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It is by now well known that various condensed matter systems may be used to mimic
many of the kinematic aspects of general relativity, and in particular of curved-spacetime
quantum field theory. In this essay we will take a look at what would be needed to mimic
a cosmological spacetime — to be precise a spatially flat FRW cosmology — in one of
these analogue models. In order to do this one needs to build and control suitable
time dependent systems. We discuss here two quite different ways to achieve this goal.
One might rely on an explosion, physically mimicking the big bang by an outflow of
whatever medium is being used to carry the excitations of the analogue model, but this
idea appears to encounter dynamical problems in practice. More subtly, one can avoid
the need for any actual physical motion (and avoid the dynamical problems) by instead
adjusting the propagation speed of the excitations of the analogue model. We shall focus
on this more promising route and discuss its practicality.
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1. Motivation

It is by now well known that various condensed matter systems may be used to

mimic many of the kinematic aspects of general relativity, and in particular of
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curved-spacetime quantum field theory.1–4 Prior work has focussed largely on black

holes and event horizons, but there are also interesting cosmological issues that can

be addressed. In this essay we will take a look at what would be needed to mimic a

cosmological spacetime — to be precise, a spatially flat FRW cosmology — in one

of these analogue models. There are two quite different ways of trying to achieve
the same goal:

• One might rely on an explosion, physically mimicking the big bang by an out-

flow of whatever medium is being used to carry the excitations of the analogue

model (see e.g. Ref. 5). Unfortunately, this idea appears to encounter dynami-

cal problems in practice, problems not inherent to the type of geometry being

reproduced.

• More subtly, one can avoid the need for any actual physical motion (and avoid the

dynamical problems) by instead adjusting the propagation speed of the excita-

tions in the analogue model.

The physical metric we will be trying to emulate is that of a spatially flat FRW

cosmology

ds2FRW = −c2dt2 + a(t)2dx2, (1)

where a(t) is the scale factor of the universe as a function of time. In contrast the

analogue models generically provide effective metrics of the form1–4

ds2effective =
ρ(t,x)

cs(t,x)
{−[c2s(t,x) − v2(t,x)]dt2 − 2v(t,x) · dtdx + dx2} . (2)

Here v(t,x) is the physical velocity of the medium, cs(t,x) is the propagation

speed of whatever excitations we are interested in studying, and the conformal

prefactor ρ(t,x)/cs(t,x) depends both on the dimensionality of spacetime and (to

some extent) on the specific choice of the analogue model. In the form presented

above the conformal factor is appropriate to either ordinary sound in a classical

fluid,1–4 or to phonons in a BEC,6 both in (3 + 1) dimensions.

We now want to consider the fundamental question — given the availability of

“effective metrics” of type (2), how close can one get to reproducing a FRW metric

of type (1). That this question is non-vacuous can be deduced from the observation

that in the black hole context “effective metrics” of type (2) never exactly reproduce

the Schwarzschild geometry,3 they can do so only up to an overall conformal factor.

We wish to check, in particular, if the same phenomenon shows up in a cosmological

context.

2. Explosions

As mentioned in the introduction, one plausible approach is to rely on an actual

physical explosion in the medium to mimic the big bang.5 Start with the FRW

metric (1) and substitute

z = b(t)x , dz = b(t)dx + ḃ(t)xdt , b(t)dx = dz −
ḃ(t)

b(t)
zdt . (3)
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Then, introducing a Hubble-like parameter,

Hb(t) =
ḃ(t)

b(t)
, (4)

the FRW metric (1) is transformed to

ds2FRW = −

[

c2 −
a2

b2
Hb(t)

2z2

]

dt2 − 2
a2

b2
Hb(t)z · dzdt+

a2

b2
dz2 . (5)

This metric is equivalent to the required “effective metric” form [Eq. (2)], provided

we take

v(t, z) ! Hb(t)z , cs !

b

a
c ,

ρ

cs
!

a2

b2
. (6)

The continuity equation for the medium,

ρ̇+ ∇ · (ρv) = 0 , (7)

particularized to the flow field v(t, z) ! Hb(t)z implies

ρ̇+ 3ρHb(t) = 0 , ⇒ ρ(t) ∝
1

b3(t)
. (8)

Using the last equivalence in Eq. (6) we can now fix the behaviour of cs(t) as a

function of a(t) and b(t):

cs(t) ∝
1

a(t)2b(t)
. (9)

Equations (8) and (9), together with the first equivalence in Eq. (6), completely

fix the relation between the hydrodynamical quantities (ρ(t),v(t, z), cs(t)) and the

cosmological solution parameters (a(t), b(t), c).

Although the “explosion route” just discussed seems promising, one should note

that because of the linearly rising velocity field v = Hbz, this particular realiza-

tion of a FRW effective geometry is guaranteed to possess an apparent horizon,

a spherical surface in which the speed of the fluid surpasses the speed of sound.

From a dynamical point of view, this might introduce many practical problems not

intrinsically inherent to the type of geometries we are trying to reproduce. In this

sense, we view the use of an exploding medium as not being a particularly useful

analogue for an expanding FRW universe.

3. Varying Propagation Speed

A much better analogue of an expanding FRW universe can be obtained by keeping

the medium at rest and instead varying the propagation speed of the excitations. In

this case the continuity equation implies that ρ(t,x) is a constant, so that we can

rescale the metric by a constant factor c0/ρ (where c0 is any convenient reference

speed) obtaining

ds2effective =
c0
cs(t)

{−c2s(t)dt
2 + dx2} = −c0cs(t)dt

2 +
c0
cs(t)

dx2 . (10)
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Now introduce a pseudo-time τ , related to laboratory time via dτ = dt
√

cs(t)/c0.

Then

ds2effective = −c20dτ2 +
c0
cs(t)

dx2 . (11)

Consequently we completely reproduce a FRW cosmology provided we identify

c0dτ ! cdtFRW ,
c0
cs(t)

! a(τ)2 . (12)

That is, an expanding universe corresponds in the effective geometry to a decreasing

propagation speed. A tricky point is that cs is still presented in terms of laboratory

time t as the speed ||dx/dt||. However in terms of the pseudo-time τ , the excitations

propagate at speed

c̄s(τ) =

∥

∥

∥

∥

dx

dτ

∥

∥

∥

∥

=
dt

dτ

∥

∥

∥

∥

dx

dt

∥

∥

∥

∥

=

√

c0
cs(t)

cs(t) =
√

c0cs(t) . (13)

Having obtained the general analogue of the flat FRW metric it is interesting to

investigate the analogue equivalent of the inflationary solution. We can start by

rewriting the analogue Hubble factor as

H =
a′(τ)

a(τ)
=

1

2

√

cs
c0
ȧ

dt

dτ
= −

1

2

√

c0
cs

ċs
cs
. (14)

where the prime represents derivative with respect to the pseudo-time and the dot

with respect to the laboratory time. The inflationary solution is then easily obtained

by using a exponential law in pseudo-time τ :

a(τ) = eHτ , a(t) = Ht , (15)

corresponding to a power law in physical time for the speed of sound (measured in

physical time)

cs(t) =
c0

a2(τ)
=

c0
H2 t2

. (16)

In summary the nice feature of the variable propagation speed route to a FRW

analogue is that it is relatively clean; there is no moving medium which might

impact the physical boundaries of any experimental apparatus and one can instead

focus on what we feel is the central issue — how to physically manipulate the

propagation speed cs (or its pseudo-time equivalent c̄s).

4. Suitable Physical Mechanism: Feshbach Resonance in a BEC

From the preceding discussion it is clear that one attractive route to simulating a

FRW cosmology in an effective geometry is by rapid manipulation of the propaga-

tion speed of whatever excitations we might wish to focus attention on. But how is

that to be accomplished? There is one particular medium, currently the center of

much experimental interest, for which an appropriate mechanism has been demon-

strated to exist. Here we are referring tho the use of Feshbach resonances7 in Bose–

Einstein condensates [BECs].
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BECs are promising analogue systems of gravity. They have been extensively

studied4,6,8,9 in relation to the possibility of simulating black hole geometries and

Hawking radiation. The basic equation used in describing the condensate is the

Gross–Pitaeveskii [GP] equation

−i~
∂

∂t
ψ(t,x) =

(

−
~

2

2m
∇2 + Vext(x) + κ|ψ(t,x)|2

)

ψ(t,x) , κ =
4πσ~

2

m
. (17)

Here ψ(x, t) is the (classical) wave function of the condensate, (|ψ(x, t)|2 = n = the

particle density of the condensate), Vext is the trapping potential and σ is the s-wave

scattering length for the atoms (which have mass m). [Actually it is conventional

to use the symbol a for the scattering length of a BEC condensate. We adopt this

unusual notation to avoid any confusion with the scale factor of the FRW metric.]

The generic analogue model can be easily obtained by considering the propagation

of excitations in the condensate. These are described by a wavefunction which

closely resembles that of a scalar field in a curved spacetime described by the

metric (2) with ρ replaced by nm and where c2s = κn/m (see Ref. 6 for a detailed

derivation). The key point is that the propagation speed is proportional to the

scattering length

c2s ∝ σ . (18)

Let us now qualitatively explain we can simulate cosmological expansion within

this model. We start with a condensate in a stationary state described by a con-

stant background density in a sufficiently large volume. This is a solution of the

Gross–Pitaevskii equation. For this, one needs to have a potential that reproduces

a sufficiently large hard-walled box. Using a Feshbach resonance it is now possible

to change at will the scattering length σ in the condensate. If one now decreases the

value of the scattering length in a sufficiently slow manner (the timescale will be dis-

cussed below), then at the same time the value of the speed of sound will decrease.

The analysis of the previous section then shows that this leads to an effective FRW

geometry. Fluctuations of the condensate will propagate in an effective metric which

is an analogue to a spatially flat FRW geometry.

A subtle point is that when the time dependence is introduced in the system by

a time-varying scattering length one must be sure to work in a regime where the

background configuration is “instantaneously” reacting to these changes. Thus we

must assure that the GP equation (from which the analogue gravity framework is

derived) holds at each instant of time. The validity of the GP in describing the Bose–

Einstein condensate is related to the validly of several crucial assumptions, generally

stated to be the “mean-field” approximation and the dilute gas approximation. It is

nevertheless important to note that in a dynamical situation a third approximation,

which we can call “Markovian” approximation, is implicitly assumed.

The Markovian approximation is related to the fact that in dynamical situations

the two-body time-dependent scattering matrix can have a complicated form due

to the “memory” of the system. In these situations the system is described by a
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6 C. Barceló, S. Liberati and M. Visser

GP-like equation where the interaction term includes a “delay term” described by

an integration over time. The necessary assumption in order to have a Markovian

description of the dynamics (which together with the two previous approximations

leads to the GP equation) is then that the timescales on which external parameters

are changing are longer that the two-body collisional duration. That is, longer than

the timescale over which a single interaction happens. (Reduced to the bare bones,

we are asking that the scattering length does not change significantly during the

period when a pair of atoms are interacting.)

We can estimate the two-body collision time by a simple calculation. All we need

is the typical size of the region of strong interaction of two atoms in the condensate,

and the typical speed with which they move. The first quantity can be assumed to

be of the order of the Van der Waals length. This length is basically the size of the

region of strong interaction: For r � λvdW the scattering wave function oscillates

rapidly due to the strong interaction potential. In alkali ground state interactions,

λvdW is typically of order of few nanometers, λvdW ≈ 1 nm.

Regarding the typical speed of the atoms, this is set by the de Broglie momentum

generated by the trap confinement: p = h/R and v̄ = p/m. We shall assume a trap

of typical size of ten microns. For a typical Bose–Einstein condensate one then gets

an interaction timescale

ti =
λvdW

v̄
=
λvdWmR

h
≈ 10−6 s , (19)

so it would appear that a microsecond is the shortest timescale allowed for the

change in σ.

5. Analogue Cosmological Particle Creation

Now that the above analysis has shown that there is a regime for which a vary-

ing scattering length can be used to simulate a FRW-like effective metric one may

wonder about the behaviour of the fluctuations on such a time-dependent back-

ground.

The equation satisfied by the quantum fluctuations is, in the acoustic approx-

imation (that is for long wavelengths), that of a massless scalar field over an

expanding background and therefore, it will lead to cosmological pair production of

particles. Interestingly it was recently demonstrated10 that not all analogue models

of gravity are suitable for simulating particle creation from the quantum vacuum.

Indeed, it may happen that even if the classical equation for the perturbations

on the background resembles that for a field in curved spacetime, nonetheless one

might fail to mimic quantum particle creation because the commutation relations

of the analogue field are not the correct one for the physical quantum field. In this

regard it is useful to note that it can be explicitly shown10 that in the case of BECs

the structure of the commutator is the correct one.

We then expect to be able to produce quantum excitations with several frequen-

cies, typically determined by the rapidity of the change in the scattering length.
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In particular, if tmin is the shortest timescale over which we can physically drive

the system then νpeak ≈ 1/tmin is the peak frequency of the created quasi-particles

spectrum. It is also important to check that this frequency corresponds to a wave-

length shorter than the physical size of the condensate R. An easy way to do this

is to confront the interaction time ti given in Eq. (19) with the crossing time of the

condensate, tsize = R/c:

ti
tsize

=
λvdWmc

h
=

2πλvdW

ξ
, (20)

where we have introduced the healing length of the condensate, defined to be ξ =

~/(mcs). For typical BEC system ξ ≈ 0.1–10 µm (assuming an average value of the

scattering length of a few nanometers) so

ti
tsize

≈ 10−2–10−4 . (21)

Thus there is a viable window of timescales (for the time dependence of the scatter-

ing length) for which both the GP equation holds, and the quasi-particles produced

have wavelengths shorter than the physical size of the condensate.

The possibility of simulating cosmological particle creation is a significant

advance that deserves further investigation, and might be remarkably important

in the future. The simulation of inflationary scenarios, and the relevant particle

creation, could lead to a better understanding of the generation of primordial in-

flationary perturbations and their role in the generation of large scale structure.

Moreover it should be noted that the quasi-particles generated in this way will be

characterized by a phononic dispersion relation ω2 = c2s k
2 only at long wavelengths

with respect to the healing length of the condensate. In general for wavelengths

comparable with the healing length of the condensate the Bogoliubov dispersion

relation

ω =

√

c2sk
2 +

(

~

2m
k2

)2

, (22)

will hold.11 This is particularly interesting due to the recent intense debate

about the detectability of inflationary spectrum due to these kind of dispersion

relations.12,13

6. Conclusions and Prospects

Our major conclusions are four-fold:

• At a theoretical level, it is clear that any mechanism for changing the propagation

speed in a stationary medium is, from a mathematical perspective, equivalent to

working in an expanding (or collapsing) spatially flat FRW universe.

• At an experimental level, the use of a Feshbach resonance in a Bose–Einstein

condensate yields a way of influencing the scattering length, and hence the prop-

agation speed, without changes in condensate density — and more importantly
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without violating the approximations made in deriving the Gross–Pitaevskii

equation on which the entire “effective metric” approach to phonon propagation

in BECs is based.

• At a very practical engineering level, the relevant parameters seem to be well

within our technological horizon.

• Building an analogue FRW cosmology (suitable for testing semiclassical quan-

tum effects) seems considerably less problematic than building an analogue black

hole.4,8,9

In summary: The prospects for direct laboratory simulation of an expanding uni-

verse, and consequent cosmological particle production are very good. Given the

relatively small number of experimental tests of curved space quantum field theory,

any progress along these lines is important. Our long range goal is to turn at least

some aspects of cosmology into a laboratory science, not just an observational

science.
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