
Trending seasonal data with multiple structural breaks. NZ

visitor arrivals and the minimal effects of 9/11

John Haywood∗ John Randal†

5 November 2008

Abstract

We demonstrate the poor performance, with seasonal data, of existing methods for en-
dogenously dating multiple structural breaks. Motivated by iterative nonparametric tech-
niques, we present a new approach for estimating parametric structural break models that
performs well, and which amalgamates the Macaulay cycle with modern structural break
estimation. We suggest that iterative estimation methods are a simple but important fea-
ture of this approach when modelling seasonal data. The methodology is illustrated by
simulation and then used for an analysis of monthly short term visitor arrival time series to
New Zealand, to assess the effect of the 9/11 terrorist attacks. While some historical events
had a marked structural effect on those arrivals, we show that 9/11 did not.
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1 Introduction

The economic importance of tourism to New Zealand is high and has increased considerably

in recent years. As Pearce (2001) noted in his review article, international visitor arrivals

increased by 65% over the period 1990 to 1999 and foreign exchange earnings increased by

120% (in current terms). More recently, for the year ended March 2004 tourism expenditure

was $17.2 billion Statistics New Zealand (2005). In that year, the tourism industry made a

value added contribution to GDP of 9.4%, while 5.9% of the total employed workforce had

work directly engaged in tourism. Further, tourism’s 18.5% contribution to exports was greater

than that of all other industries including dairy products, which in turn was greater than the

contributions from meat and meat products, wood and wood products, and seafood.

The time series of monthly short term visitor arrivals to New Zealand is one direct and easily

recorded measurement of the international tourist contribution to the New Zealand economy.

A useful precursor to development of tourism policy or business strategy is an understanding

of the dynamic behaviour of these seasonal data. A classical time series decomposition in-

cludes unobserved components representing an evolving trend, a seasonal encapsulating regular

deviation from the trend on a within-year basis, and an irregular, which is the residual or unex-

plained variation in the data. There are various ways to estimate these components, using both

parametric and nonparametric approaches; see for example Harvey (1989), Hamilton (1994),

Findley et al. (1998), Franses (1998) and Makridakis, Wheelwright & Hyndman (1998). Such

a decomposition then allows an interpretation of the dynamic behaviour of visitor arrivals in

terms of the estimated components.

There seems little doubt that the terrorist attacks of 11 September 2001 have had a pro-

nounced influence on world events since that time. For example, see US Department of State

(2004), for a summary of 100 editorial opinions from media in 57 countries around the world,

commenting on the three years following September 2001. Those terrorist events and their

subsequent effects have been used to explain apparent movements in many time series, and in

this paper we concentrate on a particular example: the number of short term visitor arrivals to

New Zealand.

Our focus is to detect any longer term, or structural, changes in trend or seasonal compo-

nents of the arrivals as a result of the 9/11 events. We also wish to compare the magnitude of

any 9/11 effects with those due to other causes. Consequently we did not wish to specify the

dates of any structural changes, but rather estimate the number and position of these endoge-

nously. To achieve this we investigated the use of Bai & Perron’s (1998, 2003) procedures for

estimating multiple structural changes in a linear model. Their approach permits periods of

stable dynamic behaviour between relatively infrequent but significant changes to the parame-
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ters of the model. However, there is clearly no empirical requirement that changes in the trend

and seasonal components occur simultaneously. As we demonstrate, for the visitor arrivals data

changes typically occur more frequently in the trend. In contrast, direct application of Bai

& Perron’s (1998, 2003) methodology fits components simultaneously and yields a relatively

poor decomposition, as we show via a simulation study and analysis of the visitor arrivals. We

propose a new iterative fitting procedure for seasonal data, based on Bai & Perron (1998, 2003)

and using existing R packages (R Development Core Team, 2008), which gives much improved

performance in terms of flexibility of fitted trends (via more appropriate placement of breaks)

and lack of residual serial correlation.

Throughout the paper the term ‘trend’ (or trend component) is used to describe the evolving,

underlying behaviour of a time series. That underlying behaviour reflects both long term

movements and medium term cyclical fluctuations, where long term and medium term are

in relation to the (shorter) period of the evolving seasonal component that we also consider

explicitly. This notion of trend agrees with that used by many national statistical offices; e.g.,

see section 2.1, Australian Bureau of Statistics (2003). Certainly we agree with Busetti &

Harvey (2008), that the strong but common assumption in the econometrics literature of a

constant underlying slope when testing for a trend is often implausible. Since our focus is

on breaks in the structure of the trend and seasonal components, we choose to model those

components piecewise, with endogenously estimated changes in the linear trend slope and/or

seasonal pattern corresponding to identified structural changes.

We find there is actually little to suggest that the September 11 incidents had much effect

on New Zealand visitor arrivals, when viewed in the context of ‘normal’ historically observed

movements. In contrast, we suggest some other historical events which do appear to have

affected visitor arrivals to New Zealand quite markedly. We make no attempt to forecast the

arrivals data using structural break models; we suggest other approaches, such as ARIMA

modelling (Box & Jenkins, 1976), would be more suitable if prediction was the aim. In fact

Haywood & Randal (2004) used that approach to demonstrate that the 9/11 events did not

significantly affect New Zealand visitor arrivals, by showing that the observations post-9/11

were contained within out of sample prediction intervals computed using a seasonal ARIMA

(‘airline’) model, fitted to arrivals data up to 9/11. In this paper though, the focus is explicitly

on identifying structural changes if they exist in the arrivals data, in trend and/or seasonal

components.

In Section 2 we present an exploratory data analysis (EDA) of New Zealand visitor arrivals

and a discussion of some apparent sources of variability in the data. Section 3 motivates and

presents the iterative estimation of a parametric model that allows separate structural changes
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in the trend and seasonal components. Simulated data is used to illustrate the good performance

of the new methodology. In Section 4 we use our iterative approach to model the arrivals data

and in Section 5 we give some concluding comments.

2 EDA of short term visitor arrivals to New Zealand

We consider 25 complete years of monthly short term visitor arrival series from January 1980 to

December 2004. The arrivals are from the seven most important countries of origin, ranked by

current proportion of the total: Australia, UK, USA, Japan, Korea, China, Germany, as well

as a residual series from ‘Other’ origins. We analyse these series individually along with their

aggregate, denoted ‘Total’ (Figure 1).
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Figure 1. Monthly short term visitor arrivals to New Zealand, by origin, from January 1980 to December 2004.
The vertical scales are not equal.

As seen in Figure 1 a ‘U’-shaped seasonal pattern is common, with visitor numbers reaching

a local maximum in the summer months December to February, and a local minimum in the

winter months June and July. Further, it is apparent that the amplitude of the seasonal variation

tends to increase with the level of the series, indicating a multiplicative relationship between

trend and seasonal components. Australian and UK arrivals appear to be growing at a relatively

steady rate. In contrast, a large downturn in arrivals from the USA is evident in the late 1980s,

a period which closely followed the stock market crash of October 1987. The trend in Japanese

arrivals levels off over the last 15 years. The effect of the Asian financial crisis of 1997 is evident

especially in the Korean data, with visitor numbers dramatically reduced just after this event.

Arrivals from China contain perhaps the most visible short term effect in these series, which is
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due to the SARS epidemic that virtually eliminated international travel by Chinese nationals

during May and June 2003. German arrivals show a clear change from exponential growth prior

to the early 1990s to a more stable pattern in recent times. The Other arrivals show a SARS

effect much less prominent than that seen in the Chinese arrivals, as do some further series

including Total arrivals. One of the more obvious shifts in the aggregate Total series appears

to be linked to the Korean downturn, which can be attributed to the Asian financial crisis.

The Asian financial crisis of 1997-1998 markedly affected stock markets and exchange rates

in nine East Asian countries: Hong Kong, Indonesia, Japan, Korea, Malaysia, Philippines,

Singapore, Taiwan and Thailand. See Kaminsky & Schmukler (1999) for a chronology of the

crisis, from the official onset marked by the devaluation of the Thai baht on 2 July 1997 up to

the resignation of Indonesian President Suharto in May 1998. Kaminsky & Schmukler (1999)

suggest the presence of important contagion effects in those markets, based on an analysis of

identified market jitters. More recent analysis by Dungey et al. (2004) suggests, however, that

increased exchange rate volatility observed in Australia and New Zealand around that time was

not due to contagion from Asian countries, or unanticipated factors, but rather to common

(anticipated) world factors such as trade linkages. This is one context in which changes in short

term visitor arrivals to New Zealand from Asian countries around 1997-1998 can be viewed, since

tourism has become such an important sector of the New Zealand economy, as noted above.

In particular, Korea is one of the five source countries with the largest recent (2000-2004)

proportion of visitors to New Zealand (Table 1).

Table 1. Summary statistics for the monthly proportion of visitors to New Zealand, by origin. The final three
columns give proportions of the Total for the entire 25 year sample period, and the five-year periods 1980-1984
and 2000-2004, respectively.

Min LQ Median UQ Max 80-04 80-84 00-04

Australia 21.8 30.0 35.9 41.6 58.8 33.8 44.9 33.3
UK 3.4 6.3 8.0 10.6 18.3 9.8 7.6 11.8
USA 6.3 10.3 13.0 16.3 29.4 12.4 16.7 10.0
Japan 2.8 7.1 9.1 11.0 17.8 9.2 5.9 7.8
Korea 0.0 0.2 1.0 4.3 10.5 3.4 0.2 4.8
China 0.0 0.2 0.4 1.2 4.7 1.4 0.1 3.1
Germany 0.8 1.5 2.2 3.4 7.5 2.9 1.8 2.6
Other 17.9 23.4 26.1 28.6 34.3 27.0 22.8 26.7

Table 1 shows that Australia is by far the biggest single source of visitors to New Zealand,

accounting for almost exactly one-third of visitors in the 2000-2004 five year period and slightly

more over the entire data period. The maximum proportion in a month from Australia was

58.8% in June 1985, and the minimum was 21.8% in February 1997. An Australian influence

is notable in the Total arrivals, because as the nearest neighbour to a geographically isolated
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country, arrivals from Australia exhibit variation not seen in the remaining data. As seen in

Figure 1, the Australian data has a regular seasonal pattern which is quite different from that

of any other country. A closer examination indicates three peaks per year before 1987 and four

thereafter; we discuss this further in Section 4.

One way of estimating unobserved trend and seasonal components is to use a robust, non-

parametric technique such as STL (Cleveland et al., 1990); here we use STL as implemented in

R (R Development Core Team, 2008). This procedure consists of an iterated cycle in which the

data is detrended, then the seasonal is updated from the resulting detrended seasonal subseries,

after which the trend estimate is updated. At each iteration, robustness weights are formed

based on the estimated irregular component and these are used to down-weight outlying ob-

servations in subsequent calculations. A typical STL decomposition is shown in Figure 2 for

the natural logarithm of the Total arrivals. The log transformation is commonly used to sta-

bilise a seasonal pattern which increases with the level of the series, and effectively transforms

a multiplicative decomposition into an additive one.
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Figure 2. The STL decomposition of the log aggregate monthly visitor arrivals to New Zealand from January
1980 to December 2004. The vertical dashed line is at September 2001, and the solid bars on the right hand side
of the plot are all the same height, to aid comparisons.

Figure 2 shows an evolving seasonal pattern, an upward trend with several changes in slope,

and a relatively small irregular component. A vertical line is added to indicate September 2001.

There is no obvious (structural) change in the trend at or about this month, although there

is a reduction in the slope of the trend nearer the start of 2001, which we discuss further in
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Section 5 below. More prominent is a cluster of negative irregulars immediately following 9/11,

the largest of which is the third largest negative irregular in the sample period. Jointly though,

these irregulars are smaller and less persistent than those occurring at the time of the SARS

outbreak in 2003. Our exploratory analysis with STL thus suggests that while the events of 9/11

may have had a moderate short term (irregular) effect, there is nothing to suggest that a longer

term (structural) effect occurred. We investigate this hypothesis more formally in Section 4.

3 Iterative break estimation for seasonal data

Bai & Perron (1998, 2003) present a methodology for fitting a linear model with structural

breaks, in which the break points, i.e. the times at which the parameters change, are determined

optimally. The optimal positions of m break points are determined by minimising the residual

sum of squares, for each positive integer m ≤ mmax. The optimal number of break points

(0 ≤ m∗ ≤ mmax) may then be determined by, for example, minimising an information criterion

such as BIC (Schwarz, 1978). Given a sample of T observations, the selected break points are

estimated consistently, with rate T convergence of the estimated break fractions (that is, the

proportions of the data between consecutive breaks).

The maximum number of break points, mmax, is determined by the number of observations

relative to the number of parameters in the model. In general, for a model with m breaks and

q parameters, at least q observations are needed between each pair of break points, requiring

at least T ≥ (m + 1)q observations in total. Clearly if the model has many parameters, fewer

break points can be estimated from a given sequence of observations.

We consider implementing this approach for a time series of the form

Yt = Tt + St + It t = 1, . . . , T

where Yt are the observed data (transformed if necessary), Tt is an unobserved trend component,

St is an unobserved seasonal component with seasonal period s, and It is an unobserved irregular

component. Many observed time series do not follow an additive decomposition, including the

NZ visitor arrivals as noted in Section 2; however, we assume a suitable stabilizing transforma-

tion can be applied (e.g., see Section 4). In the following model, evolution of trend and seasonal

components is explicitly modelled as structural changes occurring at endogenously identified

break points. Short term, random changes may also occur, but these are modelled by the irreg-

ular component It. We assume that between two break points t∗j−1 and t∗j (j = 1, . . . ,m + 1),

the trend Tt is linear,

Tt = αj + βjt t = t∗j−1 + 1, . . . , t∗j
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and, again between break points, the seasonal component is fixed,

St =

s−1∑

i=1

δi,jDi,t t = t∗j−1 + 1, . . . , t∗j

where Di,t are seasonal dummies, equal to one if time t is “season” i and zero otherwise. We

use the convention that t∗0 = 0 and t∗m+1 = T (Bai & Perron, 1998). Under these assumptions,

we note that for daily or monthly data (with s = 7 and s = 12 respectively), and for quarterly

data (with s = 4) to a lesser extent, the trend component will be parsimonious relative to the

seasonal component.

Bai & Perron’s (1998, 2003) methodology offers two alternatives for estimating the unknown

break points, t∗j (j = 1, . . . ,m), in such a model. The first is that the coefficients of one

component are fixed over the entire sample period (a partial structural change model); the

second is that parameters in both components should have the same break points (a pure

structural change model). We demonstrate below that neither of these options is satisfactory

for the type of data examined in this paper, i.e. seasonal time series with evolving trends, and

large s (in this case, s = 12).

When considering trend extraction and assuming that structural breaks will be required, in

general we wish to allow break points in the seasonal component, which is inconsistent with a

partial structural change model. Conversely, we would not necessarily wish to constrain any

seasonal break points to occur at the same places as the trend break points, as required in a pure

structural change model. On the face of it, this requirement is not necessarily restrictive, since

the parameter estimates of one component are not forced to change from one segment of the

data to the next. However, when selecting the optimal number of break points using a penalised

likelihood criterion, e.g. BIC, this compromises the method’s ability to select break points in

the data, i.e. the estimated number of breaks may be too low. One example of where these

issues may be important is in arrivals from Australia. As noted in Section 2, the Australian

arrivals seem to have a seasonal break point in 1987 (changing from three peaks to four), with

no apparent change in trend.

To address this concern we estimate the trend and seasonal components separately, using

a new iterative approach motivated by the Macaulay cycle seasonal decomposition method

(Macaulay, 1931), e.g. as implemented in STL using modern weighted averages. This allows

more flexible structural break estimation than fitting both components simultaneously. As

above, we assume that the time series can be decomposed into a piecewise linear time trend and

a piecewise constant seasonal pattern. Each component is then estimated using the methodology

of Bai & Perron (1998, 2003), implemented in R (R Development Core Team, 2008) using the
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strucchange package of Zeileis et al. (2002, 2003). We employ the default method of selecting

the number of breaks, which uses BIC.

The trend of the data Yt is estimated using a piecewise linear model for the seasonally

adjusted time series Vt = Yt − Ŝt, i.e.,

Vt = αj + βjt + ǫt t = t∗j−1 + 1, . . . , t∗j

for j = 1, . . . ,m+1, where ǫt is a zero-mean disturbance and t∗j , j = 1, . . . ,m, are the unknown

trend break points. For the first iteration, we set Ŝt = 0 for all t.

Once the trend has been estimated, we estimate the seasonal component of Yt using a

piecewise seasonal dummy model for the detrended data Wt = Yt − T̂t, i.e.,

Wt = δ0,j +

s−1∑

i=1

δi,jDi,t + νt t = t′j−1 + 1, . . . , t′j

for j = 1, . . . ,m′+1, where Di,t are the seasonal dummies, νt is a zero-mean disturbance and t′j,

j = 1, . . . ,m′, are the unknown seasonal break points. As before, we take t′0 = 0 and t′m′+1 = T .

The estimates δ̂i,j are adjusted at the end of each iteration so that they add to zero within each

full seasonal cycle (between seasonal breaks), to prevent any change in trend appearing as a

result of a seasonal break happening ‘mid-year’. That is,

s−1∑

i=0

δ̂i,j = 0 for all j.

This estimation process is then iterated to convergence of the estimated break points.

We are thus able to estimate a trend which, due to its parsimonious representation, is able

to react to obvious shifts in the general movement of the data. If required, we are able to

identify important changes in the seasonal pattern separately. Since the trend and seasonal

break points, t∗j and t′j respectively, are estimated independently, they are not constrained to

coincide. Of course, this does not preclude (some) trend and seasonal break points coinciding

if appropriate. In all data analysis and simulations we have followed the recommendations of

Bai & Perron (2003) and Zeileis et al. (2003), concerning the fraction of data needed between

breaks. For monthly seasonal data, we used three full years (36 observations) as a minimum,

corresponding to 12% of a 25 year data span. However, a further consequence of the iterative

estimation of trend and seasonal breaks is that while any two breaks of the same type must have

a minimum separation (three years here), the distance between a trend break and a seasonal

break has no constraints. This feature is of practical importance, e.g. as shown for the arrivals
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data in Section 4, and is another desirable feature of the new iterative approach.

Table 2. Basic structure of each of the data generating processes used in the simulation study.

Model Trend component Seasonal component # of breaks

1 No breaks No breaks 0

2 Break at T
2

No breaks 1

3 Break at T
2

Break at T
2

1

4 Break at T
3

Break at 2T
3

2

5 Breaks at T
3

and 2T
3

Break at 2T
3

2

6 Breaks at T
4

and 3T
4

Break at T
2

3

7 Breaks at T
4
, T

2
and 3T

4
Break at T

2
3

8 Breaks at T
4
, T

2
and 3T

4
Break at 3T

8
4

9 Breaks at T
4
, T

2
and 3T

4
Break at T

2
3

10 Breaks at T
4
, T

2
and 3T

4
Break at 3T

8
4

The importance of this method is now illustrated using simulated data. We considered 20

different data generating processes, as described in Table 2. For each of two slope coefficients

(either 0.05, or 0.1), the trend components are ramp-like, and alternate between the positive

slope and a zero slope. They are continuous, except models 9 and 10 where the trend in

the second half of the data is an exact replication of the trend in the first half, requiring a

discontinuity at T
2
. The seasonal component is piecewise constant. The two seasonal cycles

used in models 3 to 10 are shown in Figure 3, and are identical except for the ordering of the

Jan/Feb, Mar/Apr, Jul/Aug and Sep/Oct values. In models 1 and 2, only the first cycle is

used.

First cycle

Month

−
4

−
2

0
2

4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Second cycle

Month

−
4

−
2

0
2

4

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 3. The two seasonal cycles used for the seasonal component in the illustrative simulations.

The data are given by

Yt = Tt + St + It t = 1, . . . , T

where It ∼ i.i.d. N(0, 1). The number of break points in the data for each data generating

process is given in the final column of Table 2. In the case of models 1, 2, 4, 6, 8 and 10, the
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total number of break points is equal to m + m′, i.e. the number of trend break points plus the

number of seasonal break points. In models 3, 5, 7 and 9, the seasonal break point coincides

with a trend break point, so the total number of break points is m + m′ − 1.

For each of models 1 to 10, we simulated N = 10000 series of length T = 288 for the two

different trend slopes. For each of these series, we estimated the trend and seasonal components

simultaneously using the Bai & Perron (1998, 2003) approach – the “complete approach”. In

particular, we restricted the parameters in both the trend and seasonal components to change

simultaneously; i.e., we fitted a pure structural change model. Between breaks, the constant

term in the estimated trend was corrected so that the seasonal component added to zero. We

also applied the new iterated methodology to the same series, fitting the trend and seasonal

components separately.

In a decomposition exercise, we wish to estimate the components well, and the break points

are the means to this end. While we will comment on the distribution of the estimated break

points (number, and position), overall decomposition quality will be established via mean

squared errors for the components and observations. Note that in a forecasting exercise, the

focus will typically be on out-of-sample performance, and this will be based on the position of

the final break point, and the quality of the trend and seasonal components beyond this break

point.

Table 3 presents summary information on the numbers of estimated break points, i.e., the

sample distribution, by model and estimation technique. The root mean squared errors reported

are based on the average squared deviations (across series) of the estimated number of break

points from the actual number (M and m for the complete and iterated approaches respectively).

In the case of the complete approach and the arguments presented above, we expected that the

estimated number of break points would be too small, and this is exactly what the top panel in

the table confirms. While the complete approach performs very well in cases where the trend

and seasonal break points coincide (or do not exist), and performance improves when the trend

slope increases, it performs very poorly when the seasonal component does not have a coinciding

trend break point, namely, models 4, 6, 8 and 10. For no series is the estimated number of break

points higher than the true number, so there is a downward bias in the estimated number of

break points when fitting the two components simultaneously.

In contrast, the iterated approach does a much better job of estimating the number of break

points. While it never estimates the number correctly for all 10000 series within a model (unlike

the complete approach for models 1, 2 and 3 for both slopes, and models 5 and 9 for the higher

slope), the root mean squared errors are typically very close to zero, and usually much smaller

than the corresponding RMSEs for the complete approach. With the exception of models 7 and
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Table 3. Numbers of estimated break points using the complete approach (in the top panel) and for the trend
component using the iterated approach (in the bottom panel). M is the total number of break points in the data,
and m is the number of trend break points. On the left are the results when the trend slope is 0.05, on the right,
when the slope is 0.1. The number of series where the number of break points is correctly estimated is shown in
bold. The RMSE figures are for the number of break points.

0 1 2 3 4 RMSE 0 1 2 3 4 RMSE

Model M Complete, slope 0.05 Complete, slope 0.1

1 0 10000 0 10000 0
2 1 10000 0 10000 0
3 1 10000 0 10000 0
4 2 5324 4676 0.73 3831 6169 0.62
5 2 1 2034 7965 0.45 10000 0
6 3 2 8974 978 46 1.92 7267 2733 0.85
7 3 1482 7839 620 59 2.13 1 362 9637 0.19
8 4 370 9145 485 0 0 3.00 15 6420 3555 10 1.71
9 3 9490 381 129 1.96 10000 0
10 4 6500 3008 492 0 2.67 9932 68 1.00

m Iterated, slope 0.05 Iterated, slope 0.1

1 0 9889 107 4 0.11 9889 107 4 0.11
2 1 9832 164 4 0.13 9824 173 3 0.14
3 1 9779 214 7 0.16 9769 226 5 0.16
4 1 9801 193 6 0.15 9799 196 5 0.15
5 2 31 9876 101 1 0.12 9805 194 1 0.14
6 2 9888 112 0.11 9799 199 2 0.14
7 3 3 24 5869 4100 4 0.77 2 9839 105 0.10
8 3 5 27 5717 4244 7 0.77 1 9868 131 0.11
9 3 2 51 9918 29 0.09 9911 89 0.09
10 3 2 72 9905 21 0.10 9917 83 0.09

8, the iterated approach is much less sensitive to the slope in the trend component. We con-

ducted an additional simulation with no seasonal component, and are able to attribute the poor

performance to the “difficult” specification of the trend in this particular instance. The com-

plete approach also performs poorly here; in fact much worse than the iterated approach. The

two exceptions aside, sample distributions and RMSEs for the iterated approach are generally

very similar across trend slopes.

Of particular note are the similarities (for a fixed trend slope) when comparing model 7 to

model 8, and when comparing model 9 to model 10. In both of these cases, the position of the

seasonal break shifts from a point where it coincides with a trend break, to one where it does

not. This harms the complete approach estimates dramatically, but as we might expect, has

little or no effect on trend break estimates from the iterated approach.

The estimated seasonal break points from the iterated approach are shown in Table 4 (recall

the seasonal break points from the complete approach coincide with the trend breaks in Table 3).

For the iterated approach there were no “false positives” in Models 1 and 2, with zero break
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Table 4. Numbers of estimated seasonal break points using the iterated approach. On the left are the results
when the trend slope is 0.05, on the right, when the slope is 0.1. The number of series where the number of break
points is correctly estimated is shown in bold (always more than 95%). The RMSE figures are for the number of
break points.

Slope 0.05 Slope 0.1
Model 0 1 RMSE 0 1 RMSE

1 10000 0 10000 0
2 10000 0 10000 0
3 153 9847 0.12 154 9846 0.12
4 449 9551 0.21 467 9533 0.22
5 438 9562 0.21 455 9545 0.21
6 128 9872 0.11 127 9873 0.11
7 180 9820 0.13 124 9876 0.11
8 333 9667 0.18 235 9765 0.15
9 99 9901 0.10 116 9884 0.11
10 217 9783 0.15 242 9758 0.16

points being estimated in every case. In models 3 to 10, only small numbers of series had no

seasonal break point estimated, with the correct number identified in over 95% of cases. The

quality of estimation appears to be independent of the slope in the trend components, but

somewhat related to the exact specification of the trend. When identified, the position of the

seasonal break point was very precisely estimated.

Summarising the position of the estimated break points is difficult for the complete approach,

and particularly when the estimated number of break points is too low. When the estimated

number of break points is correct, we could calculate bias, and RMSE for the estimated dates.

However, it is difficult to provide a fair comparison on this basis without incorporating a penalty

for the number of series correctly estimated. In addition, while it is clear exactly which breaks

(trend and/or seasonal) should be estimated using the iterated approach, it is less clear for the

complete approach.

By way of illustration, we present the results for model 9 with a trend slope of 0.05 in

Figure 4. The complete approach favours a single estimated break point coinciding very precisely

with the combined seasonal and trend break point at T
2
. This accounts for 94.9% of all cases,

and underestimates the number of break points by 2. When two break points are estimated (in

3.81% of the cases), it is not clear which of the true break points are estimated, but given the

proximity constraint, it is likely that the two will comprise a very precise estimate of the middle

break point (at least 75% of the cases) and an imprecise estimate of one or other of the trend

break points. In a vast minority of cases (1.29% of the series), the correct number of break

points are estimated in the complete approach, and these appear to be unbiased for the true

break points, with varying degrees of precision. In contrast, the iterated approach favours the
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Figure 4. The estimated break points for model 9, with a trend slope of 0.05. The seasonal break point and
contemporaneous discontinuous trend break point are shown by the dotted line, and the two (continuous) trend
break points are shown by the horizontal dashed lines. To the left of the double vertical lines are the estimated
break points from the complete approach. The panels are labeled C for complete approach or I for iterated
approach, followed by the number of breaks estimated. Each boxplot corresponds to the sample distribution of
a single estimated break point. The number of instances in each case (also shown in Table 3) is listed along the
bottom of the plot.

correct number of estimated break points in 99.18% of the series. These appear to be unbiased

for the true break points, with the trend plus seasonal break point being estimated much more

precisely than the trend-only break points.

Table 5 gives a measure of the quality of the estimated components, and the predictions

of the data, for the simulated series. Namely, we present “RMSEs” via the square root of the

median (over the 10000 series) of the following statistics: for the trend component, MSET =

1
T

∑
t(Tt − T̂t)

2, the seasonal component, MSES = 1
T

∑
t(St − Ŝt)

2, the trend plus seasonal,

MSET+S = 1
T

∑
t(Tt + St − T̂t − Ŝt)

2, and the data MSEY = 1
T

∑
t(Yt − T̂t − Ŝt)

2.

Estimation of the trend worsens in both approaches as the complexity of the data generating

process increases. In the case of the complete approach, a marked shift occurs from model 5

to model 6, where there are three break points, but only one component changes at each, in

contrast to two break points with a common shift in trend and seasonal. In contrast, MSET for

the iterated approach appears insensitive to the placement of the seasonal break, i.e. the figures

are almost identical for models 5 and 6, models 7 and 8, and models 9 and 10. Increasing

the trend slope tends to improve the MSEs for the complete approach, the exception being

model 8. A similar, though typically less dramatic improvement, is also a feature of the iterated
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Table 5. Square root of the median MSE for estimated components. On the left are the results for the lower
trend slope, on the right, the results for the higher slope. In the top panel are the results for the complete
approach, in the bottom panel the results for the iterated approach. The MSEs are averaged over the 288
observations in the series, and the median is calculated over the 10000 series.

Tt St Tt + St Yt Tt St Tt + St Yt

Model Complete, slope 0.05 Complete, slope 0.1

1 1.18 3.22 3.52 16.57 1.18 3.22 3.52 16.57
2 2.46 4.85 5.54 16.05 2.38 4.77 5.42 16.08
3 1.89 4.92 5.32 16.12 1.92 4.90 5.30 16.12
4 3.26 7.48 9.32 16.67 2.80 6.89 7.59 16.01
5 3.28 6.33 7.23 15.68 2.92 6.10 6.81 15.60
6 9.01 5.48 10.40 18.08 3.82 8.81 9.66 16.54
7 8.89 6.24 10.67 18.26 3.79 7.23 8.16 15.04
8 7.70 5.22 9.27 17.66 9.58 7.16 11.26 17.04
9 9.07 4.71 10.25 18.31 3.66 6.96 7.90 15.09
10 8.97 7.67 11.86 18.77 4.19 8.22 9.34 15.77

Iterated, slope 0.05 Iterated, slope 0.1

1 1.19 3.22 3.53 16.57 1.19 3.22 3.53 16.57
2 2.53 3.22 4.20 16.41 2.43 3.22 4.14 16.43
3 2.54 4.95 5.64 16.03 2.45 4.96 5.61 16.04
4 2.56 4.98 5.69 16.04 2.44 4.98 5.64 16.05
5 3.67 4.99 6.28 15.87 3.42 4.98 6.12 15.90
6 3.62 4.95 6.21 15.86 3.40 4.95 6.09 15.89
7 5.27 4.99 7.19 15.89 4.26 4.95 6.60 15.73
8 5.25 5.01 7.18 15.87 4.27 4.99 6.63 15.72
9 4.06 4.95 6.45 15.79 3.72 4.95 6.26 15.83
10 4.05 4.98 6.48 15.78 3.73 4.98 6.28 15.83

approach.

Estimation of the seasonal component using the complete approach seems very dependent

on the exact specification of the data generating process. The RMSEs themselves are quite

variable, and do not seem to have systematic patterns with the changing models, nor with

the increase in the trend slope. In contrast, the iterated approach yields seasonal patterns

which are estimated in a way that is insensitive to the trend component. In the case where the

seasonal component does have a break point (models 3 to 10), the RMSEs are virtually identical

across both model and slope. In all but model 1, where the RMSEs are identical, the seasonal

component is better estimated using the iterated approach than the complete approach.

Similar variation in the quality of estimation of the “signal” Tt + St is seen for the complete

approach as in the individual components. There do not appear to be systematic changes across

models and trend slope. With the exception of models 1 and 3, the iterated approach always

does better than the complete approach. The iterated figures appear to get larger from models 1

to 8, with model 9 and 10 providing an easier challenge than the others. As the slope increases,
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the trend component is better estimated, and this results in better estimation of the complete

signal.

Finally, we look at the prediction errors for the actual observations. Here, we see that the

complete approach actually leads to comparable performance against the iterated approach,

even when the individual components, or the signal, are not well estimated. As trend slope

increases, the complete approach tends to improve, whereas it makes little difference to the

iterated approach. Indeed, the iterated approach appears to have a virtually constant RMSE

across models, whereas the complete approach has some variation.

Table 6 perhaps gives the strongest indication that the complete approach is failing to fit the

data well. While the prediction errors are similar in size to those from the iterated approach (as

seen by the summary of MSEY in Table 5), there remains significant structure in those errors.

Ljung-Box tests were conducted at lag 20, and the p-values of the tests are collated in Table 6. If

the residuals were indeed uncorrelated, only 5% of these p-values should be below 5%. Reported

are the actual percentages across the 10000 simulated series, by model and estimation method.

Table 6. Percentage of the 10000 series with residual autocorrelation significant at the 5% level, based on a
Ljung-Box test up to lag 20.

Model Complete, 0.05 Complete, 0.1 Iterated, 0.05 Iterated, 0.1

1 9.1 9.1 9.0 9.0
2 16.6 16.5 10.3 10.1
3 16.4 16.3 17.7 17.7
4 52.6 49.5 19.3 19.4
5 43.3 30.9 22.3 22.2
6 94.0 55.3 20.0 19.9
7 97.0 54.1 19.1 22.9
8 95.6 78.8 21.1 23.7
9 98.9 52.2 23.4 22.7
10 95.4 45.5 24.0 23.5

The results show that for the models with larger numbers of breaks and the lower trend

slope coefficient, the complete approach is leaving significant autocorrelation in the residuals in

almost all cases. This reduces somewhat for the larger slope, but the proportions are still very

large. The iterated approach also has more rejections than would be expected under the null;

however, these are typically much less frequent than in the complete approach. In addition,

this particular aspect of quality seems largely independent of the trend slope when the two

components are estimated iteratively.

Overall, this simulation shows the undesirable consequences of fitting two components si-

multaneously when a parameter-rich seasonal component breaks at times other than those of

a relatively parsimonious trend component. Our new iterated approach to fitting such compo-

16



nents largely addresses this concern, and generally provides much better estimation of individual

components. Next we apply this iterated technique to the arrivals data.

4 Modelling the arrivals using an iterated approach

The seasonal variation of the arrivals typically increases with the level of the series (Figure 1).

Applying the new iterated approach directly to the untransformed data would certainly require

seasonal breaks to account for the changes in amplitude of the seasonal component. This is

clearly undesirable because such changes usually evolve smoothly, so should not be modelled as

abrupt changes. Consequently a stabilising transformation is needed.

A log transformation is one obvious possibility, but this does not yield an optimal stabilising

transformation for all these series and instead we estimated a power transformation, identified

using the robust spread-vs-level plots described in Hoaglin et al. (1983). For each individual

series we calculated the median and interquartile range (IQR) of the monthly arrivals for each

of the 25 calendar years, then regressed log IQR on log median. The appropriate stabilising

transformation is x1−slope, and the transformed series are shown in Figure 5, with the estimated

powers.
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Figure 5. Power transformed monthly short term visitor arrivals to New Zealand, by origin, from January 1980
to December 2004. The power transformations are: Australia 0.3, UK 0.05, USA 0.08, Japan 0.27, Korea 0.11,
China 0.18, Germany -0.11, Other 0.13, and Total 0.03.

Confidence intervals for the slopes in these spread-vs-level regressions support the use of

logs only in the case of the UK, USA and Total arrivals (i.e. a power of zero, or a slope of one).

In the case of Germany the estimated power is negative, so −x1−slope is used to preserve order
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in the transformed arrivals. All further analysis is conducted on the transformed data.

In the case of the transformed arrivals data, each linear time trend requires two parameters,

and each dummy seasonal an additional s − 1 = 11. Figure 5 indicates that for most series

a linear time trend would need breaks. Further, while the seasonal patterns generally have

constant variation over the length of the series due to the power transformations, we do not wish

to preclude seasonal changes during the data period. As the simulation study demonstrated,

the parameter-rich trend-plus-seasonal (complete) model would severely limit our ability to

appropriately fit the data, since the large number of seasonal dummies would reduce the possible

number of breaks, especially when selected by BIC.

As with the simulated data, we used a minimum period between breaks of 36 observations

for estimation of both trend and seasonal components. In fact, when estimating the trend and

seasonal components iteratively, there is scope to reduce that minimum period for estimation

of the trend component, since it only requires two parameters between breaks. This possibility

further increases the flexibility of trends estimated using our new iterated approach. However,

to simplify comparisons we have not pursued this option here. For the iterative approach, three

iterations were sufficient to ensure convergence of the estimated break points in all cases but

Other and Total, which each required four.

The estimated trend break points are shown in Table 7 along with estimated 95% confidence

intervals. The confidence intervals were formed with heteroscedasticity and autocorrelation con-

sistent (HAC) estimates of the covariance matrix (Andrews, 1991). These confidence intervals

are computed and displayed as standard output using the R package sandwich; they make use

of a quadratic spectral kernel with vector autoregressive prewhitening, as recommended by An-

drews & Monahan (1992). Details of the R implementation are given in Zeileis (2004, 2006).

Figure 6 displays the estimated parametric trends and break points (with confidence intervals),

along with nonparametric trends estimated by STL. September 2001 is included in only two

confidence intervals, indicating the possibility that the terrorist events of 9/11 may be linked

to a structural break in the trend of arrivals for those two origins: Australia and Other. Other

is difficult to interpret given its composite nature, although it is plausible that the 9/11 events

did have an effect on tourist behaviour in some of these countries. An alternative (or perhaps

complementary) explanation is discussed in Section 5.

In the case of Australia, a break is estimated in the month following 9/11, which results in

an increased trend slope but a decreased intercept. A relevant confounding effect is the collapse

of the airline Ansett Australia, which occurred just three days after the terrorist attacks of 9/11;

hence it is impossible to separate these two effects with monthly data. The termination of flights

by Ansett Australia and Ansett International on 14 September 2001 certainly affected capacity
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Table 7. Estimated trend break points for the transformed monthly visitor arrivals to New Zealand, by origin,
from January 1980 to December 2004. The middle column gives the estimated break points, while the first and
third columns give the lower and upper 95% confidence limits respectively, estimated using a HAC estimate of
the covariance matrix.

Australia China

1984(5) 1985(1) 1985(2) 1984(7) 1984(8) 1985(1)
1989(3) 1989(4) 1990(5) 1988(10) 1989(7) 1989(9)

1997(10) 1997(12) 1998(1) 1997(1) 2000(11) 2000(12)
2001(1) 2001(10) 2001(11) Germany

UK 1986(6) 1986(7) 1986(11)
1985(10) 1986(1) 1986(4) 1994(5) 1994(6) 1994(7)
1990(7) 1990(8) 1996(5) 1999(6) 1999(8) 2000(11)

USA Other

1982(12) 1983(3) 1986(12) 1983(1) 1983(3) 1983(4)
1988(9) 1988(10) 1990(1) 1985(6) 1986(8) 1986(9)
1998(6) 1998(8) 2001(6) 1990(7) 1990(10) 1990(12)

Japan 1992(11) 1994(1) 1994(3)
1987(3) 1987(6) 1987(8) 1997(3) 1997(6) 1997(8)
1996(2) 1996(8) 1996(10) 2001(4) 2001(7) 2001(9)

Korea Total

1982(8) 1983(12) 1984(4) 1982(12) 1983(1) 1983(3)
1990(9) 1990(10) 1990(11) 1987(10) 1987(12) 1988(4)
1994(9) 1994(11) 1994(12) 1989(8) 1990(12) 1991(4)

1997(10) 1997(11) 1997(12) 1997(1) 1997(3) 1997(6)
2000(10) 2000(11) 2001(1)

and timing of arrivals to New Zealand. In addition, in the following week, strike action targeted

at Air New Zealand occurred at Melbourne and Perth airports (Air New Zealand had acquired

control of Ansett Australia during the year preceding its collapse). Those strikes required the

cancellation of all Air New Zealand trans-Tasman flights operating from Melbourne and Perth.

These physical constraints on passenger numbers are a plausible explanation for the observed

decrease in intercept, while the subsequent increase in the rate of arrivals from New Zealand’s

nearest neighbour is unlikely to have any causal links from the terrorist events of September

2001.

Focusing on Figure 6 more generally, we note that it is often difficult to distinguish between

the two alternative trend estimates; i.e. those from our iterated approach and STL. In partic-

ular, the iterative parametric method achieves similar flexibility in its trend estimate to the

nonparametric technique, with the latter essentially fitting linear time trends at each point in

the series using only a local window of observations to estimate parameters. The break point

technology allows instantaneous changes in the trend however, unlike the STL technique. In

effect, STL is requiring an ‘innovational outlier’ approach to any structural changes in the data,

while our parametric procedure models the changes directly and permits an ‘additive outlier’
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Figure 6. Estimated trends and trend break points for the transformed monthly visitor arrivals to New Zealand,
by origin, from January 1980 to December 2004. The solid line is the piecewise linear time trend, while the dotted
line is the estimated STL trend. The vertical dashed lines and grey regions respectively indicate the fitted break
points and their 95% confidence intervals, estimated using a HAC estimate of the covariance matrix.

approach. (In a series of papers, Perron and coauthors popularised the use of these ‘outlier’

terms, to describe an approach which is attributed to the intervention analysis work of Box &

Tiao (1975).) An obvious contrast between the two approaches is seen in the Korean data at

the time of the Asian financial crisis. The parametric break point is dated at November 1997

(with a narrow 95% confidence interval of October to December), which corresponds exactly to

the month that the financial crisis first affected Korea (Kaminsky & Schmukler, 1999). However

STL spreads the downward impact of the crisis over a number of months, in contrast to the

observed behaviour.

Table 8 gives the estimated seasonal break points for the transformed arrivals, with the

estimated seasonal components shown in Figure 7. Korea, China, Germany and Other have no

estimated seasonal break points. As the power transformations have effectively stabilised the

seasonal variation, any changes in the seasonal patterns more likely reflect behavioural changes

in the time of year when visitors arrive. For example, in Australia’s seasonal pattern the ‘middle’

peak has moved and one extra peak has been added, reflecting a shift from a three-term school

year to a four-term year in New South Wales in 1987 (NSW Department of Education, 1985).

The placement of the seasonal break point coincides exactly with the final month under the

old three term system, with the first holiday in the new sequence occurring in July 1987. The

UK data show a shift in arrivals from the second half of the year to the first and a shift in the
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Table 8. Estimated seasonal break points for the transformed monthly visitor arrivals to New Zealand, by
origin, from January 1980 to December 2004. The middle column gives the estimated break points, while the
first and third columns give the lower and upper 95% confidence limits respectively, estimated using a HAC
estimate of the covariance matrix. Korea, China, Germany and Other have no estimated seasonal break points.

Origin Point estimate and 95% CI

Australia 1987(1) 1987(6) 1987(9)
UK 1985(11) 1986(6) 1987(9)

USA 1995(1) 1995(4) 1995(12)
Japan 1987(10) 1988(6) 1988(12)
Total 1987(3) 1987(7) 1988(1)

peak arrivals from December to February. The USA and Japanese arrivals have had relatively

complex changes, while the Total series has seen most change in the winter months. This shift

reflects the Australian change in structure, and occurs at the same time. Note here the practical

relevance of allowing breaks in the seasonal component of any given series to be independent

of those in the trend, with no minimum separation between them: four of these five seasonal

breaks (all except USA) are less than three years away from at least one corresponding trend

break (see Tables 7 and 8). However, none of the dates for trend and seasonal breaks coincide

in any given series, which reinforces the need to allow the components to break separately for

additional flexibility in the fitted model.
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To conclude this section, we compare the trend estimates obtained from our new iterated

approach to the trends obtained fitting a complete structural break model (with 13 parameters

between breaks), and using STL. In Figure 8 we present trends for the Korean arrivals and

those from Other origins. We also show sample autocorrelation functions for the three sets

of residuals from each series. The trends are all similar, but the agreement is closest for the

iterated approach and STL. Some differences are evident particularly at the end of the series

though, which would be important for prediction. For Other arrivals, the number of parameters

required for the complete model clearly restricts the estimated number of breaks, leading to

greater departures from the STL trend than achieved by iteration. The irregular components

also favour the iterated approach over STL and the complete model, as the residuals for the

latter are highly autocorrelated, especially at low lags (see Figure 8). In contrast, the residuals

of the iterated method exhibit far less autocorrelation, indicating a better overall decomposition;

this is as expected, following the simulation evidence presented in Table 6.
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Figure 8. Trend estimates for the transformed Korean arrivals and those from Other origins. The trend
estimates are based on the complete model (dashed), the new iterated approach (solid) and STL (dot-dashed).
Also shown are sample autocorrelation functions for the residuals from the three methods.
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5 Discussion

The growth in the number of visitor arrivals to New Zealand was lower than expected in late

2001 (e.g., by the New Zealand Ministry of Tourism, as noted in Haywood and Randal, 2004),

yet there is no conclusive evidence to attribute this forecast error solely to the terrorist events

of 9/11. The termination of flights by Ansett Australia on 14 September 2001 certainly affected

capacity and timing of arrivals from Australia to New Zealand, and that would have affected

Total arrivals in September 2001 somewhat as well. Indeed Australia is the only (individual)

country of origin with a structural change in trend identified close to 9/11. The subsequent rate

of Australian arrivals to New Zealand in fact shows an increase, following an initial drop which

is plausibly explained by the Ansett effect; see Table 7 and Figure 6.

A further plausible cause for the lower than forecast number of visitors is the US recession

dated March 2001 (Hall et al., 2001), along with the world wide flow-on effects from a slow

down in the US economy. The recession predates 9/11 by six months but that is consistent with

observed features of the data. In particular, March 2001 corresponds exactly to the minimum

in the second difference of an STL trend of Total monthly (log) arrivals, indicating a maximum

decrease in the slope at that time. It is possible that the slow down seen in the Other (composite)

arrivals series, dated July 2001, may be due in part to the flow-on effects from this US recession.

It seems quite clear that the events of 9/11 did not have much influence on the longer term

numbers of visitors to New Zealand, and especially not a negative influence. In contrast our

analysis suggests other events which have had marked structural effects on these data, especially

from certain countries of origin (refer to Tables 7 and 8, and Figures 6 and 7). In particular

and as already discussed in Section 4, the Asian financial crisis of 1997-1998 precipitated a

massive drop in arrivals from Korea, and the estimated intercept and slope of Total arrivals

both decreased too, in 1997. Again as noted above, the estimated change in the Australian

seasonal pattern is explained perfectly (in both timing and effect) by the 1987 switch from a

three-term to a four-term school year in New South Wales. The stock market crash of October

1987 preceded a dramatic decline in arrivals from the USA, followed by a sustained period of

only moderate growth. Further, both the intercept and slope of Total arrivals decreased late

in 1987. In contrast, the SARS epidemic affected arrivals from China in a different way, with

a very short-lived but large reduction, which we class as temporary and not structural. The

overall effects of 9/11 might also be seen as temporary and negative, but of a smaller magnitude

than those associated with SARS.

Estimation of structural breaks was facilitated by a new implementation of Bai & Perron’s

(1998, 2003) work that is recommended for seasonal data. Specifically, use of an iterative ap-

proach to estimate the trend and seasonal components separately enabled us to locate structural
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breaks in the data, and to attribute these to either changes in the trend or the seasonal pat-

tern. Estimating these components simultaneously did not achieve the same flexibility in the

estimated components, nor in the location of the break points. The agreement between the

estimated parametric trends from the iterated approach and the nonparametric STL trends is

especially pleasing, as is the lack of residual structure around those parametric trends when

compared to other trend estimates.
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