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Introduction

In this talk we will introduce:
I C*-algebras
I groupoids and their C*-algebras

We will see an example of how topological properties of the
groupoid help us understand the C*-algebra.

I Neshveyev gives a formula for the KMS states on groupoid
C*-algebras
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History of C*-algebras
The theory of C*-algebras was developed from the study of
quantum mechanics.

1942-
early 1945

Heisenberg
(matrix mechanics)

H: a Hilbert space
ψ ∈ H: state
pi: momentum of a particle
qi: position of a particle
pi, qi are operators on H

Schrödinger
(wave mechanics)
the state is a function ψ sat-
isfying the Schrödinger equa-
tion

late 1920s-
early 1930s

Stone and von Neumann clarified the connection between
the formalisms above

1943 Gelfand and Naimark characterised C*-algebras
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History of C*-algebras

Since then, the subject of C*-algebras has evolved into a huge
mathematical endeavour interacting with several areas of
mathematics and theoretical physics.
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C*-algebras
Intuitively, C*-algebras are similar to Mn(C) or B(H).

Let A be a C*-algebra. Given a, b ∈ C and λ ∈ C, we have

(i) a+ λb ∈ A, ab ∈ A, etc.
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C*-algebras
Examples

I C, with z∗ = z

I A = M2(C)

a =
(
a11 a12
a21 a22

)
⇒ a∗ =

(
a11 a21
a12 a22

)
.

I C(X) for a compact Hausdorff space X.

(f1f2)(x) = f1(x)f2(x), f∗(x) = f(x), ‖f‖ = sup
x∈X
|f(x)|.

I B(H), the algebra of bounded operators on a Hilbert space H.

〈Tx, y〉 = 〈x, T ∗y〉, ‖T‖ = sup
‖z‖≤1

‖Tz‖.
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Groupoids

A groupoid is a generalises the idea of groups, but

I the unit is not necessarily unique, and
I the product may not be defined for some pairs of elements.

We can understand a groupoid as a set of arrows connecting points
in the space.
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Groupoids
Idea

x

y

z

I G: groupoid
I G(0) ⊂ G: units
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Groupoids
Idea

z = r(z) = s(z)

r(g)

s(g)

g I G: groupoid
I G(0) ⊂ G: units
I r, s : G→ G(0)
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Groupoids
Idea

r(g)

s(g) = r(h)

s(h)

g

h

gh

I G: groupoid
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I G(2) → G

(g, h) 7→ gh
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Groupoids
Idea

r(g) = gg−1

s(g) = g−1g

g

g−1

I G: groupoid
I G(0) ⊂ G: units
I r, s : G→ G(0)

I G(2) → G

(g, h) 7→ gh

I g 7→ g−1
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Groupoids
Examples

Let G = R2 × GL2(R),

and G(0) = {(x, I) : x ∈ R2}.

Ax

x

A

I s(x,A) = (x, I)
I r(x,A) = (Ax, I)
I (x,A)−1 = (Ax,A−1)
I (y,B)(x,A) = (x,BA)
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Groupoids
Examples

Example
If G is a group, G(0) = {1} e G(2) = G×G.

Example
Let ∼ be an equivalence relation on X. We can define

G = {(x, y) : x ∼ y},

where

G(0) = {(x, x) : x ∈ X}
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Groupoids
Functions on the groupoid

Example
Consider the groupoid G = {(x, y) : x ∼ y} given by the following
equivalence relation on {1, 2, 3}: 1 ∼ 2, 1 6∼ 3.

We can represent a function f : G→ C by the 3× 3 matrix:

f =

f(1, 1) f(1, 2) 0
f(2, 1) f(2, 2) 0

0 0 f(3, 3)

 .
The matrix operations induce the following operations:

f∗(x, y) = f(y, x), (f1 · f2)(x, y) =
∑
z∼x

f1(x, z)f2(z, y).
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Groupoids
Functions on the groupoid

Analogously, we will define the following operations on Cc(G), for
a groupoid G:

f∗(g) = f(g−1), (f1 · f2)(g) =
∑

g1g2=g
f1(g1)f2(g2).

Before doing that, we need to define a topology on G and study its
properties.
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Topological groupoids

Definition
A topological groupoid is a groupoid G with a topology such that
G(2) is closed with respect to the relative topology of G×G, and
both the product and inverse maps are continuous.

Definition
A topological groupoid is étale if the maps r and s are local
homeomorphisms.
Here we will assume that every groupoid G is locally compact
Hausdorff second countable étale.
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Groupoid C*-algebras
Operations on Cc(G)

We equip the space

Cc(G) = {f : G→ C st f is continuous with compact support}

with the operations

f∗(g) = f(g−1), (f1 · f2)(g) =
∑

g1g2=g
f1(g1)f2(g2).
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Groupoid C*-algebras
Definition

Definition
A ∗-representation of Cc(G) is a linear map π : Cc(G)→ B(H),
where H is a Hilbert space and the following properties hold:

π(f1 · f2) = π(f1)π(f2), π(f∗) = π(f)∗.

Theorem
There exists a C*-algebra C∗(G) such that Cc(G) is dense in
C∗(G) and

‖f‖ = sup{‖π(f)‖ : π is a ∗-representation of Cc(G)},

for all f ∈ Cc(G).
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Groupoid C*-algebras
Examples

Many classes of C*-algebras can be describred by groupoid
C*-algebras. For example, AF algebras and graph algebras.

19 / 36



Outline

C*-algebras Mn(C)
B(H)

quantum
mechanics
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Aplication: KMS states

We will show how the topological properties of the groupoid help
us understand its C*-algebra in more detail.

KMS states describe equilibrium states in quantum statistical
mechanics.
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KMS states
C*-dynamical systems

Definition
A C*-dynamical system is a pair (A, τ) where A is a C*-algebra,
τ = {τt}t∈R is a family of ∗-automorphisms τt : A→ A such that

(i) t 7→ τt(a) is continuous, for all a ∈ A;
(ii) τt+s = τt ◦ τs;
(iii) τ0 = id.

If we fix τ , we say that τ is the dynamics on A.

Example
Let H ∈Mn(C) be self-adjoint. Define τt : Mn(C)→Mn(C) by

τt(A) = eitHAe−itH , for A ∈Mn(C).

22 / 36



KMS states
C*-dynamical systems

Definition
A C*-dynamical system is a pair (A, τ) where A is a C*-algebra,
τ = {τt}t∈R is a family of ∗-automorphisms τt : A→ A such that
(i) t 7→ τt(a) is continuous, for all a ∈ A;

(ii) τt+s = τt ◦ τs;
(iii) τ0 = id.

If we fix τ , we say that τ is the dynamics on A.

Example
Let H ∈Mn(C) be self-adjoint. Define τt : Mn(C)→Mn(C) by

τt(A) = eitHAe−itH , for A ∈Mn(C).

22 / 36



KMS states
C*-dynamical systems

Definition
A C*-dynamical system is a pair (A, τ) where A is a C*-algebra,
τ = {τt}t∈R is a family of ∗-automorphisms τt : A→ A such that
(i) t 7→ τt(a) is continuous, for all a ∈ A;
(ii) τt+s = τt ◦ τs;

(iii) τ0 = id.

If we fix τ , we say that τ is the dynamics on A.

Example
Let H ∈Mn(C) be self-adjoint. Define τt : Mn(C)→Mn(C) by

τt(A) = eitHAe−itH , for A ∈Mn(C).

22 / 36



KMS states
C*-dynamical systems

Definition
A C*-dynamical system is a pair (A, τ) where A is a C*-algebra,
τ = {τt}t∈R is a family of ∗-automorphisms τt : A→ A such that
(i) t 7→ τt(a) is continuous, for all a ∈ A;
(ii) τt+s = τt ◦ τs;
(iii) τ0 = id.

If we fix τ , we say that τ is the dynamics on A.

Example
Let H ∈Mn(C) be self-adjoint. Define τt : Mn(C)→Mn(C) by

τt(A) = eitHAe−itH , for A ∈Mn(C).

22 / 36



KMS states
C*-dynamical systems

Definition
A C*-dynamical system is a pair (A, τ) where A is a C*-algebra,
τ = {τt}t∈R is a family of ∗-automorphisms τt : A→ A such that
(i) t 7→ τt(a) is continuous, for all a ∈ A;
(ii) τt+s = τt ◦ τs;
(iii) τ0 = id.

If we fix τ , we say that τ is the dynamics on A.

Example
Let H ∈Mn(C) be self-adjoint. Define τt : Mn(C)→Mn(C) by

τt(A) = eitHAe−itH , for A ∈Mn(C).

22 / 36



KMS states
C*-dynamical systems

Definition
A C*-dynamical system is a pair (A, τ) where A is a C*-algebra,
τ = {τt}t∈R is a family of ∗-automorphisms τt : A→ A such that
(i) t 7→ τt(a) is continuous, for all a ∈ A;
(ii) τt+s = τt ◦ τs;
(iii) τ0 = id.

If we fix τ , we say that τ is the dynamics on A.

Example
Let H ∈Mn(C) be self-adjoint. Define τt : Mn(C)→Mn(C) by

τt(A) = eitHAe−itH , for A ∈Mn(C).

22 / 36



KMS states
Definition

Definition
Let A be a C*-algebra. An element a ∈ A is positive if there exists
x ∈ A such that a = x∗x.

Notation: a ≥ 0.

Definition
Let A be a C*-algebra. A linear map ϕ : A→ C is a state if
(i) ϕ is positive: ϕ(a) ≥ 0 for a ≥ 0;
(ii) ‖ϕ‖ = sup‖x‖≤1 |ϕ(x)| = 1.

Definition
Let (A, τ) be a C*-dynamical system and ϕ a state on A. Let
β ∈ R. We say that ϕ is a KMSβ-state if
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KMS states
Example

Example
Let H ∈Mn(C) be self-adjoint, i.e. H∗ = H. Fix the dynamics τ
on Mn(C) by

τt(A) = eitHAe−itH .

Then ϕ : Mn(C)→ C given by

ϕ(A) = tr(e−βHA)
tr(e−βH)

is a KMSβ-state.
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KMS states
Example

In fact,

tr(e−βH)ϕ(Aτiβ(B)) = tr(e−βHAτiβ(B))

τt(A) = eitHAe−itH ϕ(A) =
tr(e−βHA)
tr(e−βH)

tr(ABC) = tr(BCA)
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Neshveyev’s theorem
We fix the dynamics on C∗(G) given by

τt(f)(g) = eitc(g)f(g), f ∈ Cc(G), g ∈ G,

where c : G→ R is a continuous cocycle c(gh) = c(g) + c(h).

A KMSβ-state must satisfy

ϕ(f1 · τiβ(f2)) = ϕ(f2 · f1) for f1, f2 ∈ Cc(G).

Now we study Theorem 1.3 of [4], by Neshveyev, which describes all
KMS states ϕ on C∗(G) by the formula

ϕ(f) =
∫
G(0)

∑
g∈Gx

x

f(g)ϕx(ug)dµ(x), f ∈ Cc(G).

Moreover, it gives a one-to-one correspondence between the KMS states
and pairs (µ, {ϕx}x∈G(0)) satisfying certain conditions.
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Neshveyev’s theorem
Some notation

x

Gx = r−1({x}).
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Neshveyev’s theorem
Some notation

x

Gxx = Gx ∩Gx.

Note that Gxx is a group with identity x.
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Neshveyev’s theorem

ϕ(f) =
∫
G(0)

∑
g∈Gxx

f(g)ϕx(ug)dµ(x), f ∈ Cc(G),

where

I µ is a Radon probability on G(0) satisfying∫
G(0)

∑
g∈Gx

f(g)dµ(x) =
∫
G(0)

∑
g∈Gx

f(g)e−βc(g)dµ(x), f ∈ Cc(G).

i.e., µ is quasi-invariant with Radon-Nikodym derivative e−βc.
I ug generate the C*-algebra C∗(Gxx). Also uguh = ugh for
g, h ∈ Gxx

I Each ϕx is a state on C∗(Gxx)
I {ϕx}x∈G(0) satisfies a few more conditions
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Neshveyev’s theorem

Theorem
[4, Theorem 1.3] There exists a one-to-one correspondence
between KMSβ-states on C∗(G) and pairs (µ, {ϕx}x∈G(0))
consisting of a probability measure µ on G(0) and a µ-measurable
field of states ϕx on C∗(Gxx) such that:

(i) µ is quasi-invariant with Radon-Nikodym derivative e−βc;
(ii) ϕx(ug) = ϕr(h)(uhgh−1) for every g ∈ Gxx and h ∈ Gx, for

µ-a.e. x; in particular, ϕx is tracial for µ-a.e. x;
(iii) ϕx(ug) = 0 for all g ∈ Gxx \ c−1(0), for µ-a.e. x.
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Neshveyev’s theorem
Open bisections

In order to show that ϕ given by the formula in the previous slide
satisfies the KMS condition:

ϕ(f1 · τiβ(f2)) = ϕ(f2 · f1) for f1, f2 ∈ Cc(G),

he uses the following property of locally compact Hausdorff second
countable étale groupoids:

I A function f ∈ Cc(G) can be written as a finite sum
f = f1 + · · ·+ fn. Each fi ∈ Cc(Ui) ⊂ Cc(G) has support in
an open bisection Ui.
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Neshveyev’s theorem
Open bisections

If U ⊂ G is an open bisection, U is open and

r : U → r(U), s : U → s(U) are homeomorphisms.

G(0)

U
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If f2 ∈ Cc(U), we can find easier formulas for ϕ(f1 · τiβ(f2)) and
ϕ(f2 · f1).
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Conclusion

Using topological properties of groupoids, we can study some
properties of groupoid C*-algebras in more detail.
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