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Abstract: Recently a distribution free approach for testing parametric hypotheses

based on unitary transformations has been suggested in [Khmaladze(2013), Khmaladze(2016),

Khmaladze(2017)] and further studied in [Roberts(2019)] and [Nguyen(2017)]. In this

paper we show, how can the approach be applied to distribution free testing of linear

regression. Namely, the empirical processes suggested in this paper have two properties:

their asymptotic null distribution depends neither on covariates, nor on the distribution

of i.i.d. errors, and they are sensitive to all contiguous alternatives to the hypothetical

family of regression functions.

1 Introduction An illustrative example with linear

regression

The situation we consider in this paper is that of the classical parametric regression: given

a sequence of pairs of random variables (Xi, Yi)
n
i=1, where Yi is the response variable, while

Xi is the explanatory variable, or covariate, of this Yi, consider regression of Yi on Xi,

Yi = m(Xi) + εi.

We assume that, given covariates (Xj)
n
j=1, the errors (εi)

n
i=1 are independent, and have

expected value zero and finite variances – for the sake of simplicity of presentation we

assume these variances all equal 1.

We are interested in the classical problem of testing that the regression function m(x)

belongs to a specified parametric family of functions (m(x, θ), θ ∈ Θ), which depend on a
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finite-dimensional parameter θ and which satisfy more or less usual regularity assumptions

as functions of this θ.
Our aim is to describe a new method to build asymptotically distribution free theory

for testing such hypothesis. More specifically, we will construct asymptotically distribu-

tion free version of the regression empirical process, so that functionals from this process,

used as test statistics, will be asymptotically distribution free. The core of the method

is based on the application of unitary operators as described more or less recently in

[Khmaladze(2013), Khmaladze(2016), Khmaladze(2017)] and studied in [Roberts(2019)]

and [Nguyen(2017)].

The shortest way to show how the method works is to consider the most simple linear

regression model. That is, in

Yi = Xiθ + εi, i = 1, . . . , n, or in vector form, Y = Xθ + ε, (1)

the covariates Xi, and the coefficient θ are one-dimensional. On probabilistic nature of

the covariates (Xi)
n
i=1, we will make, practically, no assumptions. We only will use their

empirical distribution function

Fn(x) =
1

n

n∑
i=1

I(Xi≤x)

and assume that as number of observed pairs n increases it weakly converges to some

limiting distribution F – a mild assumption of ergodic nature. Whenever we use time

transformation t = F (x), we will also assume that F is continuous. All expectations

below will be conditional expectations given the vector of numbers (Xi)
n
i=1.

Consider estimated errors, or residuals,

ε̂ = Y −Xθ̂ with θ̂ = 〈Y, z〉,

where z = X/〈X,X〉1/2 is the normalised vector of covariates. The natural object

to base a goodness of fit test upon is given by the partial sums process (see, e.g.,

[Khmaladze and Koul(2004)] and [Stute(1997)])

ŵn(x) =
1√
n

n∑
i=1

ε̂iI(Xi≤x).
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However, the distribution of the vector ε̂ depends on covariates: its covariance matrix has

the form

Eε̂ ε̂T = I − zzT .

As to the limit in distribution for the process ŵn, it is a projection of some Brownian

motion, but not the Brownian bridge. Its distribution remains dependent on behaviour

of the covariates. In particular, the limit distribution of its supremum will not be easy to

calculate.
However, consider new residuals obtained from ε̂ by unitary transformation

Ua,b = I − 〈a− b, · 〉
1− 〈a, b〉

(a− b)

with n-dimensional vectors a of unit norm: b with ‖a‖ = ‖b‖ = 1. If a = b we take

Ua,b = I. This operator in unitary, it maps a into b and b into a, and it maps any vector

c, orthogonal to a and b, to itself, see, e.g., [Khmaladze(2013)], Sec. 2. Now choose a = z

and choose b equal r = (1, . . . , 1)T/
√
n, the vector not depending on covariates at all.

Since the vector of residuals ε̂ is orthogonal to the vector z, we obtain:

ê = ε̂− 〈ε̂, r〉
1− 〈z, r〉

(r − z).

These new residuals have covariance matrix

EêêT = I − rrT .

This would be the covariance matrix of the residuals in the problem of testing

Yi = θ + εi, i = 1, 2, . . . , n, (2)

which is completely free from covariates. Yet, the transformation of ε̂ to ê is one-to-one

and therefore ê contain the same “statistical information”, whichever way we measure it,

as ε̂. One could say that the problem of testing linear regression (1) and testing (2) is the

same problem.
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The partial sum process based on the new covariates

ŵn,e(x) =
1√
n

n∑
i=1

êiI(Xi≤x)

will converge in distribution, with time transformation t = Fn(x), to standard Brownian

bridge. Therefore, limit distribution for classical statistics will be known and free from

covariates.
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Figure 1: The smooth line is Kolmogorov distribution function. The two other ones are
simulated distributions of maxx |ŵn,e(x)| for two entirely different behaviour of covariates.
In one case Xi-s have uniform distribution on [0, 2] while in the other they have Gaussian
distribution N(1, 2). 200 replications of samples of size n = 200.

Asymptotically distribution free tests, even if only for this case of linear regression,

have been of main interest from long ago. To achieve this distribution free-ness different
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forms of residuals have been suggested, various decompositions of z, especially when co-

variates Xi are multidimensional, have been studied and intricate approximations, mostly

for quadratic forms from ε̂, have been developed. Here assumption of normality, arbitrary

as it could have been in many cases, has been made more or less casually. If one is al-

lowed somewhat free speech, one could say that a delicate mathematical lace have been

created. Very good source for this material is the book [Cook, Weisberg (1982)]. As to

well known modern guide in the existing theory we refer to [McCullagh, Nelder(2008)].

The most recent review on goodness of fit problems in regression, which we know of, is

[Gonzales Manteiga, Crujeiras (2013)].

In conclusion of this section we make one more remark of general character. The

partial sum processes, like ŵn represent one of the main objects of asymptotic theory.

However, it is often that a somewhat different form of such processes is considered, one

simple example of which would be

1√
n

n∑
i=1

(Xi − X̄n)I(ε̂i≤x), (3)

(see more sophisticated form of the weight function in recent paper [Chown, Müller (2018)]).

Here the scanning over the values of the residuals is used. This is very natural way

of scanning when the statistical problems considered pertain to distribution of errors.

An example, studied in well known papers [Dette, Munk (1998)], [Dette, Hetzler (2009)],

[Dette et al (2007)] and , and loc.cit. [Chown, Müller (2018)] is the problem of testing

heterogeneity of errors. The same scanning is basically unavoidable in study distribution

of i.i.d. errors, cf. [Koul et al (2017)], and in analysis of the distribution of innovations

in autoregression models, see [Müller et al (2009)].

In our current situation of testing the form of regression function, it is a natural wish

to see, in the case there is a deviation from the model, for what region of values of the

covariate the deviation takes place, and scanning in Xi-s will allow this. Even in the

simple case when the covariate is just discrete time, taking values 1, 2, . . . , n, it would be

strange not to examine the sequence ε̂1, ε̂2, . . . , ε̂n, in this time, but instead look on the

order statistics based on them, which scanning as in (3) would imply. These considerations

5



motivate the form of the regression process ŵn and ŵne.

To make the illustrative example of this section more of immediate practical use and

to explain better the asymptotic behaviour of the regression empirical process, in the next

Section 2 we consider the general form of one-dimensional linear regression. In the follow-

ing Section 3 we consider general parametric regression. In this case the time transfor-

mation, considered in (iii) of the Proposition 2 below again leads to distribution free-ness

if F is continuous. If F is discrete, then the method suggested in [Khmaladze(2013)],

section 2, can be easily used. In Section 4 we consider multidimensional Xis. Here one

can use the approach of [Khmaladze(2016)], section 2, but it would seems unavoidable to

employ density estimation of the covariates. However, will show that a different approach

can be used and density estimation can be avoided. This approach we borrowed from the

theory of optimal transportation, or Monge - Kantorovich transportation problem, see,

e.g., [Villani(2009)]. Very interesting probabilistic applications of this theory have been

recently given in [del Bario et al (2018)] and [Segers(2018)].

2 General linear regression on R

Consider the general form of one-dimensional linear regression model

Yi = θ0 +Xiθ1 + εi, i = 1, . . . , n, or Y = θ01 +Xθ1 + ε, (4)

which is standard linear regression on real line. The 1 here denotes a vector with all

coordinates equal to the number 1. Instead of (4) consider its slightly modified but more

convenient form

Yi = θ0 + (Xi − X̄)θ1 + εi, i = 1, . . . , n, or in vector form, (5)

Y = θ01 + (X − X̄1)θ1 + ε,

The least square estimations of θ0 and θ1 are

θ̂0 =
1

n

n∑
j=1

Yj and θ̂1 =
1∑n

j=1(Xj − X̄)2

n∑
i=1

Yj(Xj − X̄).
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Using again notation r and notation

z̃ =
1√∑n

j=1(Xj − X̄)2
(X − X̄),

for normalised vector of centered covariates, one can write the residuals as

ε̂ = Y − θ̂01− θ̂1(X − X̄)

or in more succinct form

ε̂ = Y − 〈Y, r〉r − 〈Y, z̃〉z̃.

Substitution of the linear regression model (5) for Y produces representation of the vector

of residuals ε̂ through the vector of errors ε:

ε̂ = ε− 〈ε, r〉r − 〈ε, z̃〉z̃. (6)

This represents ε̂ as projection of ε orthogonal to r and z̃.

From this it follows that the covariance matrix of ε̂ is

Eε̂ε̂T = I − rrT − z̃z̃T ,

and thus it still depends on the values of the covariates. One can show that the limit

distribution of the regression process with these residuals,

ŵn(x) =
1√
n

n∑
i=1

ε̂iI(Xi≤x),

will therefore have limit distribution which depends on z̃.

It is possible to say more about the geometric structure of ŵn and its limiting process,

and namely that the limiting process will be a double projection of Brownian motion

orthogonal to the functions F (x) and

H(x) =

∫ x

h(y)dF (y), with h(y) =
z −

∫
ydF (y)√∫

(z −
∫
ydF (y))2dF (z)

.
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Here one can think of h as a continuous time “trace” of z̃.

To show this structure of ŵn denote Ix the vector with coordinates (I(Xi≤x))ni=1. Then

we can write

ŵn(x) =
1√
n
〈ε̂, Ix〉 =

1√
n

[〈ε, Ix〉 − 〈ε, r〉〈r, Ix〉 − 〈ε, z̃〉〈z̃, Ix〉] .

For the first term on the right hand side, considered as a process in x and denoted wn(x),

we can see that

wn(x) =
1√
n
〈ε, Ix〉 =

1√
n

n∑
i=1

εiI(Xi≤x) (7)

is the process of partial sums of i.i.d. random variables and Ew2
n(x) = Fn(x) while

Fn → F . Therefore, wn converges in distribution to Brownian motion in time F , i.e.

Ew2
F (x) = F (x). Now consider the second term:

1√
n
〈ε, r〉〈r, Ix〉 =

1√
n

n∑
j=1

εj
1

n

n∑
i=1

I(Xi≤x) = wn(∞)Fn(x).

The third term produces the following expression

1√
n

n∑
j=1

εj(Xj − X̄)
1∑n

j=1(Xj − X̄)2

n∑
i=1

(Xi − X̄)I(Xi≤x)

=

∫
(y − X̄)dwn(y)

1∫
(y − X̄)2dFn(y)

∫ x

(y − X̄)dFn(y)

=

∫
hn(y)dwn(y)

∫ x

hn(y)dFn(y),

where

hn(x) =
x− X̄√∫

(y − X̄)2dFn(y)
.
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This function, obviously, has unit L2(Fn)-norm and is orthogonal to functions const and

x. Overall, we see that

ŵn(x) = wn(x)− wn(∞)Fn(x)−
∫
hn(y)dwn(y)

∫ x

hn(y)dFn(y) (8)

and the right hand side of (8) is the orthogonal projector of wn which annihilates Fn and

Hn. As the consequence of this, if
∫
y2dF (y) < ∞ (and in our assumption this integral

equals 1), then ŵε is the corresponding projection of the Brownian motion wF .

What we propose now is, again, to replace the residuals ε̂ by another residuals, ê,

constructed as their unitary transformation. As a preliminary step, assume that the

covariates are listed in increasing order, X1 < X2 < · · · < Xn. One can assume this

without loss of generality – even if this will require re-shuffling of our initial pairs of

observations, probability measure we work under will not change, because re-shuffled

errors will still be independent from permuted (Xi)
n
i=1 and will still form an i.i.d. sequence.

Now introduce another vector r̃, different from z̃, which also has unit norm and is

orthogonal to r. Define

ê = Uz̃,r̃ ε̂ = ε̂− 〈ε̂, r̃ − z̃〉
1− 〈z, r〉

(r̃ − z̃) = ε̂− 〈ε̂, r̃〉
1− 〈z̃, r̃〉

(r̃ − z̃),

where the second equality is true because the vector ε̂ is orthogonal to the vector z̃, see

(6). Thus calculation of new residuals is as simple as in the previous case of (1).

Let us summarise properties of ê in the following proposition. In this we do not need

any further specification of r̃, but for transition to the limit when n→∞ it is natural to

assume that r̃i can be represented through some piece-wise continuous function r̃(t) on

[0, 1]:

r̃i =
1√
n
r̃(
i

n
), (9)

in which case we have convergence

1√
n

nt∑
i=1

r̃i =
1

n

nt∑
i=1

r̃(
i

n
)→

∫ t

0

r̃(s)ds = Q(t)
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and
nt∑
i=1

r̃2i =
1

n

nt∑
i=1

r̃2(
i

n
)→

∫ t

0

r̃2(s)ds,

and orthogonality of the vector r̃ to the vector r implies orthogonality of the function r̃(t)

to functions equal constant, or Q(1) = 0. For example, r̃ can be chosen as

r̃i =

√
12

n

[
i

n
− n+ 1

2n

]
. (10)

Proposition 1. (i) Covariance matrix of ê is

EêêT = I − rrT − r̃r̃T

and therefore does not incorporate covariates X as soon as r̃ does not incorporate X.

(ii) If (9) is true then the regression empirical process based on ê,

ŵn,e(x) =
1√
n

n∑
i=1

êiI(Xi≤x)

has the covariance function

Eŵn,e(x)ŵn,e(y) = Fn(min(x, y))− Fn(x)Fn(y)−Qn(Fn(x))Qn(Fn(y)) +O(1/n),

where Qn(t) =
∑nt

i=1 r̃(
i
n
)/n. In the case of (10)

Q(Fn(x)) ∼ −
√

3Fn(x)(1− Fn(x)), n→∞.

(iii) As a corollary of (ii), the process ŵn,e, with change of time t = F (x), converges in

distribution to projection of standard Brownian motion on [0, 1] orthogonal to functions 1

and r̃.

The main step in the proof of (i) is to express ê through ε:

Uz̃,r̃ ε̂ = Uz̃,r̃ε− 〈ε, r〉Uz̃,r̃r − 〈ε, z̃〉Uz̃,r̃z̃

= Uz̃,r̃ε− 〈ε, r〉r − 〈ε, z̃〉r̃,
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where the second equality is correct because r ⊥ z̃, r̃ and Uz̃,r̃z̃ = r̃ by the definition of

Uz̃,r̃. Therefore

ê = Uz̃,r̃ ε̂ = ε− 〈ε, r̃〉
1− 〈z̃, r̃〉

(r̃ − z̃)− 〈ε, r〉r − 〈ε, z̃〉r̃.

Calculation of the covariance matrix of the right hand side is now not difficult using

shorthand formulas Eε〈ε, a〉 = a and E〈ε, a〉〈ε, b〉 = 〈a, b〉. After some algebra we obtain

the expression given in (i).

To show (ii) use vector notation for ŵn,e:

Eŵn,e(x)ŵn,e(y) =
1

n
E〈Ix, ê〉〈ê, Iy〉 =

1

n
ITx (I − rrT − r̃r̃T )Iy

Opening the brackets in the last expression one can find that

1

n
〈Ix, Iy〉 = Fn(min(x, y)) and

1

n
〈Ix, r〉〈Iy, r〉 = Fn(x)Fn(y),

while

1

n
〈Ix, r̃〉〈Iy, r̃〉 =

1

n

n∑
i=1

r̃(
i

n
)I(Xi≤x)

1

n

n∑
i=1

r̃(
i

n
)I(Xi≤y)

=
1

n

nFn(x)∑
i=1

r̃(
i

n
)

1

n

nFn(y)∑
i=1

r̃(
i

n
) = Qn(Fn(x))Qn(Fn(y))

which proves (ii).

The statement (iii) follows if we note that the limit of the covariance function of

ŵn,e(x) in time t = F (x) converges to min(t, s)− ts−Q(t)Q(s), and that orthogonality of

function r̃(·) to the function identically equal 1 makes the last expression the covariance

of the Gaussian process w(t)− tw(1)−Q(t)
∫ 1

0
r̃(s)dw(s), which exactly is the projection

described in (iii). Λ
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In both regression models (1) and (5) the process ŵn turns out to be a projection of

a Brownian motion, but for different values of covariates these projections are different.

However, it is geometrically clear that it should be possible to rotate one projection

into another, and this anther into still another one, thus creating a class of equivalent

projections – those which can be mapped into each other. Then one can choose a single

representative in each equivalence class, call it standard, and rotate any other projection

into this standard one. What was done in this and the previous section was that we

selected two standard projections and constructed the rotation of the other ones into

these two.
The usefulness of this approach depends on how practically simple the rotation will

be. For us, the transformations of ε̂ into ê looks very simple.

Finally, note that the model (5) includes two estimated parameters while the model

(1) – only one. However, since the vector r is already “standard”, independent from

covariates, there is no need to “rotate” it to any other vector. Therefore in both cases

one-dimensional rotation is sufficient. Situation when one needs to rotate several vectors
at once, as well as general form of parametric regression will be considered in the next

Section 3.

3 General parametric regression

Now consider testing regression model

Yi = mθ(Xi) + εi, i = 1, . . . , , n, or in vector form, Y = mθ(X) + ε, (11)

wheremθ(X) denotes a vector with coordinates (mθ(Xi))
n
i=1, andmθ is regression function,

depending on d-dimensional parameter θ. We will assume some regularity of mθ(Xi) with

respect to θ, namely that mθ(Xi) is continuously differentiable in θ. Obvious example

when this condition is true is given by polynomial regression

mθ(x) = θ1p1(x) + θ2p2(x) + · · ·+ θdpd(x)
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where pj(x), j = 1, . . . , d, may form a system of (orthogonal) polynomials, or splines (see,

e.g., [Harrell (2015)], Sec.2.4.3), or trigonometric polynomials. There certainly are also

many examples, where mθ(x) is not linear in θ.

Now denote

ṁθ(x) = (
∂

∂θ1
mθ(x), . . . ,

∂

∂θd
mθ(x))T

a d-dimensional vector-function of the partial derivatives. Then (ṁθ(Xi))
n
i=1 is d × n-

matrix, with d rows and n columns. We assume that for every θ coordinates of ṁθ(x) are

linearly independent as functions of x, which heuristically means that the model does not

include unnecessary parameters.

Let now θ̂ denote the least square estimator of θ, which is an appropriate solution of

the least squares’ equation

n∑
i=1

ṁθ̂(Xi) [Yi −mθ̂(Xi)] = 0.

Without digressing to exact justification (which can be found, e.g., in [Bates, Watts (2007)])

assume that Taylor expansion in θ is valid and that together with normalization by
√
n

it leads to

1√
n

n∑
i=1

ṁθ(Xi) [Yi −mθ(Xi)]−Rn

√
n(θ̂ − θ) + ρn = 0

with a non-degenerate d× d-matrix Rn,

Rn =
1

n

n∑
i=1

ṁθ(Xi)ṁ
T
θ (Xi) =

∫
ṁθ(x)ṁT

θ (x)dFn(x),

and d-dimensional vector of residuals ρn, such that E‖ρn‖2 → 0, n → ∞. Below for the

terms asymptotically negligible in the same sense we will use notation oP (1). From the

previous display we obtain asymptotic representation for θ̂:

√
n(θ̂ − θ) = R−1n

1√
n

n∑
i=1

ṁθ(Xi) [Yi −mθ(Xi)] + oP (1).
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As the final step, expand the differences Yi−mθ̂(Xi) in θ up to linear term and substitute

the expression above for
√
n(θ̂ − θ) to get

Yi −mθ̂(Xi) = Yi −mθ(Xi)− ṁT
θ (Xi)R

−1
n

1

n

n∑
j=1

ṁθ(Xj)[Yj −mθ(Xj)] + oP (1)

or

ε̂i = εi − ṁT
θ (Xi)R

−1
n

1

n

n∑
j=1

ṁθ(Xj)εj + oP (1).

In vector form this becomes

ε̂ = ε− ṁT
θR
−1
n

1

n
〈ṁθ, ε〉+ oP (1), (12)

an expression directly analogous to (6). It also describes the vector of residuals as be-

ing, asymptotically, projection of the vector of errors ε, parallel to the system of d n-

dimensional vectors of derivatives

(
∂

∂θ1
mθ(Xi))

n
i=1, . . . , (

∂

∂θd
mθ(Xi))

n
i=1.

It will be notationally simpler, while computationally not difficult, to change these

linearly independent vectors to orthonormal vectors. Namely, introduce the functions

µθk(x) = R−1/2n

∂

∂θk
mθ(x), k = 1, . . . , d,

and then the vectors

µθk,i =
1√
n
µθk(Xi), i = 1, . . . , n. (13)

The two notations are convenient each in its place: µθk as a vector in Rn will be useful

in expressions like (14), and µθk(·) as a function in L2(Fn) will be useful in integral

expressions like (15). Their respective norms are equal:

n∑
i=1

µ2
θk,i =

∫
µ2
θk(x)dFn(x).
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Which of these two objects we use will be visible in notation and clear from the context.

Now we can write (12) as

ε̂ = ε−
d∑

k=1

µTθk〈µθk, ε〉+ oP (1), (14)

where the leading term on the right hand side is the projection of ε orthogonal to vectors

µθ,k. As a consequence, one can show that the following analogue of the representation

(8) is true:

ŵn(x) =
1√
n

n∑
i=1

[Yi −mθ̂(Xi)]I(Xi≤x)

= wn(x)−
d∑

k=1

∫
z≤x

µθk(z)dFn(z)

∫
µθk(z)dwn(z) + oP (1). (15)

We are ready to describe rotation ε̂ to a vector of another residuals.

With some freedom of speech, we say that one can choose these new residuals in any

way we wish; for example, choose them independent of any covariates. In particular, let

r1(·) be a function on [0, 1], identically equal 1, and with this let vectors rk be defined as

rki = rk(i/n)/
√
n, where the system of functions (rk(·))dk=1 is such that

1

n

n∑
i=1

rk(
i

n
)rl(

i

n
) = δk,l, k, l = 1, . . . , d.

If we derive a unitary operator K, which maps orthonormal vectors (µθ,k)
d
k=1 into vectors

(rk)
d
k=1, then this operator will map ε̂ into ê, and the covariance matrix of these new

residuals will be defined solely by (rk)
d
k=1 or (rk(·))dk=1.

As a side and rather inconsequential remark we note that it would be immediate to

choose orthonormal polynomials on [0, 1], i.e. such that∫ 1

0

rk(s)rl(s)ds = δk,l,
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which are continuous and bounded functions. Such polynomials will not satisfy the or-

thogonality condition in the previous display above, but will require small corrections,

asymptotically negligible for n→∞. If we insert these corrections in our notation it will

make the text more complicated without opening any new feature of the transformation

we want to discuss. Therefore in notations we will identify orthogonal polynomials in

continuous time with those, orthonormal on the grid {1/n, 2/n, . . . , 1}.
It is essential that the structure of K allows convenient handling. We present it here

as a product of one-dimensional unitary operators. This allows coding of K in a loop,

and was tried for the case of contingency tables with about 30-dimensional parameter in

[Nguyen(2017)].

Suppose in one-dimensional unitary operator Ua,b we choose a = µθ,1 and b = r1 and

apply the resulting operator Uµθ,1,r1 to vector r2:

Uµθ,1.r1r2 = r̃2.

Then the product

K2 = Uµθ,2.r̃2 × Uµθ,1.r1

is unitary operator which maps vectors r1, r2 to vectors µθ,1, µθ,2 and vice versa, and leaves

vectors orthogonal to these four vectors unchanged. For a general k, define r̃k as

Kk−1rk = r̃k, k = 2, . . . , d.

Lemma 1. The product

Kd = Uµθ,d.r̃d × · · · × Uµθ,1.r1

is the unitary operator which maps (rk)
d
k=1 to (µθ,k)

d
k=1 and vice versa, and leaves vectors

orthogonal to (rk)
d
k=1 and (µθ,k)

d
k=1 unchanged.

The proof of this lemma is given, e.g., in [Khmaladze(2016)], section 3.4. It may

be of independent interest for statistics of directional data, when explicit expression for

rotations is needed.
Thus, in proposition below we denote

ê = Kdε̂, (16)
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and once again assume that Xi-s are numbered in increasing order. We also say

Eε̂ε̂T ∼ I −
d∑

k=1

µθkµ
T
θk

in the sense that for any sequence of n-vectors bn, such that 〈bn, bn〉 → c <∞

E〈bn, ε〉2 ∼ 〈bn, bn〉 −
d∑

k=1

〈bn, µθk〉2, n→∞.

This notion of equivalence is used in the proposition below.

Proposition 2. Suppose the regression function mθ(x) is regular, in the sense that, for

every θ, the matrix Rn is of full rank and converges to a matrix R of full rank, and (14) is

true. Suppose the functions rk(·), k = 1, . . . , d, are continuous and bounded on [0, 1].Then

(i) for the covariance matrix of residuals ê the following is true:

EêêT ∼ I −
d∑
j=1

rkr
T
k , n→∞;

(ii) for the empirical regression process, based on residuals ê of (16),

ŵn,e(x) =
1√
n

n∑
i=1

êiI(Xi≤x),

the following convergence of the covariance function is true:

Eŵn,e(x)ŵn,e(y)→ F (min(x, y))−
d∑
j=1

Qk(F (x))Qk(F (y)), as n→∞,

where Qk(t) =
∫ t
0
r(s)ds;

(iii) moreover, the process ŵn,e, with time change t = F (x) converges in distribution to

projection of standard Brownian motion on [0,1] orthogonal to functions rj(·), j = 1, . . . , d.
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To prove (i) we now avoid using the explicit form of the operator Kd, and instead

note that according to (14), up to asymptotically negligible term, ε̂ is projection of ε,

orthogonal to collection of n-vectors µθ,1, . . . , µθ,d. According to the lemma above, these

vectors are mapped by operator Kd to n-vectors r1, . . . , rd, and the operator Kd is unitary.

It is also continuous. Therefore the vector ε̂ will be mapped into the vector which, up to

asymptotically negligible term, will be projection of ε orthogonal to r1, . . . , rd:

ê = ε−
d∑

k=1

rk〈rk, ε〉+ oP (1). (17)

And the covariance matrix of this vector is the expression given in (i).

To prove (ii), replace ê by its main term in (17) in the expected value

Eŵn,e(x)ŵn,e(y) =
1

n
E〈Ix, ê〉〈ê, Iy〉 ∼

1

n
ITx (I −

d∑
k=1

rkr
T
k )Iy.

Here, since every rk(·) is continuous and bounded,

1√
n
ITx rk =

1

n

n∑
i=1

rk(
i

n
)I(Xi≤x) ∼

∫
z≤x

rk(Fn(z))dFn(z).

Statement (iii) of convergence in distribution follows not from unitarity property of

Kd as such, but from simplicity of its structure, reflected by (17). We have

ŵn,e(x) ∼ 1√
n
〈Ix, ε−

d∑
j=1

rj〈rj, ε〉〉 =
1√
n
〈Ix, ε〉 −

1√
n

d∑
k=1

〈Ix, rk〉〈rk, ε〉

The first inner product on the right side, denoted wn(x) in (7), converges in distribution

to F -Brownian motion. Expression for 〈Ix, rk〉 we considered above, while

〈rj, ε〉 =
1√
n

n∑
i=1

rk(
i

n
)εi =

1√
n

n∑
i=1

rk(Fn(Xi))εi =

∫
rk(Fn(x))dwn(x).
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Thus, overall representation of ŵn,e through wn has the form

ŵn,e(x) ∼ wn(x)−
d∑

k−1

∫
z≤x

rk(Fn(z))dFn(z)

∫
rk(Fn(x))dwn(x). (18)

Since wn converges in distribution to the F -Brownian motion wF , which in time t = F (x)

becomes a standard Brownian motion w on [0, 1], we see that the process ŵn,e converges

in distribution to the Gaussian process given by the right hand side of the display above,

which in time t = F (x) can be written as

ŵ(t) = w(t)−
d∑

k=1

Qk(t)

∫
rk(s)dw(s).

This is an orthogonal projection of w orthogonal to the functions rj(·), j = 1, . . . , d.

4 The case of multi-dimensional covariates

It is an important case when the covariate is a finite-dimensional vector. Let us use p for

dimension of each Xi. Again, we will not assume anything about probabilistic nature of

these covariates, except that

Fn(x) =
1

n

n∑
i=1

I{Xi≤x} → F (x),

where F is an absolutely continuous distribution function in Rp. For simplicity of presen-

tation, it will be convenient, however, to assume that F is replaced by its copula function,

or, equivalently, F itself is supported on [0, 1]p, although the support can be a proper

subset of [0, 1]2.

For p-dimensional time, we could have shown that (15) in the previous section

is still correct. One of the relatively familiar ways to obtain distribution-free trans-

formation of this process would be to use the scanning martingale’s approach of

[Khmaladze and Koul(2004)] to the projection (15). Another possibility would be to

19



use unitary transformations suggested in [Khmaladze(2016)] to map the projection (15)

into another “standard” projection, changing simultaneously the functions µθk(·) and dis-

tribution F to the corresponding objects of our choice. In doing this one will need to use

estimator of the density of F , assuming it exists. Here, however, we will see that both

tasks can be achieved, again simultaneously but simpler, using the approach suggested

by the theory of optimal transport.

For distribution free-ness of the vector of new residuals it does not matter how do

we realise the vectors (rk)
d
k=1. For example, one can represent them in literary the same

way as in (9) – the covariance matrix of the new residuals will depend on r(·) and not

on covariates. However, similarly to (13), see also discussion following (15), it will be

very natural to connect vectors (rk)
d
k=1 with a system of piecewise continuous orthogonal

functions rk(·) of p variables. To do this let us generate an i.i.d. sequence (ξi)
n
i=1 of random

variables uniformly distributed on [0, 1]p. One could speak here about some distribution G

instead of the uniform distribution, but it will be a trite generality. The random variables

(ξi)
n
i=1 will not be used to randomise our procedure but to serve as an “anchor” to connect

covariates (Xi)
n
i=1 to new ones which are uniformly distributed on [0, 1]p.

Now consider a one-to-one “push forward” map T of (Xi)
n
i=1 to (ξi)

n
i=1, so that T (Xi) =

ξj for one and only one j, cf. [Peyré, Cuturi (2019)], sec. 2.2. There are n! choices of T .

Out of them we choose the map T0, which minimises the following sum

n∑
i=1

‖Xi − T (Xi)‖.

Suppose now the vectors (rk)
d
k=1 are formed as

rk,i =
1√
n
rk(T0(Xi)), k = 1, . . . , d. (19)

Here (rk(·))dk=1 is a system of orthonormal functions on L2[0, 1]p. With this choice of

(rk)
d
k=1 define residuals ê again as (16). Justification of the use of the operator T0 partly
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comes from equality

Gn(x) =
1

n

n∑
i=1

I(T0(Xi)≤x) =
1

n

n∑
i=1

I(ξi≤x), (20)

which shows that Gn will converge to the uniform distribution function on [0, 1]p. As a

corollary of (19) and (20), the behaviour of statistics, which are invariant under permu-

tation, is governed by Gn and not by Fn. For example

1

n

n∑
i=1

rk(T0(Xi))I(T0(Xi)≤x) =

∫
z≤x

rk(z)dGn(z). (21)

Now we can transform the process ŵn,e of Proposition 2, (ii), as follows:

T ∗0 ŵn,e(x) =
1√
n

n∑
i=1

êiI(T0(Xi)≤x), (22)

where the construction of ê incorporates, as we said, T0(Xi)-s. The following comment is

intended as further justification of the use of T0. It is not necessary to use minimiser T0

to produce the version of regression empirical process with standard covariance operator

– any T will achieve this. However, in the case when the null hypothesis (11) is not

correct, expected values of residuals ê are not zero, but will be, for each contiguous

converging alternatives, close to some function, say, h, specific to the alternative (see,

e.g., [Khmaladze and Koul(2004)], sect. 1, or [?]). It will be desirable that the shift of

transformed process T ∗0 ŵn,e preserve the main pattern present in the shift function h. For

this, it is necessary that the transformation of ŵn,e be smooth. One can say that the T

should minimise the sum
n∑
i=1

|h(Xi)− h(T (Xi))|.

However, very wide class of alternatives, and therefore, of functions h is apriori possible.

Therefore, the choice of T should not be hinged on a particular h but should be as “smooth

map” of (Xi)
n
i=1 into (ξi)

n
i=1 as possible. This motivates the choice of T0.
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In the formulation of the next proposition let us denote T0(Xi) = ξj.

Proposition 3. Suppose the regression function mθ(x) is regular, in the same sense as

in Proposition 2. Suppose the orthonormal functions rk(·), k = 1, . . . , d, are continuous

and bounded on [0, 1]p.Then

(i) for the covariance matrix of the residuals ê the following is true:

EêêT ∼ I −
d∑
j=1

rkr
T
k , n→∞;

where rk are realised according to (19);

(ii) for the empirical regression process, based on residuals ê of (16),

T ∗0 ŵn,e(x) =
1√
n

n∑
i=1

êiI(T0(Xi)≤x),

the following convergence of the covariance function is true:

Eŵn,e(x)ŵn,e(y)→ G(min(x, y))−
d∑
j=1

Qk(F (x))Qk(F (y)), as n→∞,

where Qk(x) =
∫
z≤x r(z)dz;

moreover,

(iii) the process T ∗0 ŵn,e converges in distribution to projection of standard Brownian

motion on [0, 1]p orthogonal to functions rk(·), k = 1, . . . , d.

Given two orthonormal systems of n-vectors (µθ,k)
d
k=1) and (rk)

d
k=1 the operator Kd,

defined in the lemma, will rotate one system into another, regardless of how these systems

have been constructed. Therefore (17) is again true for p-dimensional time, and it implies

(i).

To see that (ii) is true, one can follow the proof of (ii) in Proposition 2 using (20) for

ITx Iy and using (21) for 1√
n
ITx rk.

Few more comments and illustrations to follow.
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