very plausible, but any proof would need to be quite different to that for graphs as there is no analogue of Mader's result.

BACK TO CONTRACTION DEGENERACY

Let \mathcal{M}_{k} denote the set of binary matroids with the property that every simple minor has a cocircuit of size at most k.

- \mathcal{M}_{1} is the class of all forests
- \mathcal{M}_{2} is the class of series-parallel graphs
- $\widehat{\mathcal{M}}_{3}=\left\{K_{5}, K_{2,2,2}, F_{7}, K_{3,3}^{*}\right\}^{3}$

${ }^{3}$ I am no longer sure where I learned this

Some excluded minors for $\widehat{\mathcal{X}}_{4}$ can immediately be found:

- The complete graph K_{6}
- The complete multipartite graph $K_{2,2,2,1}$
- The complete join $C_{5} \vee 3 K_{1}$

- The icosahedron I

MADER AGAIN

THEOREM (MADER)

A graph with minimum degree 5 has one of $K_{6}, C_{5} \vee 3 K_{1}, I$ or $K_{2,2,2,1}-e$ as a minor.

So the remaining excluded minors for \mathcal{X}_{4} must have $K_{2,2,2,1}-e$ as a minor, but not $K_{2,2,2,1}$.

MORE PROPERTIES

Suppose G is an excluded minor for \mathcal{X}_{4}. Then

- G has minimum degree 5 ,
- the vertices of high degree form an independent set ${ }^{4}$,
- every edge of G lies in a triangle with a low degree vertex.

The common neighbours of the endpoints of the edge are the only vertices whose degree drops on contraction.

COMPUTATION

The number of graphs of minimum degree 5 grows very rapidly. However Brendan McKay's geng program, which generates graphs vertex-by-vertex, allows a user-specified pruning function to be defined.

So the search is pruned as soon as there are:

- Adjacent vertices, each of degree more than 5
- Adjacent vertices, each of degree at least 5, with no common neighbour

The survivors are checked for simple necessary conditions, with an exhaustive program used for the final test.

Up TO 14 VERTICES

The search is complete up to 14 vertices. Let $e(n)$ denote the number of edges of the smallest graph on n vertices with minimum degree 5 .

n	$e(n)$	+0	+1	+2	+3
6	15	1			
7	18	1			
8	20	1			
9	23				
10	25		1		
11	28	1	1		
12	30	3	4	4	
13	33	9	16	6	
14	35	6	31	18	4

Is this escalating out of control or settling down?

SETTLING DOWN?

By restricting to nearly 5-regular graphs, we can go a bit further

n	$e(n)$	+0	+1	+2	+3
6	15	1			
7	18	1			
8	20	1			
9	23				
10	25		1		
11	28	1	1		
12	30	3	4	4	
13	33	9	16	6	
14	35	6	31	18	4
15	38	27	31	9	1

This is not looking promising

PERHAPS OK?

But if we look at the connectivity of the graphs, some patterns emerge.
Exactly six of the graphs are 5-connected: $K_{6}, K_{2,2,2,1}, C_{5} \vee 3 K_{1}$, an ugly 10 -vertex graph, the icosahedron and a mutant icosahedron.

THE REST

The remaining examples all have

- Connectivity exactly 1,2 or 3
- A unique set of vertices of size k whose removal disconnects the graph

Gluing

All of the excluded minors arise from gluing together gadgets in any way that avoids the obvious forbidden configurations.

A gadget has minimum degree 5 except for a distinguished set L of low-degree vertices, such that every contraction minor has a vertex of degree at most 4 outside L.

Gluing

All of the excluded minors arise from gluing together gadgets in any way that avoids the obvious forbidden configurations.

A gadget has minimum degree 5 except for a distinguished set L of low-degree vertices, such that every contraction minor has a vertex of degree at most 4 outside L.

CAN WE FINISH?

I believe that the largest excluded minor has 25 vertices.

If I knew this for sure, I think that finding the remaining excluded minors could be done.

WHAT ABOUT MATROIDS?

I know some interesting binary matroids in $\widehat{\mathcal{X}}_{4}$, such as $M^{*}(P)$.

The icosahedron shows that we're looking at matroids of rank up to 11 and size 30 at least, which is unlikely to work.

Happy Birthday

Thanks for listening and Happy Birthday Geoff!

[^0]: ${ }^{2}$ With a prescience impressive even for James, he proved this more general result two decades earlier than Woodall and Thomassen.

