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Beyond matroids?

There are a number of situations where specially nice cases are
matroids, but the general case is more unruly.

For example, minimal generating sets for elementary abelian
p-groups are the bases of a matroid, but minimal generating
sets for general groups (even abelian groups) do not.
Thus, the symmetric group Sn can be generated by two
elements, but it also has a minimal (with respect to inclusion)
generating set of size n− 1; and indeed, a theorem of Julius
Whiston shows that this is best possible.
But Philippe Cara and I showed that minimal generating sets of
size n− 1 for Sn are derived from labelled trees on n vertices in
a simple way; these objects are not so badly behaved . . .
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Set families
I will start with a rather general situation involving families of
sets.

This arose from work on the groups which arise as
automorphism groups of independence algebras, but Dima
Fon-Der-Flaass realised that it could be done much more
generally. Note that bases here are ordered.
Let F = (Fe : e ∈ E) be a family of subsets of a set X. We use
intersection to define a matroid-like structure on E. Thus, we
say that an irredundant base is a sequence (e1, . . . , ek) with the
properties:

I

k⋂
j=1

Fej =
⋂
e∈E

Fe;

I for j = 1, . . . , k, Fej does not contain
j−1⋂
l=1

Fel .

The first condition defines the notion of spanning, the second
the notion of independent.
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IBIS families

Theorem
For a family (Fe : e ∈ E) of sets, the following conditions are
equivalent:

I all irredundant bases have the same size;
I the irredundant bases are inariant under re-ordering;
I the irredundant bases are the bases of a matroid on E.

A family of sets satisfying these three conditions is called an
IBIS family (for Irredundant Bases of Invariant Size).
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In reverse

A family S of flats in a matroid is separating if, for every
independent set I and every e ∈ I, there is a flat S ∈ S such that
I \ {e} ⊆ S, e /∈ S. Note that a set of flats is separating if and
only if it contains all hyperplanes.

Now every IBIS family of sets is obtained by the following
construction:

I Choose any matroid M;
I Choose any separating family of flats (each flat can be

repeated arbitrarily many times);
I Take the dual.

In particular, every matroid can be represented by an IBIS
family of sets.
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Bases for permutation groups

Let G be a permutation group on a set E.

A base for E is a sequence of points of E whose pointwise
stabiliser is trivial.
A base is irredundant if no point is fixed by the pointwise
stabiliser of its predecessors.
Bases are used in computational group theory: every element
of G is uniquely determined by its effect on a base, so a small
base gives an efficient representation of group elements.
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IBIS groups

Theorem
Let G be a permutation group on E. Then the following are equivalent:

I all irredundant bases for G have the same size;
I the irredundant bases for G are preserved by re-ordering;
I the irredundant bases for G are the bases of a matroid.

A permutation group satisfying these conditions is called an
IBIS group.
The theorem is proved by applying the result about IBIS
families to the family of point stabilisers in the group.
The IBIS groups form a generalisation of the automorphism
groups of independence algebras.
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Open questions

I Which matroids arise from IBIS families of subgroups of a
group? (If the family of subgroups is closed under
conjugation, then the group can be represented as an IBIS
permutation group; not all matroids can occur here.)

I What about IBIS families of substructures of other kinds of
structure (subrings of a ring, sub-Latin squares of a Latin
square, etc.)?

I Which set families, or permutation groups, have the
weaker property that all minimal bases have the same
size? The minimal bases need not be the bases of a matroid
in this case; is there a theory of the structures that arise in
this way?
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Beyond matroids?

I have wondered for some time whether there is a concept more
general than a matroid which can encompass, for example,
permutation group bases (even if the group is not an IBIS
group).

Recently, Rhodes and Silva have published a book entitled
Boolean Representations of Simplicial Complexes and Matroids,
which leads me to wonder if this is the right place to look.
The notion of Boolean representable simplicial complexes
developed in the book includes all matroids, but not all
simplicial complexes; and it is the authors’ claim that these
objects have a rich structure theory. They invite readers

to consider the new class of boolean representable
simplicial complexes as a brave new world to explore
(we believe many of the theorems in matroid theory
will extend to boolean representable simplicial
complexes).
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I haven’t learned enough about Boolean representable
complexes yet to say for sure that such things as permutation
group bases are Boolean representable.

Indeed, there are some difficulties.
The definitions I gave for both families of sets and permutation
group bases had the property that bases were ordered, and
re-ordering irredundant bases might destroy the irredundance.
There are some indications that this problem can be got round
directly.
Another approach might be to choose only, for example,
minimal bases for permutation groups, those for which no
proper subset is a basis. The analogue of independent sets
would then be sets of points such that the pointwise stabiliser
of a subset fixes no additional point in the set. I won’t pursue
this here.
I will spend the rest of the time on a very brief introduction to
Boolean representable complexes. But don’t take this as gospel;
go and read the book instead!



I haven’t learned enough about Boolean representable
complexes yet to say for sure that such things as permutation
group bases are Boolean representable.
Indeed, there are some difficulties.

The definitions I gave for both families of sets and permutation
group bases had the property that bases were ordered, and
re-ordering irredundant bases might destroy the irredundance.
There are some indications that this problem can be got round
directly.
Another approach might be to choose only, for example,
minimal bases for permutation groups, those for which no
proper subset is a basis. The analogue of independent sets
would then be sets of points such that the pointwise stabiliser
of a subset fixes no additional point in the set. I won’t pursue
this here.
I will spend the rest of the time on a very brief introduction to
Boolean representable complexes. But don’t take this as gospel;
go and read the book instead!



I haven’t learned enough about Boolean representable
complexes yet to say for sure that such things as permutation
group bases are Boolean representable.
Indeed, there are some difficulties.
The definitions I gave for both families of sets and permutation
group bases had the property that bases were ordered, and
re-ordering irredundant bases might destroy the irredundance.
There are some indications that this problem can be got round
directly.

Another approach might be to choose only, for example,
minimal bases for permutation groups, those for which no
proper subset is a basis. The analogue of independent sets
would then be sets of points such that the pointwise stabiliser
of a subset fixes no additional point in the set. I won’t pursue
this here.
I will spend the rest of the time on a very brief introduction to
Boolean representable complexes. But don’t take this as gospel;
go and read the book instead!



I haven’t learned enough about Boolean representable
complexes yet to say for sure that such things as permutation
group bases are Boolean representable.
Indeed, there are some difficulties.
The definitions I gave for both families of sets and permutation
group bases had the property that bases were ordered, and
re-ordering irredundant bases might destroy the irredundance.
There are some indications that this problem can be got round
directly.
Another approach might be to choose only, for example,
minimal bases for permutation groups, those for which no
proper subset is a basis. The analogue of independent sets
would then be sets of points such that the pointwise stabiliser
of a subset fixes no additional point in the set. I won’t pursue
this here.

I will spend the rest of the time on a very brief introduction to
Boolean representable complexes. But don’t take this as gospel;
go and read the book instead!



I haven’t learned enough about Boolean representable
complexes yet to say for sure that such things as permutation
group bases are Boolean representable.
Indeed, there are some difficulties.
The definitions I gave for both families of sets and permutation
group bases had the property that bases were ordered, and
re-ordering irredundant bases might destroy the irredundance.
There are some indications that this problem can be got round
directly.
Another approach might be to choose only, for example,
minimal bases for permutation groups, those for which no
proper subset is a basis. The analogue of independent sets
would then be sets of points such that the pointwise stabiliser
of a subset fixes no additional point in the set. I won’t pursue
this here.
I will spend the rest of the time on a very brief introduction to
Boolean representable complexes. But don’t take this as gospel;
go and read the book instead!



The boolean and superboolean semirings

A commutative semiring is a structure with addition,
multiplication, and elements 0 and 1 such that

I addition and multiplication are commutative and
associative and have 0 and 1 respectively as identities;

I multiplication distributes over addition;
I a · 0 = 0 for all a.

The standard example is the semiring of natural numbers N.
We form an (m + 1)-element semiring Nm by identifying all
elements ≥ m (this equivalence relation is a congruence on N).
Now the boolean semiring B is N1, and the superboolean
semiring SB is N2.
Note that B is not a subsemiring of SB; it is a quotient of it.
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The addition and multiplication tables of B are

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

Note that it can be identified with the usual Boolean algebra on
{0, 1}, with + as join and · as meet.

The tables for SB are

+ 0 1 2
0 0 1 2
1 1 2 2
2 2 2 2

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 2
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Representability

The set G = {0, 2} ⊂ SB is called the ghost ideal.

A set of n-vectors v1, . . . , vm ∈ SBn is independent if, for all
λ1, . . . , λm ∈ {0, 1},

λ1v1 + · · ·+ λmvm ∈ Gn ⇒ λ1 = . . . = λm = 0.

Now it can be shown quite easily that a square matrix has
independent columns (or rows) if and only if it can be put into
lower unitriangular form by row and column permutations,
and this holds if and only if its permanent is 1.
A superboolean representation of a simplicial complex is a
matrix whose independent sets of columns are the simplices. A
boolean representation is one given by a matrix with entries 0
and 1 only. Note that even in the boolean case, independence is
defined over SB.
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boolean representation is one given by a matrix with entries 0
and 1 only. Note that even in the boolean case, independence is
defined over SB.
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A small example
Let G be the cyclic group of order 6 generated by

(1, 4)(2, 5, 6)(3, 7, 8, 9, 10, 11).

The irredundant bases are, up to parallel elements, (1, 2) and
(3). So the “independent sets” are the empty set, the singletons,
and {1, 2}.
Define a matrix with rows and columns indexed by 1, 2, 3, with
(i, j) entry 1 if Gi = Gj, 2 if Gi < Gj or vice versa, and 0 if Gi and
Gj are incomparable. The matrix is1 0 2

0 1 2
2 2 1

 .

The independent sets of rows (as defined earlier) are precisely
the ones we want! So at least some non-IBIS groups arise.
Warning: This is a superboolean, not a boolean representation.
Also, this simple construction doesn’t work for all permutation
group bases!
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Which complexes are representable?

Theorem

I Every simplicial complex is superboolean representable.

I Not every simplicial complex is boolean representable.
I Every matroid is boolean representable.

So the general question is:

How much of matroid theory can be done for boolean
representable simplicial complexes? More generally, how
can matroid theory guide the development of this new
theory?

And with that I had better stop, and repeat . . .

Happy birthday Geoff!
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