KMS States on Groupoid C*-Algebras

Rafael Lima

2 November 2020

Introduction

In this talk we will introduce:

- C*-algebras
- groupoids and their C^{*}-algebras

Introduction

In this talk we will introduce:

- C*-algebras
- groupoids and their C^{*}-algebras

We will see an example of how topological properties of the groupoid help us understand the C^{*}-algebra.

Introduction

In this talk we will introduce:

- C*-algebras
- groupoids and their C^{*}-algebras

We will see an example of how topological properties of the groupoid help us understand the C^{*}-algebra.

- Neshveyev gives a formula for the KMS states on groupoid C*-algebras

History of C*-algebras

The theory of C^{*}-algebras was developed from the study of quantum mechanics.

1942- Heisenberg
early 1945 (matrix mechanics)

History of C*-algebras

The theory of C^{*}-algebras was developed from the study of quantum mechanics.

1942- Heisenberg
early 1945 (matrix mechanics)
\mathcal{H} : a Hilbert space

History of C*-algebras

The theory of C^{*}-algebras was developed from the study of quantum mechanics.

1942- Heisenberg
early 1945 (matrix mechanics)
\mathcal{H} : a Hilbert space
$\psi \in \mathcal{H}$: state

History of C*-algebras

The theory of C^{*}-algebras was developed from the study of quantum mechanics.

1942- Heisenberg
early 1945 (matrix mechanics)
\mathcal{H} : a Hilbert space
$\psi \in \mathcal{H}$: state
p_{i} : momentum of a particle
q_{i} : position of a particle

History of C*-algebras

The theory of C^{*}-algebras was developed from the study of quantum mechanics.

1942- Heisenberg
early 1945 (matrix mechanics)
\mathcal{H} : a Hilbert space
$\psi \in \mathcal{H}$: state
p_{i} : momentum of a particle
q_{i} : position of a particle
p_{i}, q_{i} are operators on \mathcal{H}

History of C*-algebras

The theory of C^{*}-algebras was developed from the study of quantum mechanics.

1942-
early 1945

Heisenberg
(matrix mechanics)
\mathcal{H} : a Hilbert space
$\psi \in \mathcal{H}$: state
p_{i} : momentum of a particle
q_{i} : position of a particle
p_{i}, q_{i} are operators on \mathcal{H}

Schrödinger
(wave mechanics)

History of C*-algebras

The theory of C^{*}-algebras was developed from the study of quantum mechanics.

1942-
early 1945

Heisenberg
(matrix mechanics)
\mathcal{H} : a Hilbert space
$\psi \in \mathcal{H}$: state
p_{i} : momentum of a particle
q_{i} : position of a particle
p_{i}, q_{i} are operators on \mathcal{H}

Schrödinger
(wave mechanics) the state is a function ψ satisfying the Schrödinger equation

History of C*-algebras

The theory of C^{*}-algebras was developed from the study of quantum mechanics.

1942-
early 1945

Heisenberg
(matrix mechanics)
\mathcal{H} : a Hilbert space
$\psi \in \mathcal{H}$: state
p_{i} : momentum of a particle
q_{i} : position of a particle
p_{i}, q_{i} are operators on \mathcal{H}

Schrödinger
(wave mechanics) the state is a function ψ satisfying the Schrödinger equation
late 1920s- Stone and von Neumann clarified the connection between early 1930s the formalisms above

History of C*-algebras

The theory of C^{*}-algebras was developed from the study of quantum mechanics.

1942-
early 1945

Heisenberg
(matrix mechanics)
\mathcal{H} : a Hilbert space
$\psi \in \mathcal{H}$: state
p_{i} : momentum of a particle
q_{i} : position of a particle
p_{i}, q_{i} are operators on \mathcal{H}

Schrödinger

(wave mechanics) the state is a function ψ satisfying the Schrödinger equation

Stone and von Neumann clarified the connection between early 1930s the formalisms above

1943 Gelfand and Naimark characterised C*-algebras

History of C*-algebras

Since then, the subject of C^{*}-algebras has evolved into a huge mathematical endeavour interacting with several areas of mathematics and theoretical physics.

C*-algebras

Intuitively, C^{*}-algebras are similar to $M_{n}(\mathbb{C})$ or $B(\mathcal{H})$.

C*-algebras

Intuitively, C^{*}-algebras are similar to $M_{n}(\mathbb{C})$ or $B(\mathcal{H})$.
Let A be a \mathbb{C}^{*}-algebra. Given $a, b \in \mathbb{C}$ and $\lambda \in \mathbb{C}$, we have

C*-algebras

Intuitively, C^{*}-algebras are similar to $M_{n}(\mathbb{C})$ or $B(\mathcal{H})$.
Let A be a \mathbb{C}^{*}-algebra. Given $a, b \in \mathbb{C}$ and $\lambda \in \mathbb{C}$, we have
(i) $a+\lambda b \in A, a b \in A$, etc.
A is an algebra

C*-algebras

Intuitively, C^{*}-algebras are similar to $M_{n}(\mathbb{C})$ or $B(\mathcal{H})$.
Let A be a \mathbb{C}^{*}-algebra. Given $a, b \in \mathbb{C}$ and $\lambda \in \mathbb{C}$, we have
(i) $a+\lambda b \in A, a b \in A$, etc.
A is an algebra
(ii) A has an involution $a \mapsto a^{*}$ with A is a *-algebra

$$
(\lambda a)^{*}=\bar{\lambda} a^{*}, \quad(a b)^{*}=b^{*} a^{*}, \quad\left(a^{*}\right)^{*}=a
$$

C*-algebras

Intuitively, C^{*}-algebras are similar to $M_{n}(\mathbb{C})$ or $B(\mathcal{H})$.
Let A be a \mathbb{C}^{*}-algebra. Given $a, b \in \mathbb{C}$ and $\lambda \in \mathbb{C}$, we have
(i) $a+\lambda b \in A, a b \in A$, etc.
A is an algebra
(ii) A has an involution $a \mapsto a^{*}$ with A is a *-algebra

$$
(\lambda a)^{*}=\bar{\lambda} a^{*}, \quad(a b)^{*}=b^{*} a^{*}, \quad\left(a^{*}\right)^{*}=a
$$

(iii) $\left\|a^{*}\right\|=\|a\|,\|a b\| \leq\|a\|\|b\|$

C*-algebras

Intuitively, C^{*}-algebras are similar to $M_{n}(\mathbb{C})$ or $B(\mathcal{H})$.
Let A be a \mathbb{C}^{*}-algebra. Given $a, b \in \mathbb{C}$ and $\lambda \in \mathbb{C}$, we have
(i) $a+\lambda b \in A, a b \in A$, etc.
(ii) A has an involution $a \mapsto a^{*}$ with A is an algebra A is a *-algebra

$$
(\lambda a)^{*}=\bar{\lambda} a^{*}, \quad(a b)^{*}=b^{*} a^{*}, \quad\left(a^{*}\right)^{*}=a
$$

(iii) $\left\|a^{*}\right\|=\|a\|,\|a b\| \leq\|a\|\|b\|$
(iv) A is complete

C*-algebras

Intuitively, C^{*}-algebras are similar to $M_{n}(\mathbb{C})$ or $B(\mathcal{H})$.
Let A be a \mathbb{C}^{*}-algebra. Given $a, b \in \mathbb{C}$ and $\lambda \in \mathbb{C}$, we have
(i) $a+\lambda b \in A, a b \in A$, etc.
(ii) A has an involution $a \mapsto a^{*}$ with

$$
(\lambda a)^{*}=\bar{\lambda} a^{*}, \quad(a b)^{*}=b^{*} a^{*}, \quad\left(a^{*}\right)^{*}=a
$$

(iii) $\left\|a^{*}\right\|=\|a\|,\|a b\| \leq\|a\|\|b\|$
(iv) A is complete
(v) $\left\|a^{*} a\right\|=\|a\|^{2}$.
A is a C*-algebra
C^{*}-algebras
Examples

- \mathbb{C}, with $z^{*}=\bar{z}$

C*-algebras

Examples

- \mathbb{C}, with $z^{*}=\bar{z}$
- $A=M_{2}(\mathbb{C})$

$$
a=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \Rightarrow a^{*}=\left(\begin{array}{ll}
\overline{a_{11}} & \overline{a_{21}} \\
\overline{a_{12}} & \overline{a_{22}}
\end{array}\right) .
$$

C*-algebras

Examples

- \mathbb{C}, with $z^{*}=\bar{z}$
- $A=M_{2}(\mathbb{C})$

$$
a=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \Rightarrow a^{*}=\left(\begin{array}{ll}
\overline{a_{11}} & \overline{a_{21}} \\
\overline{a_{12}} & \overline{a_{22}}
\end{array}\right) .
$$

- $C(X)$ for a compact Hausdorff space X.

$$
\left(f_{1} f_{2}\right)(x)=f_{1}(x) f_{2}(x), \quad f^{*}(x)=\overline{f(x)}, \quad\|f\|=\sup _{x \in X}|f(x)| .
$$

C*-algebras

Examples

- \mathbb{C}, with $z^{*}=\bar{z}$
- $A=M_{2}(\mathbb{C})$

$$
a=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \Rightarrow a^{*}=\left(\begin{array}{ll}
\overline{a_{11}} & \overline{a_{21}} \\
\overline{a_{12}} & \overline{a_{22}}
\end{array}\right) .
$$

- $C(X)$ for a compact Hausdorff space X.

$$
\left(f_{1} f_{2}\right)(x)=f_{1}(x) f_{2}(x), \quad f^{*}(x)=\overline{f(x)}, \quad\|f\|=\sup _{x \in X}|f(x)| .
$$

- $B(\mathcal{H})$, the algebra of bounded operators on a Hilbert space \mathcal{H}.

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle, \quad\|T\|=\sup _{\|z\| \leq 1}\|T z\| .
$$

Groupoids

A groupoid is a generalises the idea of groups, but

Groupoids

A groupoid is a generalises the idea of groups, but

- the unit is not necessarily unique, and

Groupoids

A groupoid is a generalises the idea of groups, but

- the unit is not necessarily unique, and
- the product may not be defined for some pairs of elements.

Groupoids

A groupoid is a generalises the idea of groups, but

- the unit is not necessarily unique, and
- the product may not be defined for some pairs of elements.

We can understand a groupoid as a set of arrows connecting points in the space.

Groupoids

Idea

Groupoids

Idea

Groupoids

Idea

- G : groupoid
- $G^{(0)} \subset G$: units
- $r, s: G \rightarrow G^{(0)}$
- $G^{(2)} \rightarrow G$
$(g, h) \mapsto g h$

Groupoids

Idea

- G : groupoid

- $G^{(0)} \subset G$: units
- $r, s: G \rightarrow G^{(0)}$
- $G^{(2)} \rightarrow G$
$(g, h) \mapsto g h$
- $g \mapsto g^{-1}$

Groupoids

Examples

Let $G=\mathbb{R}^{2} \times \mathrm{GL}_{2}(\mathbb{R})$,

Groupoids

Examples

$$
\text { Let } G=\mathbb{R}^{2} \times \mathrm{GL}_{2}(\mathbb{R}), \text { and } G^{(0)}=\left\{(x, I): x \in \mathbb{R}^{2}\right\}
$$

Groupoids

Examples

$$
\text { Let } G=\mathbb{R}^{2} \times \mathrm{GL}_{2}(\mathbb{R}), \text { and } G^{(0)}=\left\{(x, I): x \in \mathbb{R}^{2}\right\}
$$

Groupoids

Examples

$$
\text { Let } G=\mathbb{R}^{2} \times \mathrm{GL}_{2}(\mathbb{R}) \text {, and } G^{(0)}=\left\{(x, I): x \in \mathbb{R}^{2}\right\}
$$

- $s(x, A)=(x, I)$

Groupoids

Examples

$$
\text { Let } G=\mathbb{R}^{2} \times \mathrm{GL}_{2}(\mathbb{R}) \text {, and } G^{(0)}=\left\{(x, I): x \in \mathbb{R}^{2}\right\}
$$

- $s(x, A)=(x, I)$
- $r(x, A)=(A x, I)$

Groupoids

Examples

Let $G=\mathbb{R}^{2} \times \mathrm{GL}_{2}(\mathbb{R})$, and $G^{(0)}=\left\{(x, I): x \in \mathbb{R}^{2}\right\}$.

- $s(x, A)=(x, I)$
- $r(x, A)=(A x, I)$
- $(x, A)^{-1}=\left(A x, A^{-1}\right)$

Groupoids

Examples

Let $G=\mathbb{R}^{2} \times \mathrm{GL}_{2}(\mathbb{R})$, and $G^{(0)}=\left\{(x, I): x \in \mathbb{R}^{2}\right\}$.

- $s(x, A)=(x, I)$
- $r(x, A)=(A x, I)$
- $(x, A)^{-1}=\left(A x, A^{-1}\right)$

Groupoids

Examples

Let $G=\mathbb{R}^{2} \times \mathrm{GL}_{2}(\mathbb{R})$, and $G^{(0)}=\left\{(x, I): x \in \mathbb{R}^{2}\right\}$.

Groupoids

Examples

Example
If G is a group, $G^{(0)}=\{1\}$ e $G^{(2)}=G \times G$.

Groupoids

Examples

Example

If G is a group, $G^{(0)}=\{1\}$ e $G^{(2)}=G \times G$.

Example

Let \sim be an equivalence relation on X. We can define

$$
G=\{(x, y): x \sim y\}
$$

Groupoids

Examples

Example

If G is a group, $G^{(0)}=\{1\}$ e $G^{(2)}=G \times G$.

Example

Let \sim be an equivalence relation on X. We can define

$$
G=\{(x, y): x \sim y\}
$$

where

$$
G^{(0)}=\{(x, x): x \in X\}
$$

Groupoids

Examples

Example

If G is a group, $G^{(0)}=\{1\}$ e $G^{(2)}=G \times G$.

Example

Let \sim be an equivalence relation on X. We can define

$$
G=\{(x, y): x \sim y\}
$$

where

$$
\begin{aligned}
G^{(0)} & =\{(x, x): x \in X\} \\
r(x, y) & =(x, x), \quad s(x, y)=(y, y)
\end{aligned}
$$

Groupoids

Examples

Example

If G is a group, $G^{(0)}=\{1\}$ e $G^{(2)}=G \times G$.

Example

Let \sim be an equivalence relation on X. We can define

$$
G=\{(x, y): x \sim y\}
$$

where

$$
\begin{aligned}
G^{(0)} & =\{(x, x): x \in X\} \\
r(x, y) & =(x, x), \quad s(x, y)=(y, y) . \\
(x, y)(y, z) & =(x, z), \quad(x, y)^{-1}=(y, x),
\end{aligned}
$$

Groupoids

Functions on the groupoid
Example
Consider the groupoid $G=\{(x, y): x \sim y\}$ given by the following equivalence relation on $\{1,2,3\}: 1 \sim 2,1 \nsim 3$.

Groupoids

Functions on the groupoid

Example

Consider the groupoid $G=\{(x, y): x \sim y\}$ given by the following equivalence relation on $\{1,2,3\}: 1 \sim 2,1 \nsim 3$. We can represent a function $f: G \rightarrow \mathbb{C}$ by the 3×3 matrix:

$$
f=\left(\begin{array}{ccc}
f(1,1) & f(1,2) & 0 \\
f(2,1) & f(2,2) & 0 \\
0 & 0 & f(3,3)
\end{array}\right)
$$

Groupoids

Functions on the groupoid

Example

Consider the groupoid $G=\{(x, y): x \sim y\}$ given by the following equivalence relation on $\{1,2,3\}: 1 \sim 2,1 \nsim 3$. We can represent a function $f: G \rightarrow \mathbb{C}$ by the 3×3 matrix:

$$
f=\left(\begin{array}{ccc}
f(1,1) & f(1,2) & 0 \\
f(2,1) & f(2,2) & 0 \\
0 & 0 & f(3,3)
\end{array}\right)
$$

The matrix operations induce the following operations:

Groupoids

Functions on the groupoid

Example

Consider the groupoid $G=\{(x, y): x \sim y\}$ given by the following equivalence relation on $\{1,2,3\}: 1 \sim 2,1 \nsim 3$. We can represent a function $f: G \rightarrow \mathbb{C}$ by the 3×3 matrix:

$$
f=\left(\begin{array}{ccc}
f(1,1) & f(1,2) & 0 \\
f(2,1) & f(2,2) & 0 \\
0 & 0 & f(3,3)
\end{array}\right)
$$

The matrix operations induce the following operations:

$$
f^{*}(x, y)=\overline{f(y, x)}, \quad\left(f_{1} \cdot f_{2}\right)(x, y)=\sum_{z \sim x} f_{1}(x, z) f_{2}(z, y)
$$

Groupoids

Functions on the groupoid

Analogously, we will define the following operations on $C_{c}(G)$, for a groupoid G :

$$
f^{*}(g)=\overline{f\left(g^{-1}\right)}, \quad\left(f_{1} \cdot f_{2}\right)(g)=\sum_{g_{1} g_{2}=g} f_{1}\left(g_{1}\right) f_{2}\left(g_{2}\right)
$$

Groupoids

Functions on the groupoid

Analogously, we will define the following operations on $C_{c}(G)$, for a groupoid G :

$$
f^{*}(g)=\overline{f\left(g^{-1}\right)}, \quad\left(f_{1} \cdot f_{2}\right)(g)=\sum_{g_{1} g_{2}=g} f_{1}\left(g_{1}\right) f_{2}\left(g_{2}\right) .
$$

Before doing that, we need to define a topology on G and study its properties.

Topological groupoids

Definition

A topological groupoid is a groupoid G with a topology such that $G^{(2)}$ is closed with respect to the relative topology of $G \times G$, and both the product and inverse maps are continuous.

Topological groupoids

Definition

A topological groupoid is a groupoid G with a topology such that $G^{(2)}$ is closed with respect to the relative topology of $G \times G$, and both the product and inverse maps are continuous.

Definition

A topological groupoid is étale if the maps r and s are local homeomorphisms.
Here we will assume that every groupoid G is locally compact Hausdorff second countable étale.

Groupoid C*-algebras

Operations on $C_{c}(G)$

We equip the space

$$
C_{c}(G)=\{f: G \rightarrow \mathbb{C} \text { st } f \text { is continuous with compact support }\}
$$

with the operations

$$
f^{*}(g)=\overline{f\left(g^{-1}\right)}, \quad\left(f_{1} \cdot f_{2}\right)(g)=\sum_{g_{1} g_{2}=g} f_{1}\left(g_{1}\right) f_{2}\left(g_{2}\right)
$$

Groupoid C*-algebras

Definition

Definition

A *-representation of $C_{c}(G)$ is a linear map $\pi: C_{c}(G) \rightarrow B(\mathcal{H})$, where \mathcal{H} is a Hilbert space and the following properties hold:

$$
\pi\left(f_{1} \cdot f_{2}\right)=\pi\left(f_{1}\right) \pi\left(f_{2}\right), \quad \pi\left(f^{*}\right)=\pi(f)^{*}
$$

Groupoid C*-algebras

Definition

Definition

A *-representation of $C_{c}(G)$ is a linear map $\pi: C_{c}(G) \rightarrow B(\mathcal{H})$, where \mathcal{H} is a Hilbert space and the following properties hold:

$$
\pi\left(f_{1} \cdot f_{2}\right)=\pi\left(f_{1}\right) \pi\left(f_{2}\right), \quad \pi\left(f^{*}\right)=\pi(f)^{*}
$$

Theorem

There exists a C^{*}-algebra $C^{*}(G)$ such that $C_{c}(G)$ is dense in $C^{*}(G)$ and

$$
\|f\|=\sup \left\{\|\pi(f)\|: \pi \text { is a } * \text {-representation of } C_{c}(G)\right\}
$$

for all $f \in C_{c}(G)$.

Groupoid C*-algebras

Examples

Many classes of C*-algebras can be describred by groupoid C*-algebras. For example, AF algebras and graph algebras.

Outline

$\underbrace{}_{\substack{\text { quantum } \\ \text { mechanics }}}=$ C* *-algebras ${ }_{B(\mathcal{H})}^{M_{n}(\mathbb{C})}$

Outline

$$
\begin{gathered}
\substack{\text { quantum } \\
\text { mechanics }}
\end{gathered}>\mathrm{C}^{*} \text {-algebras } \begin{gathered}
M_{n}(\mathbb{C}) \\
B(\mathcal{H})
\end{gathered}
$$

Outline

Outline

Aplication: KMS states

We will show how the topological properties of the groupoid help us understand its C^{*}-algebra in more detail.

Aplication: KMS states

We will show how the topological properties of the groupoid help us understand its C^{*}-algebra in more detail.

KMS states describe equilibrium states in quantum statistical mechanics.

KMS states

C*-dynamical systems

Definition
A C^{*}-dynamical system is a pair (A, τ) where A is a C^{*}-algebra, $\tau=\left\{\tau_{t}\right\}_{t \in \mathbb{R}}$ is a family of $*$-automorphisms $\tau_{t}: A \rightarrow A$ such that

KMS states

C*-dynamical systems

Definition

A C^{*}-dynamical system is a pair (A, τ) where A is a C^{*}-algebra, $\tau=\left\{\tau_{t}\right\}_{t \in \mathbb{R}}$ is a family of $*$-automorphisms $\tau_{t}: A \rightarrow A$ such that
(i) $t \mapsto \tau_{t}(a)$ is continuous, for all $a \in A$;

KMS states

C*-dynamical systems

Definition

A C^{*}-dynamical system is a pair (A, τ) where A is a C^{*}-algebra, $\tau=\left\{\tau_{t}\right\}_{t \in \mathbb{R}}$ is a family of $*$-automorphisms $\tau_{t}: A \rightarrow A$ such that
(i) $t \mapsto \tau_{t}(a)$ is continuous, for all $a \in A$;
(ii) $\tau_{t+s}=\tau_{t} \circ \tau_{s}$;

KMS states

C*-dynamical systems

Definition

A C^{*}-dynamical system is a pair (A, τ) where A is a C^{*}-algebra, $\tau=\left\{\tau_{t}\right\}_{t \in \mathbb{R}}$ is a family of $*$-automorphisms $\tau_{t}: A \rightarrow A$ such that
(i) $t \mapsto \tau_{t}(a)$ is continuous, for all $a \in A$;
(ii) $\tau_{t+s}=\tau_{t} \circ \tau_{s}$;
(iii) $\tau_{0}=i d$.

KMS states

C*-dynamical systems

Definition

A C^{*}-dynamical system is a pair (A, τ) where A is a C^{*}-algebra, $\tau=\left\{\tau_{t}\right\}_{t \in \mathbb{R}}$ is a family of $*$-automorphisms $\tau_{t}: A \rightarrow A$ such that
(i) $t \mapsto \tau_{t}(a)$ is continuous, for all $a \in A$;
(ii) $\tau_{t+s}=\tau_{t} \circ \tau_{s}$;
(iii) $\tau_{0}=i d$.

If we fix τ, we say that τ is the dynamics on A.

KMS states

C*-dynamical systems

Definition

A C^{*}-dynamical system is a pair (A, τ) where A is a C^{*}-algebra, $\tau=\left\{\tau_{t}\right\}_{t \in \mathbb{R}}$ is a family of $*$-automorphisms $\tau_{t}: A \rightarrow A$ such that
(i) $t \mapsto \tau_{t}(a)$ is continuous, for all $a \in A$;
(ii) $\tau_{t+s}=\tau_{t} \circ \tau_{s}$;
(iii) $\tau_{0}=i d$.

If we fix τ, we say that τ is the dynamics on A.

Example

Let $H \in M_{n}(\mathbb{C})$ be self-adjoint. Define $\tau_{t}: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ by

$$
\tau_{t}(A)=e^{i t H} A e^{-i t H}, \quad \text { for } A \in M_{n}(\mathbb{C})
$$

KMS states

Definition
Definition
Let A be a C*-algebra. An element $a \in A$ is positive if there exists $x \in A$ such that $a=x^{*} x$.

KMS states

Definition
Definition
Let A be a C*-algebra. An element $a \in A$ is positive if there exists $x \in A$ such that $a=x^{*} x$. Notation: $a \geq 0$.

KMS states

Definition
Definition
Let A be a C*-algebra. An element $a \in A$ is positive if there exists $x \in A$ such that $a=x^{*} x$. Notation: $a \geq 0$.

Definition
Let A be a C*-algebra. A linear map $\varphi: A \rightarrow \mathbb{C}$ is a state if

KMS states

Definition

Definition

Let A be a C*-algebra. An element $a \in A$ is positive if there exists $x \in A$ such that $a=x^{*} x$. Notation: $a \geq 0$.

Definition
Let A be a C*-algebra. A linear map $\varphi: A \rightarrow \mathbb{C}$ is a state if
(i) φ is positive: $\varphi(a) \geq 0$ for $a \geq 0$;

KMS states

Definition

Definition

Let A be a C*-algebra. An element $a \in A$ is positive if there exists $x \in A$ such that $a=x^{*} x$. Notation: $a \geq 0$.

Definition

Let A be a C*-algebra. A linear map $\varphi: A \rightarrow \mathbb{C}$ is a state if
(i) φ is positive: $\varphi(a) \geq 0$ for $a \geq 0$;
(ii) $\|\varphi\|=\sup _{\|x\| \leq 1}|\varphi(x)|=1$.

KMS states

Definition

Definition

Let A be a C*-algebra. An element $a \in A$ is positive if there exists $x \in A$ such that $a=x^{*} x$. Notation: $a \geq 0$.

Definition

Let A be a C^{*}-algebra. A linear map $\varphi: A \rightarrow \mathbb{C}$ is a state if
(i) φ is positive: $\varphi(a) \geq 0$ for $a \geq 0$;
(ii) $\|\varphi\|=\sup _{\|x\| \leq 1}|\varphi(x)|=1$.

Definition
Let (A, τ) be a C^{*}-dynamical system and φ a state on A. Let $\beta \in \mathbb{R}$. We say that φ is a $K M S_{\beta}$-state if

$$
\varphi\left(a \tau_{i \beta}(b)\right)=\varphi(b a) \quad \text { for } a, b \in A_{0}
$$

KMS states

Definition

Definition

Let A be a C*-algebra. An element $a \in A$ is positive if there exists $x \in A$ such that $a=x^{*} x$. Notation: $a \geq 0$.

Definition

Let A be a C^{*}-algebra. A linear map $\varphi: A \rightarrow \mathbb{C}$ is a state if
(i) φ is positive: $\varphi(a) \geq 0$ for $a \geq 0$;
(ii) $\|\varphi\|=\sup _{\|x\| \leq 1}|\varphi(x)|=1$.

Definition
Let (A, τ) be a C^{*}-dynamical system and φ a state on A. Let
$\beta \in \mathbb{R}$. We say that φ is a $K M S_{\beta}$-state if

$$
\varphi\left(a \tau_{i \beta}(b)\right)=\varphi(b a) \quad \text { for } a, b \in A_{0}
$$

KMS states

Example

Example

Let $H \in M_{n}(\mathbb{C})$ be self-adjoint, i.e. $H^{*}=H$. Fix the dynamics τ on $M_{n}(\mathbb{C})$ by

$$
\tau_{t}(A)=e^{i t H} A e^{-i t H}
$$

KMS states

Example

Example

Let $H \in M_{n}(\mathbb{C})$ be self-adjoint, i.e. $H^{*}=H$. Fix the dynamics τ on $M_{n}(\mathbb{C})$ by

$$
\tau_{t}(A)=e^{i t H} A e^{-i t H}
$$

Then $\varphi: M_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ given by

$$
\varphi(A)=\frac{\operatorname{tr}\left(e^{-\beta H} A\right)}{\operatorname{tr}\left(e^{-\beta H}\right)}
$$

is a KMS_{β}-state.

KMS states

Example

In fact,

$$
\operatorname{tr}\left(e^{-\beta H}\right) \varphi\left(A \tau_{i \beta}(B)\right)=\operatorname{tr}\left(e^{-\beta H} A \tau_{i \beta}(B)\right)
$$

$$
\tau_{t}(A)=e^{i t H} A e^{-i t H} \quad \varphi(A)=\frac{\operatorname{tr}\left(e^{-\beta H} A\right)}{\operatorname{tr}\left(e^{-\beta H}\right)} \quad \operatorname{tr}(A B C)=\operatorname{tr}(B C A)
$$

KMS states

Example

In fact,

$$
\begin{aligned}
\operatorname{tr}\left(e^{-\beta H}\right) \varphi\left(A \tau_{i \beta}(B)\right) & =\operatorname{tr}\left(e^{-\beta H} A \tau_{i \beta}(B)\right) \\
& =\operatorname{tr}\left(e^{-\beta H} A e^{-\beta H} B e^{\beta H}\right)
\end{aligned}
$$

$$
\tau_{t}(A)=e^{i t H} A e^{-i t H} \quad \varphi(A)=\frac{\operatorname{tr}\left(e^{-\beta H} A\right)}{\operatorname{tr}\left(e^{-\beta H}\right)} \quad \operatorname{tr}(A B C)=\operatorname{tr}(B C A)
$$

KMS states

Example

In fact,

$$
\begin{aligned}
\operatorname{tr}\left(e^{-\beta H}\right) \varphi\left(A \tau_{i \beta}(B)\right) & =\operatorname{tr}\left(e^{-\beta H} A \tau_{i \beta}(B)\right) \\
& =\operatorname{tr}\left(e^{-\beta H} A e^{-\beta H} B e^{\beta H}\right) \\
& =\operatorname{tr}\left(A e^{-\beta H} B e^{\beta H} e^{-\beta H}\right)
\end{aligned}
$$

$$
\tau_{t}(A)=e^{i t H} A e^{-i t H} \quad \varphi(A)=\frac{\operatorname{tr}\left(e^{-\beta H} A\right)}{\operatorname{tr}\left(e^{-\beta H}\right)} \quad \operatorname{tr}(A B C)=\operatorname{tr}(B C A)
$$

KMS states

Example

In fact,

$$
\begin{aligned}
\operatorname{tr}\left(e^{-\beta H}\right) \varphi\left(A \tau_{i \beta}(B)\right) & =\operatorname{tr}\left(e^{-\beta H} A \tau_{i \beta}(B)\right) \\
& =\operatorname{tr}\left(e^{-\beta H} A e^{-\beta H} B e^{\beta H}\right) \\
& =\operatorname{tr}\left(A e^{-\beta H} B e^{\beta H} e^{-\beta H}\right) \\
& =\operatorname{tr}\left(A e^{-\beta H} B\right)
\end{aligned}
$$

$$
\tau_{t}(A)=e^{i t H} A e^{-i t H} \quad \varphi(A)=\frac{\operatorname{tr}\left(e^{-\beta H} A\right)}{\operatorname{tr}\left(e^{-\beta H}\right)} \quad \operatorname{tr}(A B C)=\operatorname{tr}(B C A)
$$

KMS states

Example

In fact,

$$
\begin{aligned}
\operatorname{tr}\left(e^{-\beta H}\right) \varphi\left(A \tau_{i \beta}(B)\right) & =\operatorname{tr}\left(e^{-\beta H} A \tau_{i \beta}(B)\right) \\
& =\operatorname{tr}\left(e^{-\beta H} A e^{-\beta H} B e^{\beta H}\right) \\
& =\operatorname{tr}\left(A e^{-\beta H} B e^{\beta H} e^{-\beta H}\right) \\
& =\operatorname{tr}\left(A e^{-\beta H} B\right) \\
& =\operatorname{tr}\left(e^{-\beta H} B A\right)
\end{aligned}
$$

$$
\tau_{t}(A)=e^{i t H} A e^{-i t H} \quad \varphi(A)=\frac{\operatorname{tr}\left(e^{-\beta H} A\right)}{\operatorname{tr}\left(e^{-\beta H}\right)} \quad \operatorname{tr}(A B C)=\operatorname{tr}(B C A)
$$

KMS states

Example

In fact,

$$
\begin{aligned}
\operatorname{tr}\left(e^{-\beta H}\right) \varphi\left(A \tau_{i \beta}(B)\right) & =\operatorname{tr}\left(e^{-\beta H} A \tau_{i \beta}(B)\right) \\
& =\operatorname{tr}\left(e^{-\beta H} A e^{-\beta H} B e^{\beta H}\right) \\
& =\operatorname{tr}\left(A e^{-\beta H} B e^{\beta H} e^{-\beta H}\right) \\
& =\operatorname{tr}\left(A e^{-\beta H} B\right) \\
& =\operatorname{tr}\left(e^{-\beta H} B A\right) \\
& =\operatorname{tr}\left(e^{-\beta H}\right) \varphi(B A)
\end{aligned}
$$

$$
\tau_{t}(A)=e^{i t H} A e^{-i t H} \quad \varphi(A)=\frac{\operatorname{tr}\left(e^{-\beta H} A\right)}{\operatorname{tr}\left(e^{-\beta H}\right)} \quad \operatorname{tr}(A B C)=\operatorname{tr}(B C A)
$$

Neshveyev's theorem

We fix the dynamics on $C^{*}(G)$ given by

$$
\tau_{t}(f)(g)=e^{i t c(g)} f(g), \quad f \in C_{c}(G), g \in G
$$

Neshveyev's theorem

We fix the dynamics on $C^{*}(G)$ given by

$$
\tau_{t}(f)(g)=e^{i t c(g)} f(g), \quad f \in C_{c}(G), g \in G,
$$

where $c: G \rightarrow \mathbb{R}$ is a continuous cocycle

Neshveyev's theorem

We fix the dynamics on $C^{*}(G)$ given by

$$
\tau_{t}(f)(g)=e^{i t c(g)} f(g), \quad f \in C_{c}(G), g \in G,
$$

where $c: G \rightarrow \mathbb{R}$ is a continuous cocycle $c(g h)=c(g)+c(h)$.

Neshveyev's theorem

We fix the dynamics on $C^{*}(G)$ given by

$$
\tau_{t}(f)(g)=e^{i t c(g)} f(g), \quad f \in C_{c}(G), g \in G
$$

where $c: G \rightarrow \mathbb{R}$ is a continuous cocycle $c(g h)=c(g)+c(h)$.
A KMS_{β}-state must satisfy

$$
\varphi\left(f_{1} \cdot \tau_{i \beta}\left(f_{2}\right)\right)=\varphi\left(f_{2} \cdot f_{1}\right) \quad \text { for } f_{1}, f_{2} \in C_{c}(G) .
$$

Neshveyev's theorem

We fix the dynamics on $C^{*}(G)$ given by

$$
\tau_{t}(f)(g)=e^{i t c(g)} f(g), \quad f \in C_{c}(G), g \in G
$$

where $c: G \rightarrow \mathbb{R}$ is a continuous cocycle $c(g h)=c(g)+c(h)$.
A KMS_{β}-state must satisfy

$$
\varphi\left(f_{1} \cdot \tau_{i \beta}\left(f_{2}\right)\right)=\varphi\left(f_{2} \cdot f_{1}\right) \quad \text { for } f_{1}, f_{2} \in C_{c}(G) .
$$

Now we study Theorem 1.3 of [4], by Neshveyev, which describes all KMS states φ on $C^{*}(G)$ by the formula

$$
\varphi(f)=\int_{G^{(0)}} \sum_{g \in G_{x}^{x}} f(g) \varphi_{x}\left(u_{g}\right) d \mu(x), \quad f \in C_{c}(G) .
$$

Moreover, it gives a one-to-one correspondence between the KMS states and pairs ($\mu,\left\{\varphi_{x}\right\}_{x \in G^{(0)}}$) satisfying certain conditions.

Neshveyev's theorem

Some notation

$$
G^{x}=r^{-1}(\{x\}) .
$$

Neshveyev's theorem

Some notation

$$
G_{x}=s^{-1}(\{x\}) .
$$

Neshveyev's theorem

Some notation

$$
G_{x}^{x}=G_{x} \cap G^{x} .
$$

Neshveyev's theorem

Some notation

$$
G_{x}^{x}=G_{x} \cap G^{x} .
$$

Note that G_{x}^{x} is a group with identity x.

Neshveyev's theorem

$$
\varphi(f)=\int_{G^{(0)}} \sum_{g \in G_{x}^{x}} f(g) \varphi_{x}\left(u_{g}\right) d \mu(x), \quad f \in C_{c}(G),
$$

where

Neshveyev's theorem

$$
\varphi(f)=\int_{G^{(0)}} \sum_{g \in G_{x}^{x}} f(g) \varphi_{x}\left(u_{g}\right) d \mu(x), \quad f \in C_{c}(G)
$$

where

- μ is a Radon probability on $G^{(0)}$ satisfying

$$
\int_{G^{(0)}} \sum_{g \in G^{x}} f(g) d \mu(x)=\int_{G^{(0)}} \sum_{g \in G_{x}} f(g) e^{-\beta c(g)} d \mu(x), \quad f \in C_{c}(G) .
$$

i.e., μ is quasi-invariant with Radon-Nikodym derivative $e^{-\beta c}$.

Neshveyev's theorem

$$
\varphi(f)=\int_{G^{(0)}} \sum_{g \in G_{x}^{x}} f(g) \varphi_{x}\left(u_{g}\right) d \mu(x), \quad f \in C_{c}(G)
$$

where

- μ is a Radon probability on $G^{(0)}$ satisfying

$$
\int_{G^{(0)}} \sum_{g \in G^{x}} f(g) d \mu(x)=\int_{G^{(0)}} \sum_{g \in G_{x}} f(g) e^{-\beta c(g)} d \mu(x), \quad f \in C_{c}(G) .
$$

i.e., μ is quasi-invariant with Radon-Nikodym derivative $e^{-\beta c}$.

- u_{g} generate the C^{*}-algebra $C^{*}\left(G_{x}^{x}\right)$. Also $u_{g} u_{h}=u_{g h}$ for $g, h \in G_{x}^{x}$

Neshveyev's theorem

$$
\varphi(f)=\int_{G^{(0)}} \sum_{g \in G_{x}^{x}} f(g) \varphi_{x}\left(u_{g}\right) d \mu(x), \quad f \in C_{c}(G)
$$

where

- μ is a Radon probability on $G^{(0)}$ satisfying

$$
\int_{G^{(0)}} \sum_{g \in G^{x}} f(g) d \mu(x)=\int_{G^{(0)}} \sum_{g \in G_{x}} f(g) e^{-\beta c(g)} d \mu(x), \quad f \in C_{c}(G) .
$$

i.e., μ is quasi-invariant with Radon-Nikodym derivative $e^{-\beta c}$.

- u_{g} generate the C^{*}-algebra $C^{*}\left(G_{x}^{x}\right)$. Also $u_{g} u_{h}=u_{g h}$ for $g, h \in G_{x}^{x}$
- Each φ_{x} is a state on $C^{*}\left(G_{x}^{x}\right)$

Neshveyev's theorem

$$
\varphi(f)=\int_{G^{(0)}} \sum_{g \in G_{x}^{x}} f(g) \varphi_{x}\left(u_{g}\right) d \mu(x), \quad f \in C_{c}(G)
$$

where

- μ is a Radon probability on $G^{(0)}$ satisfying

$$
\int_{G^{(0)}} \sum_{g \in G^{x}} f(g) d \mu(x)=\int_{G^{(0)}} \sum_{g \in G_{x}} f(g) e^{-\beta c(g)} d \mu(x), \quad f \in C_{c}(G) .
$$

i.e., μ is quasi-invariant with Radon-Nikodym derivative $e^{-\beta c}$.

- u_{g} generate the C^{*}-algebra $C^{*}\left(G_{x}^{x}\right)$. Also $u_{g} u_{h}=u_{g h}$ for $g, h \in G_{x}^{x}$
- Each φ_{x} is a state on $C^{*}\left(G_{x}^{x}\right)$
- $\left\{\varphi_{x}\right\}_{x \in G^{(0)}}$ satisfies a few more conditions

Neshveyev's theorem

Theorem
[4, Theorem 1.3] There exists a one-to-one correspondence between $K M S_{\beta}$-states on $C^{*}(G)$ and pairs $\left(\mu,\left\{\varphi_{x}\right\}_{x \in G^{(0)}}\right)$ consisting of a probability measure μ on $G^{(0)}$ and a μ-measurable field of states φ_{x} on $C^{*}\left(G_{x}^{x}\right)$ such that:
(i) μ is quasi-invariant with Radon-Nikodym derivative $e^{-\beta c}$;
(ii) $\varphi_{x}\left(u_{g}\right)=\varphi_{r(h)}\left(u_{h g h^{-1}}\right)$ for every $g \in G_{x}^{x}$ and $h \in G_{x}$, for μ-a.e. x; in particular, φ_{x} is tracial for μ-a.e. x;
(iii) $\varphi_{x}\left(u_{g}\right)=0$ for all $g \in G_{x}^{x} \backslash c^{-1}(0)$, for μ-a.e. x.

Neshveyev's theorem

Open bisections

In order to show that φ given by the formula in the previous slide satisfies the KMS condition:

$$
\varphi\left(f_{1} \cdot \tau_{i \beta}\left(f_{2}\right)\right)=\varphi\left(f_{2} \cdot f_{1}\right) \quad \text { for } f_{1}, f_{2} \in C_{c}(G)
$$

he uses the following property of locally compact Hausdorff second countable étale groupoids:

Neshveyev's theorem

Open bisections

In order to show that φ given by the formula in the previous slide satisfies the KMS condition:

$$
\varphi\left(f_{1} \cdot \tau_{i \beta}\left(f_{2}\right)\right)=\varphi\left(f_{2} \cdot f_{1}\right) \quad \text { for } f_{1}, f_{2} \in C_{c}(G)
$$

he uses the following property of locally compact Hausdorff second countable étale groupoids:

- A function $f \in C_{c}(G)$ can be written as a finite sum $f=f_{1}+\cdots+f_{n}$. Each $f_{i} \in C_{c}\left(\mathcal{U}_{i}\right) \subset C_{c}(G)$ has support in an open bisection \mathcal{U}_{i}.

Neshveyev's theorem

Open bisections

If $\mathcal{U} \subset G$ is an open bisection, \mathcal{U} is open and

$$
r: \mathcal{U} \rightarrow r(\mathcal{U}), s: \mathcal{U} \rightarrow s(\mathcal{U}) \text { are homeomorphisms. }
$$

Neshveyev's theorem

Open bisections

If $\mathcal{U} \subset G$ is an open bisection, \mathcal{U} is open and

$$
r: \mathcal{U} \rightarrow r(\mathcal{U}), s: \mathcal{U} \rightarrow s(\mathcal{U}) \text { are homeomorphisms. }
$$

Neshveyev's theorem

Open bisections

If $\mathcal{U} \subset G$ is an open bisection, \mathcal{U} is open and

$$
r: \mathcal{U} \rightarrow r(\mathcal{U}), s: \mathcal{U} \rightarrow s(\mathcal{U}) \text { are homeomorphisms. }
$$

Neshveyev's theorem

Open bisections

If $\mathcal{U} \subset G$ is an open bisection, \mathcal{U} is open and

$$
r: \mathcal{U} \rightarrow r(\mathcal{U}), s: \mathcal{U} \rightarrow s(\mathcal{U}) \text { are homeomorphisms. }
$$

Neshveyev's theorem

Open bisections

If $\mathcal{U} \subset G$ is an open bisection, \mathcal{U} is open and

$$
r: \mathcal{U} \rightarrow r(\mathcal{U}), s: \mathcal{U} \rightarrow s(\mathcal{U}) \text { are homeomorphisms. }
$$

Neshveyev's theorem

Open bisections

If $\mathcal{U} \subset G$ is an open bisection, \mathcal{U} is open and

$$
r: \mathcal{U} \rightarrow r(\mathcal{U}), s: \mathcal{U} \rightarrow s(\mathcal{U}) \text { are homeomorphisms. }
$$

Neshveyev's theorem

Open bisections

If $\mathcal{U} \subset G$ is an open bisection, \mathcal{U} is open and

$$
r: \mathcal{U} \rightarrow r(\mathcal{U}), s: \mathcal{U} \rightarrow s(\mathcal{U}) \text { are homeomorphisms. }
$$

If $f_{2} \in C_{c}(\mathcal{U})$, we can find easier formulas for $\varphi\left(f_{1} \cdot \tau_{i \beta}\left(f_{2}\right)\right)$ and $\varphi\left(f_{2} \cdot f_{1}\right)$.

Conclusion

Using topological properties of groupoids, we can study some properties of groupoid C^{*}-algebras in more detail.

Main references I

围 Ola Bratteli and Derek W. Robinson.
Operator Algebras and Quantum Statistical Mechanics:
Volume 1: C*-and W^{*}-Algebras. Symmetry Groups.
Decomposition of States.
Springer-Verlag, 1979.
圊 Ola Bratteli and Derek W. Robinson.
Operator Algebras and Quantum Statistical Mechanics. Vol. 2: Equilibrium states. Models in quantum statistical mechanics.
Springer-Verlag, 1997.
Gerard J. Murphy.
C*-Algebras and Operator Theory.
Academic press, 1990.

Main references II

Sergey Neshveyev.
KMS States on the C^{*}-Algebras of Non-Principal Groupoids. Journal of Operator Theory, 70(2):513-530.
Rean Renault.
A Groupoid Approach to C*-Algebras, volume 793.
Springer-Verlag, 1980.
囯 Aidan Sims.
Hausdorff Étale Groupoids and Their C*-Algebras.
arXiv preprint arXiv:1710.10897, 2017.

