KMS States on Groupoid C*-Algebras

Rafael Lima

2 November 2020

<ロ><回><一><一><一><一><一><一</td>1/36

Introduction

In this talk we will introduce:

- C*-algebras
- groupoids and their C*-algebras

Introduction

In this talk we will introduce:

- C*-algebras
- groupoids and their C*-algebras

We will see an example of how topological properties of the groupoid help us understand the C*-algebra.

Introduction

In this talk we will introduce:

- C*-algebras
- groupoids and their C*-algebras

We will see an example of how topological properties of the groupoid help us understand the C*-algebra.

 Neshveyev gives a formula for the KMS states on groupoid C*-algebras

The theory of C*-algebras was developed from the study of quantum mechanics.

1942- Heisenberg early 1945 (matrix mechanics)

The theory of C*-algebras was developed from the study of quantum mechanics.

1942early 1945 (matrix mechanics) \mathcal{H} : a Hilbert space

The theory of C*-algebras was developed from the study of quantum mechanics.

1942- Heisenberg early 1945 (matrix mechanics) \mathcal{H} : a Hilbert space $\psi \in \mathcal{H}$: state

The theory of C*-algebras was developed from the study of quantum mechanics.

1942early 1945 Heisenberg

(matrix mechanics)

- $\mathcal{H}:$ a Hilbert space
- $\psi \in \mathcal{H}: \; \mathsf{state}$
- p_i : momentum of a particle
- q_i : position of a particle

The theory of C*-algebras was developed from the study of quantum mechanics.

1942early 1945 Heisenberg

(matrix mechanics)

- $\mathcal{H}:$ a Hilbert space
- $\psi \in \mathcal{H}: \; \mathsf{state}$
- p_i : momentum of a particle
- q_i : position of a particle
- p_i , q_i are operators on $\mathcal H$

The theory of C*-algebras was developed from the study of quantum mechanics.

1942early 1945 Heisenberg (matrix mechanics) \mathcal{H} : a Hilbert space $\psi \in \mathcal{H}$: state p_i : momentum of a particle q_i : position of a particle p_i , q_i are operators on \mathcal{H} Schrödinger (wave mechanics)

The theory of C*-algebras was developed from the study of quantum mechanics.

1942early 1945 Heisenberg (matrix mechanics) \mathcal{H} : a Hilbert space $\psi \in \mathcal{H}$: state p_i : momentum of a particle q_i : position of a particle p_i , q_i are operators on \mathcal{H}

Schrödinger

(wave mechanics) the state is a function ψ satisfying the Schrödinger equation

イロト 不得 トイヨト イヨト

3/36

The theory of C*-algebras was developed from the study of quantum mechanics.

1942- early 1945	Heisenberg (matrix mechanics) \mathcal{H} : a Hilbert space $\psi \in \mathcal{H}$: state p_i : momentum of a particle q_i : position of a particle p_i , q_i are operators on \mathcal{H}	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
---------------------	---	---

late 1920s- Stone and von Neumann clarified the connection between early 1930s the formalisms above

The theory of C*-algebras was developed from the study of quantum mechanics.

1942- early 1945	Heisenberg (matrix mechanics) \mathcal{H} : a Hilbert space $\psi \in \mathcal{H}$: state p_i : momentum of a particle q_i : position of a particle 	$\begin{tabular}{l} Schrödinger \\ (wave mechanics) \\ the state is a function ψ satisfying the Schrödinger equation \\ \end{tabular}$
---------------------	---	---

- late 1920s- Stone and von Neumann clarified the connection between
- early 1930s the formalisms above
- 1943 Gelfand and Naimark characterised C*-algebras

Since then, the subject of C*-algebras has evolved into a huge mathematical endeavour interacting with several areas of mathematics and theoretical physics.

Intuitively, C*-algebras are similar to $M_n(\mathbb{C})$ or $B(\mathcal{H})$.

Intuitively, C*-algebras are similar to $M_n(\mathbb{C})$ or $B(\mathcal{H})$.

Let A be a C*-algebra. Given $a, b \in \mathbb{C}$ and $\lambda \in \mathbb{C}$, we have

Intuitively, C*-algebras are similar to $M_n(\mathbb{C})$ or $B(\mathcal{H})$.

Let A be a C*-algebra. Given $a, b \in \mathbb{C}$ and $\lambda \in \mathbb{C}$, we have

(i) $a + \lambda b \in A$, $ab \in A$, etc. A is an algebra

Intuitively, C*-algebras are similar to $M_n(\mathbb{C})$ or $B(\mathcal{H})$.

Let A be a C*-algebra. Given $a,b\in\mathbb{C}$ and $\lambda\in\mathbb{C},$ we have

(i) $a + \lambda b \in A$, $ab \in A$, etc.A is an algebra(ii) A has an involution $a \mapsto a^*$ withA is a *-algebra

$$(\lambda a)^* = \overline{\lambda} a^*, \ (ab)^* = b^* a^*, \ (a^*)^* = a$$

Intuitively, C*-algebras are similar to $M_n(\mathbb{C})$ or $B(\mathcal{H})$.

Let A be a C*-algebra. Given $a, b \in \mathbb{C}$ and $\lambda \in \mathbb{C}$, we have

(i) a + λb ∈ A, ab ∈ A, etc. A is an algebra
(ii) A has an involution a → a* with A is a *-algebra
(λa)* = λa*, (ab)* = b*a*, (a*)* = a

(iii) $||a^*|| = ||a||, ||ab|| \le ||a|| ||b||$

Intuitively, C*-algebras are similar to $M_n(\mathbb{C})$ or $B(\mathcal{H})$.

Let A be a C*-algebra. Given $a, b \in \mathbb{C}$ and $\lambda \in \mathbb{C}$, we have

(i) $a + \lambda b \in A$, $ab \in A$, etc. (ii) A has an involution $a \mapsto a^*$ with $(\lambda a)^* = \overline{\lambda}a^*$, $(ab)^* = b^*a^*$, $(a^*)^* = a$ (iii) $||a^*|| = ||a||$, $||ab|| \le ||a|| ||b||$ (iv) A is complete

Intuitively, C*-algebras are similar to $M_n(\mathbb{C})$ or $B(\mathcal{H})$.

Let A be a C*-algebra. Given $a, b \in \mathbb{C}$ and $\lambda \in \mathbb{C}$, we have

(i) $a + \lambda b \in A$, $ab \in A$, etc. (ii) A has an involution $a \mapsto a^*$ with $(\lambda a)^* = \overline{\lambda}a^*$, $(ab)^* = b^*a^*$, $(a^*)^* = a$ (iii) $||a^*|| = ||a||$, $||ab|| \le ||a|| ||b||$ (iv) A is complete (v) $||a^*a|| = ||a||^2$. A is a C*-algebra

Examples

•
$$\mathbb{C}$$
, with $z^* = \overline{z}$

Examples

•
$$\mathbb{C}$$
, with $z^* = \overline{z}$
• $A = M_2(\mathbb{C})$
 $a = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \Rightarrow a^* = \begin{pmatrix} \overline{a_{11}} & \overline{a_{21}} \\ \overline{a_{12}} & \overline{a_{22}} \end{pmatrix}.$

Examples

•
$$\mathbb{C}$$
, with $z^* = \overline{z}$
• $A = M_2(\mathbb{C})$
 $a = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \Rightarrow a^* = \begin{pmatrix} \overline{a_{11}} & \overline{a_{21}} \\ \overline{a_{12}} & \overline{a_{22}} \end{pmatrix}$

• C(X) for a compact Hausdorff space X.

$$(f_1f_2)(x) = f_1(x)f_2(x), \quad f^*(x) = \overline{f(x)}, \quad ||f|| = \sup_{x \in X} |f(x)|.$$

•

Examples

•
$$\mathbb{C}$$
, with $z^* = \overline{z}$
• $A = M_2(\mathbb{C})$
 $a = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \Rightarrow a^* = \begin{pmatrix} \overline{a_{11}} & \overline{a_{21}} \\ \overline{a_{12}} & \overline{a_{22}} \end{pmatrix}.$

• C(X) for a compact Hausdorff space X.

$$(f_1 f_2)(x) = f_1(x) f_2(x), \quad f^*(x) = \overline{f(x)}, \quad ||f|| = \sup_{x \in X} |f(x)|.$$

• $B(\mathcal{H})$, the algebra of bounded operators on a Hilbert space \mathcal{H} .

$$\langle Tx, y \rangle = \langle x, T^*y \rangle, \quad ||T|| = \sup_{||z|| \le 1} ||Tz||.$$

A groupoid is a generalises the idea of groups, but

A groupoid is a generalises the idea of groups, but

the unit is not necessarily unique, and

A groupoid is a generalises the idea of groups, but

- the unit is not necessarily unique, and
- ▶ the product may not be defined for some pairs of elements.

A groupoid is a generalises the idea of groups, but

- the unit is not necessarily unique, and
- the product may not be defined for some pairs of elements.

We can understand a groupoid as a set of arrows connecting points in the space.

• *

G: groupoid
 G⁽⁰⁾ ⊂ G: units

 \bullet^y

 \cdot^z

$$z = r(z) = s(z)$$

- ► G: groupoid
- ▶ $G^{(0)} \subset G$: units
- $\blacktriangleright \ r,s:G\to G^{(0)}$
- $\begin{tabular}{ll} \bullet & G^{(2)} \to G \\ (g,h) \mapsto gh \end{tabular}$

- ► G: groupoid
- ▶ $G^{(0)} \subset G$: units
- $\blacktriangleright r,s:G\to G^{(0)}$
- $\blacktriangleright \ G^{(2)} \to G$ $(g,h) \mapsto gh$
- $\blacktriangleright \ g \mapsto g^{-1}$

Groupoids Examples

Let $G = \mathbb{R}^2 \times \mathrm{GL}_2(\mathbb{R})$,

Groupoids Examples

Let $G = \mathbb{R}^2 \times \operatorname{GL}_2(\mathbb{R})$, and $G^{(0)} = \{(x, I) : x \in \mathbb{R}^2\}$.

Groupoids Examples

Let $G = \mathbb{R}^2 \times \operatorname{GL}_2(\mathbb{R})$, and $G^{(0)} = \{(x, I) : x \in \mathbb{R}^2\}$.

Let $G = \mathbb{R}^2 \times GL_2(\mathbb{R})$, and $G^{(0)} = \{(x, I) : x \in \mathbb{R}^2\}$. Ax Ax s(x, A) = (x, I)x

x

Let $G = \mathbb{R}^2 \times \operatorname{GL}_2(\mathbb{R})$, and $G^{(0)} = \{(x, I) : x \in \mathbb{R}^2\}$. Ax s(x, A) = (x, I)r(x, A) = (Ax, I)

x

•
$$(x, A)^{-1} = (Ax, A^{-1})$$

Let $G = \mathbb{R}^2 \times GL_2(\mathbb{R})$, and $G^{(0)} = \{(x, I) : x \in \mathbb{R}^2\}$.

s(x, A) = (x, I)
 r(x, A) = (Ax, I)
 (x, A)⁻¹ = (Ax, A⁻¹)

Let $G = \mathbb{R}^2 \times GL_2(\mathbb{R})$, and $G^{(0)} = \{(x, I) : x \in \mathbb{R}^2\}$.

 $\blacktriangleright \ s(x,A) = (x,I)$

$$\blacktriangleright \ r(x,A) = (Ax,I)$$

• $(x, A)^{-1} = (Ax, A^{-1})$

$$\blacktriangleright (y,B)(x,A) = (x,BA)$$

Examples

Example $\label{eq:general} \text{If }G \text{ is a group, } G^{(0)} = \{1\} \text{ e } G^{(2)} = G \times G.$

Examples

Example

If G is a group, $G^{(0)}=\{1\}$ e $G^{(2)}=G\times G.$

Example

Let \sim be an equivalence relation on X. We can define

$$G=\{(x,y):x\sim y\},$$

Examples

Example

If G is a group, $G^{(0)} = \{1\}$ e $G^{(2)} = G \times G$.

Example

Let \sim be an equivalence relation on X. We can define

$$G = \{(x,y): x \sim y\},\$$

where

$$G^{(0)} = \{(x, x) : x \in X\}$$

イロン イロン イヨン イヨン 三日

13/36

Examples

Example

If G is a group, $G^{(0)}=\{1\}$ e $G^{(2)}=G\times G.$

Example

Let \sim be an equivalence relation on X. We can define

$$G=\{(x,y):x\sim y\},$$

where

$$G^{(0)} = \{(x, x) : x \in X\}$$

 $r(x, y) = (x, x), \quad s(x, y) = (y, y).$

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三 の Q () 13 / 36

Examples

Example

If G is a group, $G^{(0)}=\{1\}$ e $G^{(2)}=G\times G.$

Example

Let \sim be an equivalence relation on X. We can define

$$G = \{(x,y): x \sim y\},$$

where

$$G^{(0)} = \{(x, x) : x \in X\}$$

$$r(x, y) = (x, x), \quad s(x, y) = (y, y).$$

$$(x, y)(y, z) = (x, z), \quad (x, y)^{-1} = (y, x),$$

Functions on the groupoid

Example

Consider the groupoid $G = \{(x, y) : x \sim y\}$ given by the following equivalence relation on $\{1, 2, 3\}$: $1 \sim 2, 1 \not\sim 3$.

Functions on the groupoid

Example

Consider the groupoid $G = \{(x, y) : x \sim y\}$ given by the following equivalence relation on $\{1, 2, 3\}$: $1 \sim 2, 1 \not\sim 3$. We can represent a function $f : G \to \mathbb{C}$ by the 3×3 matrix:

$$f = \begin{pmatrix} f(1,1) & f(1,2) & 0\\ f(2,1) & f(2,2) & 0\\ 0 & 0 & f(3,3) \end{pmatrix}$$

٠

Functions on the groupoid

Example

Consider the groupoid $G = \{(x, y) : x \sim y\}$ given by the following equivalence relation on $\{1, 2, 3\}$: $1 \sim 2, 1 \not\sim 3$. We can represent a function $f : G \to \mathbb{C}$ by the 3×3 matrix:

$$f = \begin{pmatrix} f(1,1) & f(1,2) & 0\\ f(2,1) & f(2,2) & 0\\ 0 & 0 & f(3,3) \end{pmatrix}$$

The matrix operations induce the following operations:

Functions on the groupoid

Example

Consider the groupoid $G = \{(x, y) : x \sim y\}$ given by the following equivalence relation on $\{1, 2, 3\}$: $1 \sim 2, 1 \not\sim 3$. We can represent a function $f : G \to \mathbb{C}$ by the 3×3 matrix:

$$f = \begin{pmatrix} f(1,1) & f(1,2) & 0\\ f(2,1) & f(2,2) & 0\\ 0 & 0 & f(3,3) \end{pmatrix}$$

The matrix operations induce the following operations:

$$f^*(x,y) = \overline{f(y,x)}, \quad (f_1 \cdot f_2)(x,y) = \sum_{z \sim x} f_1(x,z) f_2(z,y).$$

Functions on the groupoid

Analogously, we will define the following operations on $C_c(G), \mbox{ for a groupoid } G:$

$$f^*(g) = \overline{f(g^{-1})}, \quad (f_1 \cdot f_2)(g) = \sum_{g_1g_2=g} f_1(g_1)f_2(g_2).$$

Functions on the groupoid

Analogously, we will define the following operations on $C_c(G), \mbox{ for a groupoid } G:$

$$f^*(g) = \overline{f(g^{-1})}, \quad (f_1 \cdot f_2)(g) = \sum_{g_1g_2=g} f_1(g_1)f_2(g_2).$$

Before doing that, we need to define a topology on G and study its properties.

Topological groupoids

Definition

A topological groupoid is a groupoid G with a topology such that $G^{(2)}$ is closed with respect to the relative topology of $G \times G$, and both the product and inverse maps are continuous.

Topological groupoids

Definition

A topological groupoid is a groupoid G with a topology such that $G^{(2)}$ is closed with respect to the relative topology of $G \times G$, and both the product and inverse maps are continuous.

Definition

A topological groupoid is *étale* if the maps r and s are local homeomorphisms.

Here we will assume that every groupoid G is locally compact Hausdorff second countable étale.

Groupoid C*-algebras Operations on $C_c(G)$

We equip the space

 $C_c(G) = \{ f : G \to \mathbb{C} \text{ st } f \text{ is continuous with compact support} \}$

with the operations

$$f^*(g) = \overline{f(g^{-1})}, \quad (f_1 \cdot f_2)(g) = \sum_{g_1g_2=g} f_1(g_1)f_2(g_2).$$

Groupoid C*-algebras

Definition

A *-representation of $C_c(G)$ is a linear map $\pi : C_c(G) \to B(\mathcal{H})$, where \mathcal{H} is a Hilbert space and the following properties hold:

$$\pi(f_1 \cdot f_2) = \pi(f_1)\pi(f_2), \quad \pi(f^*) = \pi(f)^*.$$

Groupoid C*-algebras

Definition

A *-representation of $C_c(G)$ is a linear map $\pi : C_c(G) \to B(\mathcal{H})$, where \mathcal{H} is a Hilbert space and the following properties hold:

$$\pi(f_1 \cdot f_2) = \pi(f_1)\pi(f_2), \quad \pi(f^*) = \pi(f)^*.$$

Theorem

There exists a C*-algebra $C^{\ast}(G)$ such that $C_{c}(G)$ is dense in $C^{\ast}(G)$ and

 $\|f\| = \sup\{\|\pi(f)\| : \pi \text{ is a } *\text{-representation of } C_c(G)\},$ for all $f \in C_c(G).$

Groupoid C*-algebras Examples

Many classes of C*-algebras can be describred by groupoid C*-algebras. For example, AF algebras and graph algebras.

quantum mechanics

$$\begin{tabular}{|c|c|c|c|c|} \hline \mathbf{q}_{uantum} & \mathbf{C}^*-algebras $ $M_n(\mathbb{C})$ \\ $B(\mathcal{H})$ & $B(\mathcal{H})$ \end{tabular} \end{tabular}$$

<ロト</th>
・< 国ト< 国ト</th>
●< への</th>

20/36

We will show how the topological properties of the groupoid help us understand its C*-algebra in more detail.

We will show how the topological properties of the groupoid help us understand its C^* -algebra in more detail.

KMS states describe equilibrium states in quantum statistical mechanics.

Definition

A *C*-dynamical system* is a pair (A, τ) where *A* is a C*-algebra, $\tau = \{\tau_t\}_{t \in \mathbb{R}}$ is a family of *-automorphisms $\tau_t : A \to A$ such that

Definition

A C*-dynamical system is a pair (A, τ) where A is a C*-algebra, $\tau = \{\tau_t\}_{t \in \mathbb{R}}$ is a family of *-automorphisms $\tau_t : A \to A$ such that

(i) $t \mapsto \tau_t(a)$ is continuous, for all $a \in A$;

Definition

A C*-dynamical system is a pair (A, τ) where A is a C*-algebra, $\tau = \{\tau_t\}_{t \in \mathbb{R}}$ is a family of *-automorphisms $\tau_t : A \to A$ such that (i) $t \mapsto \tau_t(a)$ is continuous, for all $a \in A$; (ii) $\tau_{t+s} = \tau_t \circ \tau_s$;

Definition

A C*-dynamical system is a pair (A, τ) where A is a C*-algebra, $\tau = {\tau_t}_{t \in \mathbb{R}}$ is a family of *-automorphisms $\tau_t : A \to A$ such that (i) $t \mapsto \tau_t(a)$ is continuous, for all $a \in A$; (ii) $\tau_{t+s} = \tau_t \circ \tau_s$; (iii) $\tau_0 = id$.

Definition

A C*-dynamical system is a pair (A, τ) where A is a C*-algebra, $\tau = {\tau_t}_{t \in \mathbb{R}}$ is a family of *-automorphisms $\tau_t : A \to A$ such that (i) $t \mapsto \tau_t(a)$ is continuous, for all $a \in A$; (ii) $\tau_{t+s} = \tau_t \circ \tau_s$; (iii) $\tau_0 = id$. If we fix τ , we say that τ is the dynamics on A.

Definition

A C*-dynamical system is a pair (A, τ) where A is a C*-algebra, $\tau = \{\tau_t\}_{t \in \mathbb{R}}$ is a family of *-automorphisms $\tau_t : A \to A$ such that (i) $t \mapsto \tau_t(a)$ is continuous, for all $a \in A$; (ii) $\tau_{t+s} = \tau_t \circ \tau_s$; (iii) $\tau_0 = id$. If we fix τ , we say that τ is the dynamics on A.

Example

Let $H\in M_n(\mathbb{C})$ be self-adjoint. Define $\tau_t:M_n(\mathbb{C})\to M_n(\mathbb{C})$ by

$$\tau_t(A) = e^{itH}Ae^{-itH}, \text{ for } A \in M_n(\mathbb{C}).$$

KMS states

Definition

Definition

Let A be a C*-algebra. An element $a \in A$ is *positive* if there exists $x \in A$ such that $a = x^*x$.

KMS states

Definition

Definition

Let A be a C*-algebra. An element $a \in A$ is *positive* if there exists $x \in A$ such that $a = x^*x$. Notation: $a \ge 0$.

Definition

Definition

Let A be a C*-algebra. An element $a \in A$ is *positive* if there exists $x \in A$ such that $a = x^*x$. Notation: $a \ge 0$.

Definition

Let A be a C*-algebra. A linear map $\varphi:A\to \mathbb{C}$ is a state if

Definition

Definition

Let A be a C*-algebra. An element $a \in A$ is *positive* if there exists $x \in A$ such that $a = x^*x$. Notation: $a \ge 0$.

Definition

Let A be a C*-algebra. A linear map $\varphi: A \to \mathbb{C}$ is a *state* if

(i) φ is *positive*: $\varphi(a) \ge 0$ for $a \ge 0$;

Definition

Definition

Let A be a C*-algebra. An element $a \in A$ is *positive* if there exists $x \in A$ such that $a = x^*x$. Notation: $a \ge 0$.

Definition

Let A be a C*-algebra. A linear map $\varphi:A\to \mathbb{C}$ is a state if

(i)
$$\varphi$$
 is positive: $\varphi(a) \ge 0$ for $a \ge 0$;

(ii) $\|\varphi\| = \sup_{\|x\| \le 1} |\varphi(x)| = 1.$

Definition

Definition

Let A be a C*-algebra. An element $a \in A$ is *positive* if there exists $x \in A$ such that $a = x^*x$. Notation: $a \ge 0$.

Definition

Let A be a C*-algebra. A linear map $\varphi:A\to \mathbb{C}$ is a state if

(i)
$$\varphi$$
 is *positive*: $\varphi(a) \ge 0$ for $a \ge 0$;

(ii)
$$\|\varphi\| = \sup_{\|x\| \le 1} |\varphi(x)| = 1.$$

Definition

Let (A, τ) be a C*-dynamical system and φ a state on A. Let $\beta \in \mathbb{R}$. We say that φ is a KMS_{β} -state if

$$\varphi(a\tau_{i\beta}(b)) = \varphi(ba) \quad \text{for } a, b \in A_0.$$

Definition

Definition

Let A be a C*-algebra. An element $a \in A$ is *positive* if there exists $x \in A$ such that $a = x^*x$. Notation: $a \ge 0$.

Definition

Let A be a C*-algebra. A linear map $\varphi : A \to \mathbb{C}$ is a *state* if

(i)
$$\varphi$$
 is *positive*: $\varphi(a) \ge 0$ for $a \ge 0$;
(ii) $\|\varphi\| = \sup_{\|x\| \le 1} |\varphi(x)| = 1$.

Definition

Let (A, τ) be a C*-dynamical system and φ a state on A. Let $\beta \in \mathbb{R}$. We say that φ is a KMS_{β} -state if

$$\varphi(a\tau_{i\beta}(b)) = \varphi(ba) \quad \text{for } a, b \in A_0.$$

イロン 不得 とうほう イロン 二日

Example

Example

Let $H\in M_n(\mathbb{C})$ be self-adjoint, i.e. $H^*=H.$ Fix the dynamics τ on $M_n(\mathbb{C})$ by

$$\tau_t(A) = e^{itH} A e^{-itH}.$$

Example

Example

Let $H\in M_n(\mathbb{C})$ be self-adjoint, i.e. $H^*=H.$ Fix the dynamics τ on $M_n(\mathbb{C})$ by

$$\tau_t(A) = e^{itH} A e^{-itH}.$$

Then $\varphi: M_n(\mathbb{C}) \to \mathbb{C}$ given by

$$\varphi(A) = \frac{\operatorname{tr}(e^{-\beta H}A)}{\operatorname{tr}(e^{-\beta H})}$$

is a KMS_{β} -state.

Example

In fact,

$$\operatorname{tr}(e^{-\beta H})\varphi(A\tau_{i\beta}(B)) = \operatorname{tr}(e^{-\beta H}A\tau_{i\beta}(B))$$

$$\tau_t(A) = e^{itH} A e^{-itH} \qquad \varphi(A) = \frac{\operatorname{tr}(e^{-\beta H} A)}{\operatorname{tr}(e^{-\beta H})} \qquad \operatorname{tr}(ABC) = \operatorname{tr}(BCA)$$

4 ロ ト < 部 ト < 注 ト < 注 ト 注 の Q (C) 25 / 36

Example

In fact,

$$\begin{aligned} \mathrm{tr}(e^{-\beta H})\varphi(A\tau_{i\beta}(B)) &= \mathrm{tr}(e^{-\beta H}A\tau_{i\beta}(B)) \\ &= \mathrm{tr}(e^{-\beta H}Ae^{-\beta H}Be^{\beta H}) \end{aligned}$$

$$\tau_t(A) = e^{itH} A e^{-itH} \qquad \varphi(A) = \frac{\operatorname{tr}(e^{-\beta H} A)}{\operatorname{tr}(e^{-\beta H})} \qquad \operatorname{tr}(ABC) = \operatorname{tr}(BCA)$$

Example

In fact,

$$\begin{aligned} \operatorname{tr}(e^{-\beta H})\varphi(A\tau_{i\beta}(B)) &= \operatorname{tr}(e^{-\beta H}A\tau_{i\beta}(B)) \\ &= \operatorname{tr}(e^{-\beta H}Ae^{-\beta H}Be^{\beta H}) \\ &= \operatorname{tr}(Ae^{-\beta H}Be^{\beta H}e^{-\beta H}) \end{aligned}$$

$$\tau_t(A) = e^{itH} A e^{-itH} \qquad \varphi(A) = \frac{\mathsf{tr}(e^{-\beta H} A)}{\mathsf{tr}(e^{-\beta H})} \qquad \mathsf{tr}(ABC) = \mathsf{tr}(BCA)$$

4 ロ ト < 部 ト < 注 ト < 注 ト 注 の Q (C)
25 / 36

Example

In fact,

$$\begin{split} \operatorname{tr}(e^{-\beta H})\varphi(A\tau_{i\beta}(B)) &= \operatorname{tr}(e^{-\beta H}A\tau_{i\beta}(B)) \\ &= \operatorname{tr}(e^{-\beta H}Ae^{-\beta H}Be^{\beta H}) \\ &= \operatorname{tr}(Ae^{-\beta H}Be^{\beta H}e^{-\beta H}) \\ &= \operatorname{tr}(Ae^{-\beta H}B) \end{split}$$

$$\tau_t(A) = e^{itH} A e^{-itH} \qquad \varphi(A) = \frac{\operatorname{tr}(e^{-\beta H} A)}{\operatorname{tr}(e^{-\beta H})} \qquad \operatorname{tr}(ABC) = \operatorname{tr}(BCA)$$

<ロト < 回 > < 直 > < 直 > < 直 > < 亘 > < 亘 > < 亘 > < 三 > < ○ < ○ 25 / 36

Example

In fact,

$$\begin{split} \operatorname{tr}(e^{-\beta H})\varphi(A\tau_{i\beta}(B)) &= \operatorname{tr}(e^{-\beta H}A\tau_{i\beta}(B)) \\ &= \operatorname{tr}(e^{-\beta H}Ae^{-\beta H}Be^{\beta H}) \\ &= \operatorname{tr}(Ae^{-\beta H}Be^{\beta H}e^{-\beta H}) \\ &= \operatorname{tr}(Ae^{-\beta H}B) \\ &= \operatorname{tr}(e^{-\beta H}BA) \end{split}$$

$$\tau_t(A) = e^{itH} A e^{-itH} \qquad \varphi(A) = \frac{\operatorname{tr}(e^{-\beta H} A)}{\operatorname{tr}(e^{-\beta H})} \qquad \operatorname{tr}(ABC) = \operatorname{tr}(BCA)$$

Example

In fact,

$$\begin{aligned} \mathsf{tr}(e^{-\beta H})\varphi(A\tau_{i\beta}(B)) &= \mathsf{tr}(e^{-\beta H}A\tau_{i\beta}(B)) \\ &= \mathsf{tr}(e^{-\beta H}Ae^{-\beta H}Be^{\beta H}) \\ &= \mathsf{tr}(Ae^{-\beta H}Be^{\beta H}e^{-\beta H}) \\ &= \mathsf{tr}(Ae^{-\beta H}B) \\ &= \mathsf{tr}(e^{-\beta H}BA) \\ &= \mathsf{tr}(e^{-\beta H})\varphi(BA). \end{aligned}$$

$$\tau_t(A) = e^{itH} A e^{-itH} \qquad \varphi(A) = \frac{\mathsf{tr}(e^{-\beta H} A)}{\mathsf{tr}(e^{-\beta H})} \qquad \mathsf{tr}(ABC) = \mathsf{tr}(BCA)$$

We fix the dynamics on $C^{\ast}(G)$ given by

 $\tau_t(f)(g) = e^{itc(g)}f(g), \quad f \in C_c(G), g \in G,$

We fix the dynamics on $C^{\ast}(G)$ given by

 $\tau_t(f)(g) = e^{itc(g)}f(g), \quad f \in C_c(G), g \in G,$

where $c:G\rightarrow \mathbb{R}$ is a continuous $\mathit{cocycle}$

We fix the dynamics on $C^{\ast}(G)$ given by

$$\tau_t(f)(g) = e^{itc(g)}f(g), \quad f \in C_c(G), g \in G,$$

where $c: G \to \mathbb{R}$ is a continuous *cocycle* c(gh) = c(g) + c(h).

We fix the dynamics on $C^{\ast}(G)$ given by

$$\tau_t(f)(g) = e^{itc(g)}f(g), \quad f \in C_c(G), g \in G,$$

where $c: G \to \mathbb{R}$ is a continuous *cocycle* c(gh) = c(g) + c(h).

A KMS $_{\beta}$ -state must satisfy

$$\varphi(f_1 \cdot \tau_{i\beta}(f_2)) = \varphi(f_2 \cdot f_1) \quad \text{for } f_1, f_2 \in C_c(G).$$

We fix the dynamics on $C^*(G)$ given by

$$\tau_t(f)(g) = e^{itc(g)}f(g), \quad f \in C_c(G), g \in G,$$

where $c: G \to \mathbb{R}$ is a continuous *cocycle* c(gh) = c(g) + c(h).

A KMS $_{\beta}$ -state must satisfy

$$\varphi(f_1 \cdot \tau_{i\beta}(f_2)) = \varphi(f_2 \cdot f_1) \quad \text{for } f_1, f_2 \in C_c(G).$$

Now we study Theorem 1.3 of [4], by Neshveyev, which describes all KMS states φ on $C^*(G)$ by the formula

$$\varphi(f) = \int_{G^{(0)}} \sum_{g \in G_x^x} f(g) \varphi_x(u_g) d\mu(x), \quad f \in C_c(G).$$

Moreover, it gives a one-to-one correspondence between the KMS states and pairs $(\mu, \{\varphi_x\}_{x \in G^{(0)}})$ satisfying certain conditions.

Some notation

 $G^x = r^{-1}(\{x\}).$

<ロト < 回 ト < 巨 ト < 巨 ト ミ の Q (C 27 / 36

Some notation

 $G_x = s^{-1}(\{x\}).$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 Q (C) 28 / 36

Some notation

 $G_x^x = G_x \cap G^x.$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 Q (* 29 / 36

Some notation

 $G_x^x = G_x \cap G^x.$

Note that G_x^x is a group with identity x.

$$\varphi(f) = \int_{G^{(0)}} \sum_{g \in G_x^x} f(g) \varphi_x(u_g) d\mu(x), \quad f \in C_c(G),$$

where

$$\varphi(f) = \int_{G^{(0)}} \sum_{g \in G_x^x} f(g) \varphi_x(u_g) d\mu(x), \quad f \in C_c(G),$$

where

• μ is a Radon probability on $G^{(0)}$ satisfying

$$\int_{G^{(0)}} \sum_{g \in G^x} f(g) d\mu(x) = \int_{G^{(0)}} \sum_{g \in G_x} f(g) e^{-\beta c(g)} d\mu(x), \ f \in C_c(G).$$

i.e., μ is *quasi-invariant* with Radon-Nikodym derivative $e^{-\beta c}$.

$$\varphi(f) = \int_{G^{(0)}} \sum_{g \in G_x^x} f(g) \varphi_x(u_g) d\mu(x), \quad f \in C_c(G),$$

where

• μ is a Radon probability on $G^{(0)}$ satisfying

$$\int_{G^{(0)}} \sum_{g \in G^x} f(g) d\mu(x) = \int_{G^{(0)}} \sum_{g \in G_x} f(g) e^{-\beta c(g)} d\mu(x), \ f \in C_c(G).$$

i.e., μ is quasi-invariant with Radon-Nikodym derivative e^{-βc}.
u_g generate the C*-algebra C*(G_x^x). Also u_gu_h = u_{gh} for g, h ∈ G_x^x

$$\varphi(f) = \int_{G^{(0)}} \sum_{g \in G_x^x} f(g) \varphi_x(u_g) d\mu(x), \quad f \in C_c(G),$$

where

• μ is a Radon probability on $G^{(0)}$ satisfying

$$\int_{G^{(0)}} \sum_{g \in G^x} f(g) d\mu(x) = \int_{G^{(0)}} \sum_{g \in G_x} f(g) e^{-\beta c(g)} d\mu(x), \ f \in C_c(G).$$

i.e., μ is quasi-invariant with Radon-Nikodym derivative $e^{-\beta c}$.

▶ u_g generate the C*-algebra $C^*(G^x_x)$. Also $u_g u_h = u_{gh}$ for $g, h \in G^x_x$

• Each
$$\varphi_x$$
 is a state on $C^*(G^x_x)$

$$\varphi(f) = \int_{G^{(0)}} \sum_{g \in G_x^x} f(g) \varphi_x(u_g) d\mu(x), \quad f \in C_c(G),$$

where

• μ is a Radon probability on $G^{(0)}$ satisfying

$$\int_{G^{(0)}} \sum_{g \in G^x} f(g) d\mu(x) = \int_{G^{(0)}} \sum_{g \in G_x} f(g) e^{-\beta c(g)} d\mu(x), \ f \in C_c(G).$$

i.e., μ is quasi-invariant with Radon-Nikodym derivative $e^{-\beta c}.$

- ▶ u_g generate the C*-algebra $C^*(G^x_x)$. Also $u_g u_h = u_{gh}$ for $g, h \in G^x_x$
- Each φ_x is a state on $C^*(G^x_x)$
- $\{\varphi_x\}_{x\in G^{(0)}}$ satisfies a few more conditions

Theorem

[4, Theorem 1.3] There exists a one-to-one correspondence between KMS_{β} -states on $C^*(G)$ and pairs $(\mu, \{\varphi_x\}_{x \in G^{(0)}})$ consisting of a probability measure μ on $G^{(0)}$ and a μ -measurable field of states φ_x on $C^*(G_x^x)$ such that:

(i) μ is quasi-invariant with Radon-Nikodym derivative $e^{-\beta c}$;

(ii) $\varphi_x(u_g) = \varphi_{r(h)}(u_{hgh^{-1}})$ for every $g \in G_x^x$ and $h \in G_x$, for μ -a.e. x; in particular, φ_x is tracial for μ -a.e. x;

(iii)
$$\varphi_x(u_g) = 0$$
 for all $g \in G_x^x \setminus c^{-1}(0)$, for μ -a.e. x .

Open bisections

In order to show that φ given by the formula in the previous slide satisfies the KMS condition:

 $\varphi(f_1 \cdot \tau_{i\beta}(f_2)) = \varphi(f_2 \cdot f_1) \quad \text{for } f_1, f_2 \in C_c(G),$

he uses the following property of locally compact Hausdorff second countable étale groupoids:

Open bisections

In order to show that φ given by the formula in the previous slide satisfies the KMS condition:

 $\varphi(f_1 \cdot \tau_{i\beta}(f_2)) = \varphi(f_2 \cdot f_1) \quad \text{for } f_1, f_2 \in C_c(G),$

he uses the following property of locally compact Hausdorff second countable étale groupoids:

▶ A function $f \in C_c(G)$ can be written as a finite sum $f = f_1 + \cdots + f_n$. Each $f_i \in C_c(\mathcal{U}_i) \subset C_c(G)$ has support in an open bisection \mathcal{U}_i .

Open bisections

If $\mathcal{U} \subset G$ is an open bisection, \mathcal{U} is open and

 $r:\mathcal{U}\rightarrow r(\mathcal{U}),s:\mathcal{U}\rightarrow s(\mathcal{U})$ are homeomorphisms.

Open bisections

If $\mathcal{U} \subset G$ is an open bisection, \mathcal{U} is open and

 $r:\mathcal{U}\rightarrow r(\mathcal{U}),s:\mathcal{U}\rightarrow s(\mathcal{U})$ are homeomorphisms.

Open bisections

If $\mathcal{U} \subset G$ is an open bisection, \mathcal{U} is open and

Open bisections

If $\mathcal{U} \subset G$ is an open bisection, \mathcal{U} is open and

Open bisections

If $\mathcal{U} \subset G$ is an open bisection, \mathcal{U} is open and

Open bisections

If $\mathcal{U} \subset G$ is an open bisection, \mathcal{U} is open and

Open bisections

If $\mathcal{U} \subset G$ is an open bisection, \mathcal{U} is open and

 $r: \mathcal{U} \to r(\mathcal{U}), s: \mathcal{U} \to s(\mathcal{U})$ are homeomorphisms.

If $f_2 \in C_c(\mathcal{U})$, we can find easier formulas for $\varphi(f_1 \cdot \tau_{i\beta}(f_2))$ and $\varphi(f_2 \cdot f_1)$.

Conclusion

Using topological properties of groupoids, we can study some properties of groupoid C*-algebras in more detail.

Main references I

Ola Bratteli and Derek W. Robinson.

Operator Algebras and Quantum Statistical Mechanics: Volume 1: C*-and W*-Algebras. Symmetry Groups. Decomposition of States.

Springer-Verlag, 1979.

Ola Bratteli and Derek W. Robinson. Operator Algebras and Quantum Statistical Mechanics. Vol. 2: Equilibrium states. Models in quantum statistical mechanics. Springer-Verlag, 1997.

Gerard J. Murphy.

C*-Algebras and Operator Theory. Academic press, 1990.

Main references II

Sergey Neshveyev.

KMS States on the C*-Algebras of Non-Principal Groupoids. *Journal of Operator Theory*, 70(2):513–530.

🔋 Jean Renault.

A Groupoid Approach to C*-Algebras, volume 793. Springer-Verlag, 1980.

Aidan Sims.

Hausdorff Étale Groupoids and Their C*-Algebras. arXiv preprint arXiv:1710.10897, 2017.