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1. Unmatroids

I have always tried to avoid having to work with double negations, contraposi-
tives, and the like. I had one such discouraging moment was when I was unable to
follow what Tom Brylawski was trying to explain to me about tangential k-blocks, –
at about the time that Geoff took up that precisely that subject as a central theme
of his doctoral thesis on the critical problem for matroids. But I can’t resist taking
a close look at a problem in the theory of non-matroids. Say a struct N of rank r
on a set E is a subset N of the anti-chain

(
E
r

)
of r-element subsets of the set E.

For lack of a better term, call the elements of E points. and the subsets in N the
bases of N. The struct N has the transpose property if, for every ordered multi-set
(A,B, . . . ,D) of r bases (not necessarily distinct) of N, there is a way of placing
permutations of these sets A,B, . . . ,D as the rows of an r × r matrix, in such a
way that its columns are also bases of N. Clearly, the objective is to prove (or
disprove) that every struct in which the transpose property fails is a non-matroid,
or equivalently, that there is some pair S, T , of (distinct) bases of N such that the
transpose property fails for the multi-set (S, S, . . . , S, T ). Nothing definitive, but
I’d like to talk a bit about what one encounters along the way.

2. So far, so good

There has been a great deal of fine work published on this problem, beginning
with Rosa Huang and Gian Carlo Rota’s collaboration in 1993, followed by Wendy
Chan’s charming 4-page proof for rank 3 matroids, and culminating in Jim Geelen
and Peter Humphries beautiful 4-page proof for paving matroids of all ranks in
2006. Applications in statistics (Latin squares) and invariant theory (straightening
coefficients) abound.

3. Python

Let N be a struct of rank r, as defined above. When we begin to study r × r
matrices of points of N, and their possible transposes, we are bound to make tons of
frustrating clerical errors. We have to decide whether to continue like that, or write
a Python program. I invariably take the latter option these days, since I sometimes
have trouble finding the hat that is already on my head. The downside is that one
then makes tons of programming errors. But the upside is that programming errors
are often relatively easy to correct in Python. After about a week’s work, we arrive
at a stage where we can produce tons of reliable data: for each struct, a list of all
the matrices whose row-bases have no transpose, and for those matrices that have
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transposes, a list of all the transposes. The next problem is to develop the patience
to study all the results.

Confidence reigns supreme! The first surprise is that, even when N is not a
matroid, there is often a veritable flood of transposes. ”All you need is one!”, as
the song goes. But how to find an algorithmic path toward one especially nice
solution that is sure to exist if N is a matroid and if Rota’s basis conjecture is
valid?

4. The window-shade method

Let’s assume for a moment that N is a matroid. Then for any two bases A,B
of N, there is a bijective exchange function f : A → B such that A\a + f(a) is a
basis, for all a ∈ A.

The Python program, which produces all transposes that exist, for any given
multi-set of r bases, works row by row, from top to bottom and from left to right.
The first row is easy: stick with alphabetic order. If we were to find a transpose with
another order in the first row, just reorder the columns, and we find a transpose
with alphabetic order in the first row.

The second row is also easy. Say the first two rows are bases A and B. Let f :
A → B be a bijective exchange function. Keep A = (a, b, c, . . . , y, z) in alphabetic
order, and write B in the cyclically right-shifted order f(z), f(a), f(b), . . . , f(y)
of the list of corresponding exchange values f(a), . . . , f(z). With the second row
displayed in this fashion, we have r bases, one for each place in the first row,
extending down one space in that column, and to the right (cyclically modulo r)
r − 1 places. See the third line in the next figure.

It is vaguely conceivable that this window-shade approach, successively replacing
tail elements in the first row, for each of the r bases so far obtained by head elements
chosen bijectively from the basis in the next row. In Figure 1, we indicate the
exchanges necessary at each stage by colored dots in the middle of the corresponding
squares. (The use of colors in the final matrix at the bottom is inconsistent, but is
meant simply to convey the idea that the columns are bases.)

The final result is a set of r sequences of length 2r− 1 of points, each extending
up one column, turning right, and making a complete cycle of the r elements in
row 1. In each of these sequences, every connected segment of length r is a basis.
We call this a window-shade solution.

There is a problem with this approach. How to construct such a solution, using
only known exchange properties for bases in a matroid? Look at the middle row
of the figure. Call the basis in the third row C. We would presumably obtain the
required order on row three by taking a bijective exchange g from the ”red” basis
in row 1 to the ”blue” basis C in row three, arranging the exchange values in the
order indicated by the dots in the squares. But we would only be sure that sets
formed from r − 1 elements A\b of A and one element of g(b) ∈ C are bases. We
would not know that the positions marked in red in the fourth row of Figure 1 are
bases.

Instead, we might concentrate on the r ’intermediate’ bases obtained in the first
stage of the process, and use bijective exchange from those bases toward the basis
C. We know we can find points in C to replace the tails of the r intermediate bases,
but we no longer know that the overall replacement is bijective.
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Figure 1. The window-shade method

Figure 2. Window-shade sequences of length 2r − 1

We could avoid having to prove novel exchange properties involving more than
two bases if we could count on finding a solution satisfying all possible carpenters’
rules, as indicated in Figure 3 for r = 3.
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Figure 3. All possible ”carpenters’ rules”.

If such a ”strong” window-shade method were to work, we would have a solution
in which the intermediate bases, which occupy positions that resemble a carpenter’s
rignt-angle tool, are all bases. This is an additional condition on transposes, and
which, if applicable, would yield a straightforward algorithm for finding transposes
for matrices with rows that are bases in a matroid. Do such solutions always exist?

NO. There is already a counterexample on my favorite matroid, the ”random”
matroid on five points, with two three-point lines sharing a point. There are 8
bases: A list of 8 ’bases’,

abd, abe, acd, ace, bcd, bce, bde, cde.

See Figure 4.

Problem

The four solutions, none satisfying all the carpenters’ rules

a

c

b

e
d

a b d
a b e
b d e

a b d
e a b
b d e

a b d
b e a
e d b

a b d
b a e
e d b

a b d
b a e
d e b

Figure 4. No transposes satisfy all the ”carpenters’ rules”.
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However, the solution on the left in Figure 4 is windowshade, and is the unique
such solution.

5. Window shade transposes.

Does every multi-set of r bases in a matroid of rank r have a transpose of
window-shade form? I am prepared to guess that this is so.

In any window-shade transpose, and for i = 2, . . . , r, we have a bijection from
the first row to the ith row, replacing each ”tail” element in row 1 by an element
in row i, as each shade is ”pulled”. But this bijection from B1 to Bi, for 3 <= i is
not an exchange function from B1 to Bi. Is is perhaps a predictable composite of
exchange functions?

Problem

392 solutions, 19 satisfying the basic carpenters’ rules

a
b c

d

e
f g

h

a b d h
a c f h
a e f g
c e f g a b d h

h a f c
f g a e
g e c f

a b d h
h a f c
f g a e
g c e f

a b d h
h a f c
f g a e
e f c a

a b d h
h a f c
f g a e
c f e g

a b d h
h a f c
f e a g
g c e f

a b d h
h a f c
f e a g
e g c f

a b d h
h a f c
f e a g
c g e f

a b d h
h a f c
e g a f
g f c e

a b d h
h a f c
e g a f
f e c g

a b d h
h a f c
e g a f
f c e g

a b d h
h a f c
e g a f
c f e g

a b d h
h a f c
e f a g
g c e f

a b d h
h a f c
e f a g
f g c e

a b d h
h a f c
e f a g
c g e f

a b d h
h a c f
f g a e
g f e c

a b d h
h a c f
f g a e
g e f c

a b d h
h a c f
f g a e
e f g c

a b d h
h a c f
f e a g
e g f c

a b d h
h a c f
e f a g
f g e c

Figure 5. The 19 window-shade transposes for the four row bases indicated.

Are window-shade transpose solutions unique, as they seem often to be in rank
3. No, this is not the case. Consider the symmetric cube configuration on 8 points
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in rank 4, in Figure 5. The four bases given as rows of the matrix
a b d h
a c f h
a e f g
c e f g


has 392 distinct transposes, 19 of which, as shown, are window-shade solutions.
The two permutations of a, c, f, h that occur as second rows in these transposes,
namely h, a, f, c and h, a, c, f , are obtainable directly (by cyclical left-shift) from

the two bijective exchanges

(
a b d h
a c f h

)
and

(
a b d h
a f c h

)
, respectively. The

rather large number of window-shade solutions in this example may be related to
the fact that there are four bijective exchanges from row 1 to row 3, and 15 bijective
exchanges (!) from row 1 to row 4.

With another choice of four bases in the symmetric cube configuration, with each
point occurring in only two of the bases,

a b d g
a c e f
b d g h
c e f h

 ,

there are 808 transposes, of which 39 are window-shade. One such is given by the
matrix 

a b d g
f a e c
h g b d
e c h f

 ,

6. From transpose failures to failures of exchange

For a struct with failures of transpose, it is quite shocking to watch the failures
roll out. More often than not, especially when the rank of a struct N is not at
roughly half of the cardinality of of the set E of points, it seems that the great
majority of failures of transpose are for multi-sets of bases of the form A, . . . , A,B,
for just two bases A,B. These failures of transpose directly indicate a failure of
bijective exchange, since any bijective exchange function provides a transpose of
the form say for A = (a, b, c, d) and exchange function f : A→ B,

a b c d
d a b c
c d a b

f(b) f(c) f(d) f(a)


It ”seems” that failures of transpose imply failures of transpose for multisets

formed from just two bases. But since it is so hard to find failures of transpose on
sets of r distinct bases, with cardinality |E| < r2, I forced the issue by selecting a
matrix with all points distinct, and generated structs in which that particular basis
can have no transpose. Starting with rank 3, and the matrix

A =

a b c
d e f
g h i

 ,
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then removed from the list of 84 three-element subsets of the set {a, b, c, d, e, f, g, h, i}
a minimal set of triples that will block all feasible transposes of matrix A. The sim-
plest such blocking set is the nine-element set

adg, adh, adi, aeg, aeh, aei, afg, afh, afi,

which blocks any possible first column in a transpose

A =

 a b c
σ(d) σ(e) σ(f)
τ(g) τ(h) τ(i)


where σ and τ are permutations of def and of ghi, respectively. There are many
other types of minimal blocking sets, of slightly larger cardinality, such as this set
of 14 triples:

adh, adi, aeg, afg, afh, afi, bdg, bdh, beh, bei, bfg, bfh, bfi

For this non-matroid struct, there is not only the matrix A that has no transpose,
but a total of 1049 matrices with bases as rows, but no transposes. Of these matrices
without transpose, 628 are of three distinct bases, while a surprisingly large number
of 421 are multi-sets with just two bases, one repeated r − 1 times.

My laptop worked all one day to make a list of all such minimal blocking sets,
but got entirely bogged down after having found

abc, abd, acf, acg, ach, aci, ade, adg, adh, aef, aeg

at the end of a list of 100 such minimal blocking sets. Since neither abc nor abd
have not yet been removed, this must be very far indeed from the end of the search.

7. A Quick Search for a Counterexample

Choose a value for rank. Let’s be reasonable, start with r = 3. It suffices to look
at one 3× 3 matrix

M =

a b c
d e f
g h i


with nine distinct names of points. We start with a struct that has only 3 bases: the
rows A,B,C of M , and place this struct S0 on an otherwise empty stack. We create
a branching structure, the leaves of which are either structs having a transpose for
M , or are matroids. At each pass of the program, we pop one struct S from the
stack. We call a basis of S vertical if it contains one element from each of the rows
A,B,C. Check to see whether S has three disjoint vertical bases. If so, M has a
transpose in S, and we treat this struct no further; it becomes a green leaf of the
tree.

If M does not have a transpose in S, we expect that the struct S is not a matroid,
and so there will also be an ordered pair A,B of bases of S that has no bijective
exchange (not necessarily a pair from the set {A,B,C}). If there is no failure of
bijective exchange, we have a counterexample to Gian Carlo Rota’s basis conjecture.
There we can stop, with one red leaf on the tree. When we do find a pair A,B with
no bijective exchange, we build a collection of all minimal sets of triples that, when
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added, will provide the missing exchange from A to B. For instance, if A = abc, B
= def , we would add as bases:

abd, ace, bcf or abd, acf, bce, or abe, acd, bcf, or
abe, acf, bcd, or abf, acd, bce, or abf, ace, bcd.

Some of these bases may already be in S, but there is at least one missing basis in
each of these six lists. We thus place on the stack 6 copies of S, to each of which
we have added one of these six sets of at least one and at most three new bases. If
the bases A and B have a single element, say a in common, and say A = abc and
B = ade, then we would simply add

abd, ace or abe, acd

(If A and B are neighbors, having all but one element in common, there is already
a bijective exchange.)

If the program finishes without producing that red leaf, then we have a proof of
the contrapositive of Rota’s conjecture for rank 3: every struct lacking a transpose
for some matrix of bases is a non matroid. Nothing new, because Wendy Chan
proved this in 1995.

It might be barely feasible to provide a proof of this nature for rank 4, but I
expected that rank 5 would outpace my little computer’s capacity, if not first my
patience.

Well, here’s what really happened for rank 3. I took care to make my stack
of structs ”LIFO” so that the program will finish the larger structs first, and not
build up an enormous stack of structs of intermediate size. My first attempts to
run the program, hours would pass with no movement on the Python shell. When I
added a few messages, I found that almost in 15 minutes the program had produced
and stored a hundred thousand ”green leaves”, and in 3 hours, it had produced a
millionof them. The next marker I had placed was at ten times that value, but by
bed-time it had not been reached. In all that time, the stack of structs remaining
to be treated always remained a stack of about fifty to ninety. I decided to let
the program run. The next morning it had considered ten million structs, and a
day later, it had produced ten million green leaves. Unfortunately, I had set the
next message for 100 million, and no no longer had either the time to wait before
leaving for New Zealand, nor the optimism that the program would finish its task,
having found progressively more transposes toward the end. When I stopped the
computer run, there were 61 structs on the stack. Only seven of these were large
enough to have any vertical bases (bases with one element from each row of the
original matrix). The rest had between 6 and 46 bases, the first 5 having been
produced in an extremely early round of the program (the first encounter with a
pair of disjoint bases). It is clear that the program was nowhere near completion of
its run. I closed the computer, not with a renewed fear of exponential growth, but
a respect for the quality of the human mind, which can produce a four page proof
of propositions of this complexity, using only logical implication.

Which brings us back, in admiration, to the sort of sustained logical thinking that
the matroid minors gang has been doing these past several years! Congratulations.
And Happy Birthday, Geoff!
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Figure 6. A nod to James.
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Figure 7. And to Peter.
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Figure 8. ... and the rest of the troupeau.
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Figure 9. Konrad Jacobs photo from Oberwolfach, 1967.
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Figure 10. In the freezing waters of the Vis
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Figure 11. That engaging smile
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Figure 12. Phoebe the Foodle
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Figure 13. Phoebe’s cohort, Harry


