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Abstract

We analyse prospects for the use of Bose—Einstein condensates as condensed-
matter systems suitable for generating a generic ‘effective metric’, and for
mimicking kinematic aspects of general relativity. We extend the analysis
due to Garay et al (2000 Phys. Rev. Lett. 85 4643, 2001 Phys. Rev. A 63
023611). Taking a long-term view, we ask what the ultimate limits of such
a system might be. To this end, we consider a very general version of the
nonlinear Schrodinger equation (with a 3-tensor position-dependent mass and
arbitrary nonlinearity). Such equations can be used, for example, in discussing
Bose—Einstein condensates in heterogeneous and highly nonlinear systems.
We demonstrate that at low momenta linearized excitations of the phase of the
condensate wavefunction obey a (3 + 1)-dimensional d’ Alembertian equation
coupling to a (3 + 1)-dimensional Lorentzian-signature ‘effective metric’ that
is generic, and depends algebraically on the background field. Thus at low
momenta this system serves as an analogue for the curved spacetime of
general relativity. In contrast, at high momenta we demonstrate how one
can use the eikonal approximation to extract a well controlled Bogoliubov-
like dispersion relation, and (perhaps unexpectedly) recover non-relativistic
Newtonian physics at high momenta. Bose-Einstein condensates appear to
be an extremely promising analogue system for probing kinematic aspects of
general relativity.

PACS numbers: 0470D, 0375F, 0480

1. Introduction

Progress in understanding classical general relativity (GR) and quantum field theory in curved
spacetime (not to mention quantum gravity itself), suffers greatly from a lack of experimental
feedback*. Moreover, direct experimental probes of many important aspects of these theories

4 See [1], however, for a description of some actual and proposed experiments probing aspects of the behaviour of
quantum systems in GR.
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(such as, for instance, Hawking radiation from a black hole) appear to be very far from current
(and even foreseeable) technologies. In this regard, the possibility of using condensed matter
systems (such as, for example, Bose—Einstein condensates [2, 3]) to mimic certain aspects of
GR could prove to be very important. The basic idea of a condensed matter analogue model
of GR is that the modifications to the propagation of a field/wave due to curved spacetime
can be reproduced (at least partially) by an analogue field/wave propagating in some material
background with space- and time-dependent properties.

The concept of a condensed matter analogue model was first explored in a little-known
paper by Gordon, where he worked within the context of the optical properties of dielectrics
[4]. After lying fallow for a considerable period, over the last decade or so this idea has been
revived and elaborated on, mainly in the context of considering the propagation of sound waves
in a moving fluid [5-14]. Several other analogue systems have also been analysed (see for
example [15, 16], and also the mini-review by Jacobson [17]). The search for new analogue
models, and the exploration of known analogue models, is ongoing [18-21]. Among these
models, a particularly promising one that will be the focus of this paper is the recent proposal
of Garay, Anglin, Cirac and Zoller based on Bose—Einstein condensates (BEC) [2, 3].

Over the last few years a remarkable series of experiments on vapours of rubidium [22],
lithium [23] and sodium [24] have led to a renewed interest in the phenomenon of Bose—
Einstein condensation [25,26]. In these experiments gases of alkali atoms were confined
in magnetic traps and cooled down to extremely low temperatures (of the order of fractions
of microkelvins). In order to observe the BEC the whole gas was allowed to expand, by
switching off the trapping potential, and monitored via time-of-flight measurements made
with optical methods. The signature of the BEC was a sharp peak in the velocity distribution
for temperatures below some critical value (see [27] for an extensive review on the subject).

As Garay et al have shown, perturbations in the phase of the condensate wavefunction
satisfy, in the low-momentum regime, an equation equivalent to that of a massless scalar field
in a curved spacetime (the d’ Alembertian equation A¢ = 0), but with the spacetime metric
being replaced by an effective metric that depends on the characteristics of the background
condensate. Present-day experimental achievements, and the rapid development in magnetic
trapping techniques, seem to illuminate a viable path to experimentally reproducing important
general relativistic features such as ergoregions and event horizons [2, 3].

In this paper we wish to explore the Bose—Einstein system in more detail, formally
extending the analysis of Garay et al as much as possible. We will analyse a number of
physically conceivable extensions of the usual Gross—Pitaevskii approximation. In particular,
we will consider arbitrary nonlinear interactions and anisotropic mass-tensors, both depending
explicitly on (space and time) position. In this scenario we will investigate how close we
can come to mimicking a ‘generic’ gravitational field. (The simple analogue models based
on ordinary fluid dynamics are somewhat limited in this regard because the spatial slices are
always conformally flat[5, 9, 12, 14]). Afterincluding these generalizations the only significant
constraint left on the effective metric is due to the irrotational nature of the condensate 3-
velocity. Within this scenario we will then show how various quantum corrections come
into play in the whole analysis, distinguishing three useful regimes: the quasi-classical, low-
momentum and high-momentum regimes.

By using eikonal techniques we shall investigate the high-momentum dispersion relation
of the collective excitations of the condensate. In particular, we shall study it with regard
to the possibility of analysing the ‘Hawking radiation’ that may be emitted from ‘horizons’
that form in this system. We find a Bogoliubov-like dispersion relation of the superluminal
(more properly, supersonic) type. For situations with both an outer and an inner horizon, this
dispersion relation seems to lead to exponential amplification of the radiation flux coming from
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the outer horizon [28] (a so-called black hole laser), in agreement with the unstable behaviour of
some of the solutions found by Garay et al. (They also found some metastable solutions whose
origin might be related to the specific boundary conditions of the configurations considered.)
Finally, we discuss the way in which in the high-momentum limit one recovers the underlying
non-relativistic Newtonian physics.

2. Bose-Einstein condensates

In a quantum system of N interacting bosons the crucial feature of a Bose—Einstein condensate
is that it corresponds to a configuration in which most of the bosons lie in the same single-
particle quantum state. This system can be suitably described in a second quantization
framework by a many-body Hamiltonian of the form [27]

2
H = fdm Ui, ) [—h—vz + Vext(m)} )
2m

+%/dxdm’®*(t, o)Vt ) V(e —2) VU, o) U, x). 1)

Here Vi (x) is some confining external potential, V(x — x’) is the interatomic two-body
potential (other possible multi-body interactions are neglected at this stage), and m is the mass
of the bosons undergoing condensation (in current experiments these bosons are actually alkali
atoms). Finally, @(t, x) is the boson field operator.

Although the quantum state for the Bose—FEinstein condensate, as well as its
thermodynamic properties, can, in principle, be computed exactly from (1), it is clear that
for large ensemble of atoms this approach can become impractical. It was Bogoliubov [29, 30]
who first recognized that a natural ansatz for studying such a system is the mean-field approach,
which consists of separating the bosonic field operator @(t, x) into a classical condensate
contribution ¥ (¢, ) plus excitations ¢(z, x):

U(t,z) =Y (1, ) +9(t, ). )

Here (¢, x) is defined as the expectation value of the field ¢ = (@(t, x)). It is sometimes
referred in the literature as the ‘wavefunction of the Bose—Einstein condensate’. Its modulus
fixes the particle density of the condensate, p = N/V, in such a way that |/ (¢, x)|> = p(¢, ).

The Bogoliubov decomposition (2) is particularly useful when the number of atoms which
do not lie in the ground state of the condensate is small. In this case it is, in fact, possible to
consider the ‘zeroth-order approximation’ to the Heisenberg equation given by the many-body
Hamiltonian (1) by just replacing \/Ij(t, x) with the condensate wavefunction

in %W(t, x) = [y, H]

2
= [_;’—mvz + Vext (@) + / da' v, 1) V(z' —x) v, w/)i| ¥(t, x). 3)

The next approximation is to assume that the intermolecular interaction term V (x’ — x)
represents a short-range interaction. (In helium-based Bose—Einstein systems this is not the
case and a considerably more complicated analysis is required.) Part of the theoretical interest
in the previously cited heavy-alkali-atom Bose—Einstein condensates is that these are extremely
dilute condensates; systems in which at low energy only binary collisions are relevant. This
permits one to model the interaction with a short-distance delta-like term times a unique self-
coupling constant 1 which is determined by the s-wave scattering length a and the atomic
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mass m
V' —x) ~ Aé(x' — x), “4)
dmah®
o= 4 )
m

The use of the approximate potential (4) in equation (3) leads to a standard closed-form equation
for the weakly interacting boson condensate

.0 - 2
ih—y(,x) = (——V + Vext(z) + A | (2, )| )Iﬂ(hw). (6)
ot 2m

This equation, most commonly known as the Gross—Pitaevskii (GP) equation (sometimes called
the nonlinear Schrodinger equation, or even the time-dependent Landau—Ginzburg equation),
can be associated with an effective action of the form

2
S= /dt d*x {w* (iha, + zh—mvz — Vexl(:c)) Y — Ia (it z)* } (7

which is called the time-dependent Landau—-Ginzburg action®. (There is some disagreement on
terminology here: some authors prefer to use the phrase ‘time-dependent Landau—Ginzburg
equation’ for equation (6) only after formally discarding the i. This has the net effect of
replacing the Schrodinger differential operator by a diffusion operator. We always keep the i;
all our physics is oscillatory rather than diffusion-based.)

The Gross—Pitaevskii equation describes, in a simple and compact form, the relevant
phenomena associated with BEC. In particular, it reproduces typical properties exhibited by
superfluid systems, such as the propagation of collective excitations and the interference effects
originating from the phase of the condensate wavefunction. It is precisely from this (non-
relativistic) theory that we shall now see how an analogue of GR can be constructed, and
possibly used for experimental purposes.

3. Generalized Gross-Pitaevskii equation

The aim of our investigation is to explore the ultimate extent of the ability of BEC systems
to mimic general relativistic ones. In order to do this in the most general way we shall now
introduce a generalization of the nonlinear Schrédinger equation (6). In particular, we shall
formally consider a series of generalizations each of which is, in principle, allowed for systems
undergoing Bose—Einstein condensation, though they are not (yet) commonly encountered in
the experimental literature.

(a) The first generalization we will make is to replace the quartic %)»W(l, x)|* by an arbitrary
nonlinearity w (*¥) = (| |?). We note, in particular, that for two-dimensional systems
Kolomeisky et al have argued [34] that in many experimentally interesting cases the
nonlinearity will be cubic or even logarithmic in |1/|?. (Although in two-dimensional
systems standard Bose—FEinstein condensation does not occur it is experimentally almost
certain that ‘quasi-condensates’ exist, and possess collective excitations which are
treatable in an analogous way [35].)

> The same line of reasoning we have followed with this non-relativistic boson system can be repeated for relativistic
bosons, arriving to the generalized nonlinear Klein—Gordon equation [31, 32] (from which the nonlinear Schrodinger
equation arises as the non-relativistic limit). When coupled to gravity, this equation serves as the basis for the
description of boson stars [33], that is, an astrophysical BEC.
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(b) The second generalization is that we will also permit the nonlinearity function to be
explicitly space and time dependent: 7 — 7 (x, [¥*y]) with x = (¢, ). While intrinsic
properties of the bosons that we are trying to condense (such as the scattering length and
mass) will typically not change from point to point, we can certainly envisage a more
general situation in which the condensate is either selectively ‘doped’, or perhaps (as
suggested in Garay et al [2,3]) physically constrained to move thorough a narrow tube
of varying cross section, thereby altering its effective properties in a position-dependent
way. (We do not mean to imply that this would be easy, or that such techniques are ‘just
around the corner’; instead we are interested in seeing how far we might ultimately be
able to push this system.)

(c) The third generalization we will make is to permit the mass to be a 3-tensor: m — m;;.
Such anisotropic masses are well known from condensed matter physics where they are
most typically encountered in effective mass calculations for electrons immersed in a band
structure (see, for example, [36]). They have also been discussed for the case of excitons
(electron—hole pairs held together by Coulomb attraction) in BEC for semiconductors.
The doping structure of the semiconductor and its anisotropies would give place to an
effective mass matrix for the paraexcitons (singlet excitons) at least in the low-momentum
approximation [37, 38]. Formally, we shall consider the possibility of anisotropic masses
in the more general context of the nonlinear Schrodinger equation, regardless of whether
or not we are dealing with a band structure or even a Bose—Einstein condensate. (If you
wish, you might like to think of this as a liquid-crystal BEC.)

(d) The fourth generalization we will make is to also permit the 3-tensor mass to depend on
position (both time and space). Again we might like to think of a doping gradient or similar
situation. Mathematically, this has the effect that the mass matrix must be viewed as a
‘metric’ on a curved three-dimensional space. It is convenient to introduce an arbitrary
but fixed (time- and space-independent) scale p with the dimensions of mass and then
write

mij = M(3)h[j ®)

with (3)h,-_,- being a properly dimensionless 3-metric. Note that the introduction of w is
a mathematical convenience, not a physical necessity, and that all properly formulated
physical questions will be independent of .

(e) The fifth and last generalization will be to allow a time dependence for the confining
potential Ve = Vexi (¢, ). (This is already implicit in the analysis of Garay et al, but is
somewhat non-standard from the usual condensed-matter viewpoint.)

We do not claim that any of these generalizations will be easy to achieve experimentally,
it is sufficient for our purposes that they are at least physically conceivable. After this series
of generalizations we obtain an action which now reads

/dzd*x,/det [®n] { <1ha,+h—A +%(3)R(h) m(r,w)>¢—n(x,|¢|2)}.

C))

Here A, is the three-dimensional Laplacian defined by

A=, ( det [] [On] vjw>, (10)
det [4]
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where [P'h~1]7 is the inverse of the 3-metric ®h;;. Additionally, note the presence of the
DeWitt term
2
o rany (1n
2p
involving the dimensionless parameter £ and the three-dimensional Ricci scalar—this term
arises from operator-ordering ambiguities in going from the ‘flat space’ metric to ‘curved
space’ (going from position-independent m to a position-varying effective mass) [39, 40]. We
include the DeWitt term here for completeness, and because it should be included as a matter
of principle, but note that it is unlikely to lead to experimentally measurable effects.
Varying this generalized action with respect to ¥* now gives the ‘generalized’ nonlinear
Schrodinger equation that will be of central interest in this paper:

'ha t,x) = th Ehz@)Rh t
i glﬂ( ,w)——ﬂ hw(t»w)_ﬂ (W) Y (t, x)
+Vex(t, ) Y (1, @) + T (YY) Y (1, ). (12)

We will now demonstrate that this non-relativistic generalized nonlinear Schrodinger equation
has a (3 + 1)-dimensional ‘effective’ Lorentzian spacetime metric hiding inside it.

4. Madelung representation and the hydrodynamic limit

The so-called Madelung representation [41-45] of a Schrodinger wavefunction consists of
writing

Y(t, x) =+/p(t, x)exp[—ib(t, x)/h]. (13)

The factor of 7 is introduced for future convenience (it suppresses 7 as much as possible in
the following equations). This implies that € has the dimensions of an action. The Madelung
representation is well known in the context of the ordinary linear Schrodinger equation, and
generalizes to the present situation without difficulty.

Garay et al [2,3] substitute the Madelung representation into the Gross—Pitaevskii
equation, and take the real and imaginary parts. We could do the same thing here with the
generalized nonlinear Schrodinger equation. Alternatively, we could insert the Madelung
representation directly into the action, and vary with respect to 6 and p to deduce Euler—
Lagrange equations. Either way, you will obtain two equations:

(a) Continuity:
1
dp+—V-(pV8) =0. (14)
I
Here and hereafter V denotes a covariant derivative with respect to the 3-metric @ h;;. If

we define a ‘velocity’ (and at this stage this is a purely formal step)

; hUv;6 i
) =——"—=[m1V;0, (15)
then this ‘velocity’ is actually independent of w, and equation (14) above is formally
equivalent to the usual equation of continuity in a curved 3-space

0
§p+V- (pv) =0. (16)
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(b) The quantum analogue of the Hamilton—Jacobi equation:

3 _ hx/_ 3) )
8t9+ (V@) + Ve + 7’ 2M< NG +&YR(h) (17

Here and hereafter (V6)? denotes the 3-metric scalar inner product @[2~11" 8;0 9;6.

The quantity

/P
7

is a generalization (because it now includes the three-dimensional Ricci scalar term) of what
is often called the ‘quantum potential’ [46,47]. (Note that the quantum potential is actually
independent of 1 because rescaling  simultaneously rescales /;; in a compensating manner.)
With our conventions this is now the only place where 7 appears.

In terms of the velocity field (15) we can write the Hamilton—Jacobi equation in the form

(mpq ()P (v)?
2

Vo(p,§) = —— (

s@RmQ (18)
2p

mi;(v)']+V; + Vo +70" + VQ> =0. (19)

0

ot [
(Note that this form makes the p independence of the physics manifest.) The two real
equations (14) and (17) (or alternatively equations (16) and (19), subject to the definition
(15)) are completely equivalent to the generalized nonlinear Schrodinger equation (12).

An interesting physical regime is that in which one can safely neglect the quantum
potential term. This approximation can be justified either as the classical limit of the theory
(it corresponds to neglecting all terms with powers of 7) or as the regime of strong repulsive
interaction among atoms. In the latter case the density profile can be safely considered smooth
and hence it is reasonable to neglect the kinetic-pressure term Ay, ,/p/./p. This, together with
the smallness of the DeWitt term, permits one to discard Vg.

In any case one can see that on neglecting Vq, equations (16) and (19) have the form
typical of those for superfluids in the 7 — 0 limit. In particular, we can see, by the absence of
any term proportional to v x (V x v) in equation (19), that the equations we are working with
are automatically vorticity free. This is generally a necessary assumption in order to obtain
tractable equations in the analogue of GR from standard hydrodynamics [9, 12]; here it is a
free byproduct of the GP equation (and this conclusion does not depend on the assumption of
neglecting V).

The hydrodynamical form of equations (16) and (19) allows one to describe the Bose—
Einstein condensate as a gas whose pressure and density are related by the barotropic equation
of state

P(p) =n'(p)p —m(p). (20)

Therefore, it is also possible to formally define a local speed of sound by varying this pressure
with respect to the mass density of the condensate ‘fluid’ o = up

oP n”

2= _TFr Q1)

do 2
We say formally because for the general anisotropic case this ‘velocity of sound’ is not physical.
Physically, there will be three principal sound velocities in three orthogonal directions, and, as
we have mentioned before and will see again, the formally convenient parameter © does not
appear in any true physical result. This does not diminish the convenience of introducing the
parameter u for intermediate stages of the calculation.
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It is also interesting to give a more quantitative estimate of the magnitude of this sound
velocity for the Bose—Einstein systems based on alkali atoms. In particular, we can consider
the specific case of the rubidium gas with trivial mass tensor (& = m) and standard interaction
term 7w (t, , |[¥|?) = n(t, z, p) = %Ap2, so that 7/(¢, x, | |*) = Ay (t, )| = Ap. (Here A
is given by equation (5).) In this case the equation of state becomes P = %,02 and the speed
of sound takes the well known form

e M 22)
m m

For the rubidium gas one has a(®’Rb) ~ 5.77 nm, m(*’Rb) &~ 86.9 u and in standard BEC

experiments p &~ 10" cm™3 [27]. These numbers lead to a value of the speed of sound

c~62x 1073 ms™! ~6 mms~!. This is indeed one of the lowest speeds of sound one can

obtain experimentally. We shall see in what follows how this number can play an important

role in the simulation of gravitational phenomena in BEC systems.

5. Fluctuations

Now that we have seen how it is possible, at least in some appropriate regime, to introduce a
hydrodynamical interpretation of the condensate equations, and how a speed of sound can be
meaningfully introduced, we are naturally lead to investigate the propagation of fluctuations
in the condensate.

In order to pursue such an investigation we shall linearize the equations of motion (14) and
(17) around some assumed background (pg, 6p). In particular, we shall set p = pg+€p; +0(e?)
and O = 6 + €, + O(e?). Then, we will be left with two equations for the background
configuration plus two more (often called Bogoliubov equations) for the linearized quantities.
Linearizing the continuity equation results in the pair of equations

1
d;po + ;V (V) =0, (23)

1
0 o1 + ;V (01 Vb + po V) = 0. (24

Here and hereafter all inner products (a - b) are calculated using the 3-metric (h;; a' bl).
Linearizing the Hamilton—Jacobi equation we obtain the pair

1 /
3,60 + Z(V%)z + Vext + 7' (00) + Vo (o) = 0, (25)

1 , n?
001+ =V - VO + 77 (00) p1 — z— Da2p1 = 0. (26)
j 2u

Here D, represents a relatively messy second-order differential operator obtained from
linearizing the quantum potential, explicitly

—-3/2 1/2 —-1/2 —-1/2
Dapr = —305 218wy )11 + 105 Aoy P ). 27)

The linearized Hamilton—Jacobi equation may be rearranged to yield

” n? - !
pr=— |:jT (;00) — 2—D2:| <8191 + —V90 . V@l) (28)
" “u
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Now substitute this consequence of the linearized Hamilton—Jacobi equation back into the
linearized equation of continuity. We obtain, up to an overall sign, the wave-like equation:

2 1! 1
—0; {[ﬂ”(po) - ZDZ] (8t91 + ;VOO . V91>}

1 hZ —1
+-V. (/OOV91 - V90{ [ﬂ//(po) - Dz}
2 2p

y (a,el ; iveo . V@,) }) —o. (29)

This wave-like equation describes the propagation of the linearized Schrodinger phase 6. (The
coefficients of this wave-like equation depend on the background field (py, 6y) that you are
linearizing around.) Once 6, is determined, then equation (28) determines p;. Thus this wave
equation completely determines the propagation of linearized disturbances. The background
fields pp and 6y, which appear as time-dependent and position-dependent coefficients in this
wave equation, are constrained to solve our generalized nonlinear Schrodinger equation. Apart
from this constraint, they are otherwise permitted to have arbitrary temporal and spatial
dependences. To simplify things construct the symmetric 4 x 4 matrix

f()() f()j
Ma,x)y=|-----. e . (30)
in fij
(Greek indices run from 0-3, while Roman indices run from 1-3.) Then, introducing (3 + 1)-
dimensional spacetime coordinates (x* = (¢; x')) the above wave equation (29) is easily
rewritten as
3 (" 0,61) = 0. (31
Here
o1
= [n”(po) o Dz} (32)
"
| , S LR Y
f = [n (P0) = 5~ Dz} —= (33)
w w
. eV T, .
fo=-—= [n’ (p0) = Dz] (34)
2 2u
y Opii  pik 0 1wty
pi=f 2 T R [n“(po) - Dz] = (35)
2 2p 2

Thus f*¥ is a 4 x 4 matrix of differential operators (the differential operators in question
consistently operating on everything to the right). Note that the precise placement of '/ above
is immaterial since the operator D, is built using V, the covariant derivative associated with
h'J. This remarkably compact formulation (31) is completely equivalent to equation (29) and
is a much more promising stepping stone for further manipulations.

The major obstruction to interpreting this wave equation in terms of Lorentzian geometry is
the fact that f*" is itself still a matrix of differential operators, not functions. We now consider
several different approximations (valid in different regimes) which have the effect of replacing
these differential operators by functions. After making those approximations, the remaining
steps are a straightforward application of the techniques of curved space (3 + 1)-dimensional
Lorentzian geometry (see, for instance [9, 12]).
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6. Quasi-classical approximation

The most straightforward approximation we could make is to simply neglect D, completely:
this is actually what is done in the analysis of Garay et al [2,3]. We (and they) justify this
approximation by pointing out that D5 is always multiplied by % and in this sense is suitably
‘small’. We shall call this the quasi-classical approximation. The wave equation then simplifies
to

a, ((3191 +[1/p1Voy - V91)> . 1V~ (,00 VO — V6 (3,6, +[1/u]VOy - V91)> _o.

n// /-/L n//
(36)
To simplify things algebraically, we can define, in analogy with equation (21), a speed ¢ as
"
L= T i007 (37)
I

and the background ‘velocity’ vy by

hii V6,

(v0)' = = [m~'17V,6p. (38)
(Remember that c is not necessarily the physical speed of sound; it is simply a convenient
parametrization; in contrast vy really is p-independent and physical.) Now construct the
symmetric 4 X 4 matrix

1 :
M, ey=—| ...... e ) (39)
7T . . .. . ;
—vh 1 (PhU —viv))
This is now just a 4 x 4 matrix of numbers.

In any Lorentzian (that is, pseudo-Riemannian) manifold the curved space scalar
d’Alembertian is given in terms of the (3 + 1)-metric g,,, (¢, =) by

1

A= ——3, (V—gg"’d,0). (40)
\/_—g M ( )

The (3 + 1)-dimensional inverse metric, g*" (¢, x), is pointwise the matrix inverse of g, (¢, x),

while g = det(g,.,). Thus one can rewrite the physically derived wave equation (36) in terms

of the d’ Alembertian provided one identifies

v=gg" =" (41)
This implies, on the one hand

det(f"™) = (V=)' = g. (42)
On the other hand, from the explicit expression (30), expanding the determinant in minors
det(f") = (@) [(=1) - (& = vp) = (=v0)*] - [*] - [¢’] = =* /(@)™ 43)

Thus

g=—c/x"  Jmg=c /@ (44)
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We can therefore pick off the coefficients of the inverse ‘condensate metric’

T -1 —Vy -1 —,
gt )= — | ... e e =— | eu... e . (45)

3
C‘ . .. . i . . . . 5
-y - (c*hi — v(’)v(j)) -vy - (c*hi — vév{))
This is the effective Lorentzian metric seen by the perturbations of the phase of the condensate
wavefunction. At this point let us compare this metric with the acoustic metric of [5-13]

(a) The two metrics (acoustic and condensate) possess the same conformal factor (up to a
physically irrelevant constant rescaling). In view of this we will just call it the acoustic
metric from now on, keeping in the back of our minds that the relevant ‘acoustics’ is now
the propagation of oscillations in the phase of the condensate wavefunction.

(b) Note that Garay et al did not keep track of the conformal factor, as it was not needed for
the points they wanted to make.

(c) There are now slightly different physical interpretations for ¢ and vy.

(d) There is already a non-flat 3-metric /;; present in the analysis, even before the linearization
procedure is carried out. It is this feature that departs furthest from the previous
implementations of the notion of an ‘acoustic metric’.

We could now determine the metric itself simply by inverting this 4 x 4 matrix. On the
other hand, as is by now standard, it is even easier to recognize that one has in front of one an
example of the Arnowitt—Deser—Misner split of a (3 + 1)-dimensional Lorentzian spacetime
metric into space + time, more commonly used in discussing initial-value data in Einstein’s
theory of gravity (general relativity). The (direct) acoustic metric is easily read off as

—(c* — vg) —véhkj 2 —(c* — v(z)) —véhkj
gt )= — | o C =D (46)
m . cu .
_Ughki : hij _vghki . hij
Equivalently, the ‘acoustic interval’ can be expressed as
ds? = g dx v’ = 22 [—c2dr? (A’ — v dn) @/ —ofdn]. @)
cp

A few brief comments should be made before proceeding.

e Observe that the signature of this metricisindeed (—, +, +, +), as it should be to be regarded
as Lorentzian. There is an interesting physical subtlety here: some alkali atomic gases have
a negative scattering length, that is, there are attractive forces between atoms physically
leading to the collapse of the BEC. A negative scattering length is formally equivalent
to an imaginary speed of sound, and in terms of the effective metric is equivalent to a
Euclidean-signature metric. That is, negative scattering length corresponds to an elliptic
differential operator, instead of the more usual hyperbolic differential operator. In terms
of general relativity, manipulating the sign of the scattering length corresponds to building
an analogue for a signature-changing spacetime.

e It should be emphasized that there are (at least) three distinct metrics that are relevant to
the current discussion:

* The physical spacetime metric is just the usual flat metric of Minkowski space
N = (diag[—cigy 1. 1, 1] 0 (48)

(Here cjigny = speed of light.) The quantum field couples only to the physical metric
Nuv- In fact, the quantum field is completely non-relativistic, [|voll < Clight.
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* The ‘mass metric’ m;; = u h;; describing the position-dependent effective mass
for the fundamental particles described by the generalized nonlinear Schrodinger
equation.

* Fluctuations in the condensate field on the other hand, do not ‘see’ the physical metric
at all. Perturbations couple only to the acoustic metric g,,,.

* As is common to all 2-metric theories, one could also construct a distinct ‘associated
metric’ by the prescription

[gassociated]uv = Nuo [gfl]ap Npv- (49)
There seems to not be any clean physical interpretation for this object.

The geometry determined by the acoustic metric inherits some key properties (such as, for
example, stable causality) from the existence of the underlying flat physical metric (see
[9,12]).

This acoustic metric is now sufficiently general to be able to mimic a wide class of ‘generic’
gravitational fields—the presence of the position-dependent 3-tensor mass matrix is crucial
to this observation. In Garay et al [2,3] the mass was both isotropic and position-
independent, consequently, the spatial slices of their analogue spacetimes were always
conformally flat (the same phenomenon occurs in the acoustic geometries of [5—14]).
This is the fundamental reason we have gone to the technical trouble of adding a position-
dependent 3-tensor mass. The only significant restriction on our version of the effective
metric is that the 3-velocity is irrotational (zero vorticity, curl-free).

The major differences with the analysis of Garay et al is that their nonlinearity was
strictly quartic, their mass both isotropic and position-independent, and that they further
approximated the current quasi-classical approximation by going to a ‘geometrical optics’
version thereof that permitted them to also neglect the conformal factor.

As we have already commented, one might be a little worried that the ‘speed’ ¢ depends
on the arbitrary but fixed scale n. However, the 3-metric 4;; also depends on p and

h =" polm="'17 (50)

is u-independent. Similarly, (vo)’ is independent of 1. If you ask physical questions like
(for instance) ‘what are the null curves of the metric g,,?” they are determined by the

equation
dx! ; dx/ j 2
hij O Yo ar Vo ) =¢C"- D

And this equation is completely independent of the arbitrary fixed scale n. Equivalently,

mi; d—xi—vl‘ dij—vf' =" (52)
i\ar ) \gr T ) T

We should add that in Einstein gravity the spacetime metric is related to the distribution of
matter by the nonlinear Einstein—Hilbert differential equations. In contrast, in the present
context, the acoustic metric is related to the background wavefunction in a simple algebraic
fashion. There are certainly constraints on the acoustic metric, but they arise from the
generalized nonlinear Schrodinger equation, not from the Einstein equations of general
relativity. (We belabour this trivial point because we have seen it lead to considerable
confusion.)
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o Finally, wereiterate the main reason the relativity community is interested in these systems:
regions where the speed of the condensate flow exceeds the speed of sound very closely
mimic the key kinematic features of black hole physics. We will not repeat the relevant
details as they are more than adequately dealt with elsewhere in the literature (see, for
example, [2, 3, 5-14]).

Many features of this acoustic metric survive beyond the current quasi-classical approximation,
and we now initiate a systematic analysis of how much further the model can be pushed.

7. Low-momentum approximation

The low-momentum approximation is subtly different from the naive quasi-classical
approximation. We shall now retain the 7° D, term, but take the approximation that within
this quantum potential term the gradients of the background are more important than gradients
of the fluctuation. (We justify this with the observation that gradients of the fluctuation are
doubly small, being suppressed by both a factor of 72 and a factor of the linearization parameter
€). Specifically, we take

Dypr = —1p5 P 1An(pg )11 + 305 2 Aoy 2 p1) (53)
~ =100 P 1an s 1+ g PAneg 1) (54)
1 (A Vo)?
_ nPo (Vo) . (55)
21 p P

That is, under this low-momentum approximation we can simply replace the operator D, by
the function

1 {Ahpo _ (Vpo)z}‘ (56)

Py 108

The net result of this approximation is that wherever the quantity t” appears in the naive
quasi-classical analysis it should be replaced by

{Ahpo B (Vpo)? }
% I3

2
” //+h

— 57
nl —> ™ 57

This does not affect the background flow velocity vy, but it does modify the propagation speed
so that now

2 2 2 2
> po |, m | Awpo (Vo) || h Anpo (Vo)
c = ; |:7T + @ { pg - 108 - Cquasiclassical 1+ 4WT” ,03 - ,08 .

(58)

This is a new higher-order correction to the quasi-classical speed of sound we have previously
introduced in equation (21); in this sense is a generalization of the previously known results
regarding the propagation of collective excitations in BEC. This effect was not contemplated in
the analysis of Garay et al. (Justifiably so, since they were only interested in the geometrical
‘optics’ approximation within the quasi-classical limit.) If, using the speed of sound, we
introduce a notion of ‘acoustic Compton wavelength’

h

Ae = —
uc

; (59)
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then
h2
22 = . (60)
07T
So this modification to the speed of sound is seen to be the first-order term in a gradient
expansion governed by the dimensionless parameter

Vool
“dmp

A 61)

8. Eikonal approximation

In contrast to the low-momentum approximation, the eikonal approximation is a high-
momentum approximation where the phase fluctuation 6, is itself treated as a slowly varying
amplitude times a rapidly varying phase. This phase will be taken to be the same for both p,
and 0, fluctuations. In fact, if one discards the unphysical possibility that the respective phases
differ by a time-varying quantity, any time-constant difference can be safely reabsorbed in the
definition of the (complex) amplitudes.

Specifically, we shall write

01(t, ) = Re {Ay exp(—i¢)}, (62)

p1(t, ) = Re { A, exp(—ig)}. (63)

As a consequence of our starting assumptions, gradients of the amplitude, and gradients of the
background fields, are systematically ignored relative to gradients of ¢. (Warning: what we
are doing here is not quite a ‘standard’ eikonal approximation, in the sense that it is not applied
directly on the fluctuations of the field (¢, ) but separately on their amplitudes and phases
p1 and ¢;.) We adopt the notation

0
0= k=Yg (64)
Then the operator D, can be approximated as
Dapr = =305 " 18n(og Dor + 305 Anoy 1) (65)
~ +1p05 ' [Anp1] (66)
= —3p, K p1. (67)

A similar result holds for D, acting on #;. That is, under the eikonal approximation we
effectively replace the operator D, by the function

Dy — —%,oo_lkz. (68)
For the matrix f#" this effectively results in the replacement
nie
== [n“(po) + } (69)
4ppo

12627 hikv,6
] kY0 (70)

Y — - [n”(po) +
4upo 2
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. h*V,0 n2 !

fO - ——= [n”(po)+ } (71)

4ppo

o po®@hi h,6 w227 RtV

fi - 2 [n”(po) + } — (72)

2 4ppo 7
(as desired, this has the net effect of making f*¥ a matrix of numbers, not operators).
The physical wave equation (29) now becomes a nonlinear dispersion relation
P + (f% + f°) wk; + fkik; = 0. (73)

After substituting the approximate D, into this dispersion relation and rearranging, we see
(remember k* = ||k[|? = [h ']V k;k;)

2 i p0k2 " h2 2 i7,\2
—o° +2uywk; + — [ + k™| — (vpki)= = 0. (74)
M 4ppo
That is
, k2 n?
(0 —vik) = 25 [n” + kz]. (75)
Iz 4ppo

Alternatively,

_ k2 n? . - -
© = voki £ \/ L Z [n" t o k2] — vjks & oo (alm 1T ky) + (Sl 1k ).

(76)

In the case of an isotropic mass matrix, [m ']/ — 1/m. It also makes sense to set ;u — m
and h;; — §;;, in which case c really does represent the physical speed of sound. Then we
can write the dispersion relation in a more illuminating form

. h 2
w=vk £ /c2k?+ | —k%) . (77)
0 2m

Note how the previous anisotropic dispersion relation differs from this isotropic one: in that
case there are three different physical sound velocities in three orthogonal principal directions.
At this stage some observations are in order

(a) Itis interesting to recognize that the dispersion relation (77) is exactly in agreement with
that found in 1947 by Bogoliubov [29, 30] for the collective excitations of a homogeneous
Bose gasin thelimit 7 — 0 (almost complete condensation). In his derivation Bogoliubov
applied a diagonalization procedure for the Hamiltonian describing the system of bosons.

(b) It is easy to see that (76), and its isotropic partner (77) actually interpolates between two
different regimes depending on the value of the wavelength A = 2m/| k|| with respect
to the ‘acoustic Compton wavelength’ A. = h/(uc). (Remember that c is the speed of
sound; this is not a standard particle physics Compton wavelength. Furthermore, ||k is
defined using the inverse 3-metric 4/.) In particular, if we assume vy = 0 (no background
velocity), then for large wavelengths A >> A, one obtains a standard phonon dispersion
relation w ~ c|k||. As stressed by Braaten [48] this can be related to the fact that the
quantum theory we are working with has a U (1) symmetry which is spontaneously broken.
Atlow momenta we are just seeing the dispersion relation of the corresponding Goldstone
mode. For wavelengths A <« A, the quasi-particle energy tends to the kinetic energy of
an individual gas particle and, in fact, v ~ h2k? /(Q2m).
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(c) The dispersion relation (77) exhibits a contribution due to the background flow véki, plus
a quartic dispersion at high momenta. The group velocity is
2+ %Zkz) .
k.

; Jw
Vi =

g—a—kizvz):t

(78)

2 + (L12)°
Dispersion relations of this type (but in most cases with the sign of the quartic term
reversed) have been used by Corley and Jacobson in analysing the issue of trans-Planckian
modes in the Hawking radiation from general relativistic black holes [6,8,21]. In their
analysis the group velocity reverses its sign for large momenta. (Unruh’s analysis of
this problem used a slightly different toy model in which the dispersion relation is
saturated at high momentum [10].) In our case, however, the group velocity grows without
bound, allowing high-momentum modes to escape from behind the ‘horizon’. (Thus the
acoustic horizon is not ‘absolute’ in these models, but is instead frequency dependent, a
phenomenon that is common once non-trivial dispersion is included.)
This type of ‘superluminal’® dispersion relation has also been analysed by Corley and
Jacobson [28]. They found that this escape of modes from behind the horizon often leads
to self-amplified inabilities in systems possessing both an inner horizon as well as an
outer horizon, possibly causing them to disappear in an explosion of phonons. This is
also in partial agreement with the stability analysis performed by Garay et al using the
whole Bogoliubov equations. They found unstable solutions with the kind of behaviour
just mentioned, but they also find stability regions (depending on the value of certain
configuration parameters). The existence of these stable configurations might be related
to the specific boundary conditions imposed in their configurations.
Indeed, with hindsight the fact that the group velocity goes to infinity for large k was pre-
ordained: after all, we started from the generalized nonlinear Schrédinger equation, and
we know what its characteristic curves are. Like the diffusion equation the characteristic
curves of the Schrodinger equation (linear or nonlinear) move at infinite speed. If
we then approximate this generalized nonlinear Schrédinger equation in any manner,
for instance by linearization, we cannot change the characteristic curves: for any well
behaved approximation technique, at high frequency and momentum we should recover
the characteristic curves of the system we started with. However, what we certainly do
see in this analysis is a suitably large region of momentum space for which the concept of
the effective metric both makes sense, and leads to a finite propagation speed for medium-
frequency oscillations.

(d) There is an amusing feature to the (generalized) Bogoliubov dispersion relation which it
may be worth making explicit: consider the dispersion relation

K2\’
(k) = mg+k2+<2m ) (79)

(BEC condensates correspond to my = 0, we retain this term here for generality. We
have made ¢ =% = 1). At low momenta (k < my) this dispersion relation has the usual
non-relativistic limit

2
w(k) = mo + Ll +O(kY). (80)
21’110

6 The term ‘superluminal’ refers here to real physical propagation beyond c, in our case the velocity of propagation for
phonons in the condensate, and has nothing to do with the ‘apparent’ superluminal behaviour found for wavepackets
in certain tunnelling situations [49, 50].
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At intermediate momenta (my < k < my) this dispersion relation has an approximately
relativistic form. Finally, at large momenta (k >> my,) the dispersion relation again
(perhaps surprisingly) recovers a non-relativistic form

k2
k =
w (k) o

+me +O™2). (81)
oo

This serves to drive home in a particularly simple way the point that observing a Lorentz
invariant spectrum does not guarantee that the underlying physics is Lorentz invariant.
Indeed, the entire programme of searching for analogue models of general relativity
generically seeks to take some simple (physically accessible and typically non-relativistic)
model and determine whether it nevertheless hides within it some useful approximation
to Lorentzian geometry.

9. Summary and discussion

In seeking to see how far we might be able to push the BEC system as an analogue model
for general relativity we have encountered a number of intriguing features. First, we have
shown that the existence of a regime in which phase perturbations of the wavefunction of the
BEC (or quasi-BEC) behave as though coupled to an ‘effective Lorentzian metric’ is a generic
feature, independent of the explicit form of the nonlinear terms in the Schrodinger equation.
The only exception comes about when the forces exerted between atoms are attractive. In
this case the equation of motion for the phase perturbations are no longer hyperbolic, so the
whole notion of a wave disappears for these systems. (In GR language, this corresponds to a
Euclidean-signature metric.)

Second, we have seen that in contrast to the isotropic acoustic systems considered to date,
mimicking a generic gravitational field is not a priori implausible though it would technically
be very challenging, relying as it does on the direct introduction of anisotropies into the
generalized nonlinear Schrodinger equation via a position-dependent 3-tensor effective mass.

We have also explicitly seen how the whole notion of an ‘effective metric’ in these BEC
systems is intrinsically an approximation which is valid for certain ranges of frequency and
wavenumber—this should not really be a surprise, since even for normal acoustic systems
eventually the atomic nature of matter provides a natural cut-off. In the BEC system we have
seen that the acoustic Compton wavelength plays a similar role: wavelengths long compared
with the acoustic Compton wavelength see a Lorentzian ‘effective metric’, while wavelengths
short compared with the acoustic Compton wavelength probe the ‘high-energy’ physics (which
in this situation is the non-relativistic Schrédinger equation).

Finally, we mention that from the sound velocities typically encountered in BEC systems
we can make a crude estimate of the Hawking temperature to be expected in these systems.
Using the standard estimate based on dimensional analysis [5, 12, 13]

noc
T~ -,
2]'[](3 R

(82)

and choosing a value of R ~ 10u for the size of the acoustic black hole, we would have
T ~ 10~° K. While extremely small this temperature is only three orders of magnitude less than
that of the BEC itself. Furthermore, as argued in [13] this order of magnitude estimate for the
Hawking temperature is often misleadingly low—and this fact, in addition to the intrinsically
interesting features of the effective geometry approach, makes further investigation of these
BEC systems worthwhile—both for the condensed matter and relativity communities.
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