Asymptotically good codes

Stefan van Zwam

Department of Mathematics Louisiana State University

Based on joint work with Peter Nelson

Geoff Whittle's 65th birthday conference Wellington, New Zealand, December 2015

Contents

- (*i*) Error-correcting codes
- (ii) Matroids and minors
- (iii) Matroid Structure Theory

Part I Error-correcting codes

Stefan van Zwam

Stefan van Zwam

- Code C is subset of $GF(2)^n$.
- Error model: each bit flipped with small probability *p*.
- Distance: $d(x, y) := |\{i : x_i \neq y_i\}|.$

• Code C is k-dimensional subspace of GF(2)ⁿ.

• Notation: [*n*, *k*, *d*] linear code.

1

$$d = \min_{x,y \in C} d(x,y)$$

• Code C is k-dimensional subspace of GF(2)ⁿ.

• Notation: [*n*, *k*, *d*] linear code.

$$d = \min_{\substack{x,y \in C}} d(x, y)$$

= min |{i : x_i \neq y_i}|
x,y \in C

• Code C is k-dimensional subspace of GF(2)ⁿ.

• Notation: [*n*, *k*, *d*] linear code.

$$d = \min_{\substack{x,y \in C \\ x,y \in C}} d(x, y) \\= \min_{\substack{x,y \in C \\ x,y \in C}} |\{i : x_i \neq y_i\}| \\= \min_{\substack{x,y \in C \\ x,y \in C}} |\{i : x_i - y_i \neq 0\}|$$

• Code *C* is *k*-dimensional subspace of GF(2)^{*n*}.

• Notation: [*n*, *k*, *d*] linear code.

1

$$d = \min_{\substack{x,y \in C \\ x,y \in C}} d(x, y)$$

= min |{i : x_i ≠ y_i}|
= min |{i : x_i - y_i ≠ 0}|
= min |{i : z_i ≠ 0}|
z \in C}

• Code *C* is *k*-dimensional subspace of GF(2)^{*n*}.

• Notation: [*n*, *k*, *d*] linear code.

$$d = \min_{\substack{x,y \in C}} d(x, y)$$

= min_{x,y \in C} |{i : x_i \neq y_i}|
= min_{x,y \in C} |{i : x_i - y_i \neq 0}|
= min_{x,y \in C} |{i : z_i \neq 0}|
= min_{z \in C} d(z, 0)

- Family C₁, C₂,... of linear codes with parameters
 [n_i, k_i, d_i] is asymptotically good if, for some
 ε > 0:
 - (i) Growing size: $n_i \rightarrow \infty$ as $i \rightarrow \infty$
 - (ii) Constant rate: $k_i/n_i \ge \varepsilon$
- (iii) Growing minimum distance: $d_i/n_i \ge \varepsilon$

Asymptotically good codes

- Family C₁, C₂,... of linear codes with parameters
 [n_i, k_i, d_i] is asymptotically good if, for some
 ε > 0:
 - (i) Growing size: $n_i \rightarrow \infty$ as $i \rightarrow \infty$
 - (*ii*) Constant rate: $k_i/n_i \ge \varepsilon$
- (iii) Growing minimum distance: $d_i/n_i \ge \varepsilon$

Theorem. Asymptotically good codes exist.

- Random codes
- Constructions using expanders (e.g. Alon, Bruck, Naor, Naor, Roth)
- Goppa codes, Justensen Codes

Asymptotically good codes: structure?

Operations on a code:

- **Puncturing:** $C \setminus i$, remove *i*th coordinate from each word
- **Shortening:** C/i, take $\{c \in C : c_i = 0\}$, then remove *i*th coordinate.

Asymptotically good codes: structure?

Operations on a code:

- **Puncturing:** $C \setminus i$, remove *i*th coordinate from each word
- **Shortening:** C/i, take $\{c \in C : c_i = 0\}$, then remove *i*th coordinate.

Theorem (Nelson, vZ 2015). Let \mathcal{M} be a class of binary linear codes closed under puncturing, shortening. If \mathcal{M} contains an asymptotically good sequence, then \mathcal{M} contains *all* codes.

Matroids and minors

Stefan van Zwam

Let C^* be the codewords in C with inclusionwise minimal *support*.

Let C^* be the codewords in C with inclusionwise minimal *support*.

Theorem. C^* is the set of cocircuits of a matroid M(C).

Let C^* be the codewords in C with inclusionwise minimal *support*.

Theorem. C^* is the set of cocircuits of a matroid M(C).

Theorem. $M(C \setminus i) = M(C) \setminus i$ and M(C/i) = M(C)/i.

Let C^* be the codewords in C with inclusionwise minimal *support*.

Theorem. C^* is the set of cocircuits of a matroid M(C).

Theorem. $M(C \setminus i) = M(C) \setminus i$ and M(C/i) = M(C)/i.

Def. Dual code C^{\perp} is orthogonal complement of subspace C.

Theorem. $M(C^{\perp}) = M(C)^*$.

Let C^* be the codewords in C with inclusionwise minimal *support*.

Theorem. C^* is the set of cocircuits of a matroid M(C).

Theorem. $M(C \setminus i) = M(C) \setminus i$ and M(C/i) = M(C)/i.

Def. Dual code C^{\perp} is orthogonal complement of subspace C.

Theorem. $M(C^{\perp}) = M(C)^*$.

Theorem. Put basis of C as rows of A. Then C = rowspace(A) and M(C) = M[A].

(Co)graphic matroids

Code *C* is *graphic* if *C* is cycle space of graph *G*. So *M*(*C*) is *cographic* matroid.

Theorem (Kashyap 2008). The family of duals of graphic codes is not asymptotically good.

(Co)graphic matroids

Code *C* is *graphic* if *C* is cycle space of graph *G*. So *M*(*C*) is *cographic* matroid.

Theorem (Kashyap 2008). The family of duals of graphic codes is not asymptotically good.

Theorem (Kashyap 2008). The family of graphic codes is not asymptotically good.

(Co)graphic matroids

Code *C* is *graphic* if *C* is cycle space of graph *G*. So *M*(*C*) is *cographic* matroid.

Theorem (Kashyap 2008). The family of duals of graphic codes is not asymptotically good.

Theorem (Kashyap 2008). The family of graphic codes is not asymptotically good.

Proof sketch: Hinges on (Alon, Hoory, Linial): if *G* has average degree $\delta > 2$, then girth(*G*) $\leq \log(|V(G)| - \delta + 1)$.

Part III Matroid Structure Theory

Stefan van Zwam

The Structure of Highly Connected Matroids

Geelen, Gerards, Whittle announced proof of the following:

Theorem. Let \mathcal{M} be proper minor-closed class of binary matroids. There exist k, t such that every vertically k-connected matroid $M \in \mathcal{M}$ has M or M^* equal to a rank-t perturbation of a graphic matroid.

The Structure of Highly Connected Matroids

Geelen, Gerards, Whittle announced proof of the following:

Theorem. Let \mathcal{M} be proper minor-closed class of binary matroids. There exist k, t such that every vertically k-connected matroid $M \in \mathcal{M}$ has M or M^* equal to a rank-t perturbation of a graphic matroid.

Perturbation: add low-rank matrix to representation. Matroidal view: small number of *lifts* and *projections*.

Applying the theorem

Two steps to prove our result:

- If asymptotically good family exists, may assume members are highly connected
- Low-rank perturbations don't break Kashyap's results

Connectivity

An (α, β) -good sequence in \mathcal{M} :

- n_i ≥ i
- $k_i/n_i \geq \alpha$
- $d_i/n_i \geq \beta$

Choose (α, β) "optimal"; take a sufficiently large M_i with low-order separation. Show: can trade off some α for better β . Hence, this happens finitely often.

Keeping a short circuit

Key observation:

Lemma. If M_2 is a rank-t perturbation of M_1 , then $|r_{M_2}(X) - r_{M_1}(X)| \le 2t$

Repeat Alon-Hoory-Linial to get 2t + 1 log-size circuits in M_1 . Take their union X. Then $r_{M_2}(X) < |X|$.

Generalization

Theorem (Nelson, vZ). If \mathcal{M} proper subclass of $GF(p^n)$ -representable matroids, not containing all GF(p)-representable matroids, then \mathcal{M} has no asymptotically good sequence.

Generalization

Theorem (Nelson, vZ). If \mathcal{M} proper subclass of $GF(p^n)$ -representable matroids, not containing all GF(p)-representable matroids, then \mathcal{M} has no asymptotically good sequence. **Future**

Maximum-Likelihood Threshold. For fixed rate R, which channel errors p allow arbitrarily good communication with a code from M?

- Cographic: 0
- Graphic: $\frac{(1-\sqrt{R})^2}{2(1+R)}$ (Decreusefond, Zémor: regular graphs; Nelson, vZ: arbitrary graphs)
- Minor-closed: TODO

Slides, preprints at http://www.math.lsu.edu/~svanzwam/

Stefan van Zwam