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Abstract

We sketch a particularly simple and compelling version of D-brane cosmology. Inspired by the semi-phenomenological
Ž .Randall–Sundrum models, and their cosmological generalizations, we develop a variant that contains a single 3q1 -

Ž .dimensional D-brane which is located on the boundary of a single bulk 4q1 -dimensional region. The D-brane boundary is
Ž .itself to be interpreted as our visible universe, with ordinary matter planets, stars, galaxies being trapped on this D-brane by

Ž .string theory effects. The 4q1 -dimensional bulk is, in its simplest implementation, adS , anti-de Sitter space. We4q1

demonstrate that a ksq1 closed FLRW universe is the most natural option, though the scale factor could quite easily be so
Žlarge as to make it operationally indistinguishable from a ks0 spatially flat universe. With minor loss of elegance,

.spatially flat and hyperbolic FLRW cosmologies can also be accommodated. We demonstrate how this model can be made
consistent with standard cosmology, and suggest some possible observational tests. q 2000 Elsevier Science B.V. All rights
reserved.

PACS: 04.60.Ds; 04.62.qv; 98.80.Hw
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1. Introduction

In this article we develop what we feel is a
particularly simple and compelling cosmological
model based on the semi-phenomenological Ran-
dall–Sundrum models for low-energy string theory
w x1,2 . For some early tentative steps along these lines

w xsee the papers of Gogberashvili 3 , plus more recent

1 E -m a il: c a r lo s@ h b a r .w u s tl.e d u ; H o m e p a g e :
http:rrwww.physics.wustl.edur;carlos

2 E -m a il: v is se r@ k iw i.w u s tl.e d u ; H o m e p a g e :
http:rrwww.physics.wustl.edur; visser

w x w x 3developments in 4 and 5 . In developing our
cosmology, we wish to minimize the number of
baroque features coming from the underlying string
theory, and maximize the use of symmetry princi-
ples, in order to develop a picture that is as simple
and attractive as possible, with good prospects for
being observationally testable.

3 Note that many aspects of this recent work can be viewed as
Ž .extending domain-wall physics in 3q1 dimensions to brane

Ž .physics in 4q1 dimensions, and so owes much to early papers
w xon domain-wall physics 6 .
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Perhaps the most compelling model along these
Ž .lines can be built by considering a 4 q 1 -
Ž .dimensional manifold with a single 3 q 1 -

dimensional boundary. This boundary is taken to be
Ža D-brane a membrane on which the fundamental

string fields satisfy Dirichlet type boundary condi-
.tions , and the D-brane is assigned an intrinsic en-

ergy density and pressure arising both from some
wunderlying brane tension and from matter ordinary

Ž . x3q1 -dimensional matter that is trapped on the
D-brane by stringy effects.

Since this point has the capacity to cause serious
confusion, let us try to make it a little more explicit 4:
We are viewing ordinary matter as open-string exci-
tations of the D-brane boundary. But since open
strings by definition have their end-points on the
D-brane, an open string of energy E is strictly
limited in how far it can stretch off the D-brane: Its
maximum extension into any higher-dimensional bulk

Ž X. Xis simply L -Er 2a where a is the funda-stringy

mental open string tension 5. In contrast, gravitons
are represented by closed string loops which are not

Žtrapped on the D-brane – gravitons and non-per-
.turbative gravity can very easily penetrate finite

distances into the higher-dimension bulk. Thus grav-
Ž .ity is in our model fundamentally a 4 q 1 -
Ž .dimensional effect and we will be using the 4q1 -

dimensional Einstein equations to deduce the analog
Žof the Friedmann equations of motion for the 3q

.1 -dimensional D-brane boundary.
Now while gravitons can easily penetrate into the

bulk, one does not want them to be too effective at
doing so. Once one turns away from the large-scale
average properties of the cosmological FLRW geom-
etry, to consider the gravitational field generated by

Ž .astrophysical perturbations planets, stars, galaxies
one does not want the virtual-graviton cloud sur-
rounding these objects to be completely free to move

4 We are trying to make this article comprehensible to string
theorists, relativists, and astrophysicists. Accordingly some com-
ments may be trivial to one of the three communities, but we
would rather err on the side of clarity and simplicity than either
impenetrable brevity or excessive technical detail.

5 This whole D-brane picture only makes sense for string
X'excitations of low energy compared to the string scale: E- "c a .

So the thickness of the cloud of excitations surrounding the
X'D-brane is at most of order L - "cr 2a .Ž .stringy

Ž .into the 4q1 -dimensional bulk, since then one
would see an inverse-cube law for gravity in lieu of
the observed inverse-square law. This is where the
Randall–Sundrum mechanism is critical – virtual
gravitons generated by matter perturbations are
Ž .weakly trapped near the D-brane, not by stringy
effects, but rather by the bulk gravitational field and
the tightly constrained location of the sources 6. We
belabor this point because we have seen it generate
considerable confusion within the relativity and as-
trophysics communities: Gravity is not used to trap
matter on the D-brane and the Randall–Sundrum
models have more in common with the field-theory-

w xbased trapping mechanisms of Akama 7 and Sha-
w xposhnikov 8 than they do with the gravity-based

w xtrapping mechanism of 9 .
ŽIn the interests of simplicity and clarity the 4q

.1 -dimensional bulk will always be taken to be static
and hyper-spherically symmetric, though we shall
quickly specialize to Reissner–Nordstrom–de Sitter¨
space, or even more particularly, to anti-de Sitter
space. The boundary will always be taken to be

Ž .hyper-spherically symmetric in the 4 q 1 -
dimensional sense, with this hyper-spherical symme-
try reducing to translation invariance when viewed

Ž .from the 3q1 -dimensional point of view. In pick-
ing this particular starting point we have been guided
by many recent publications; including the Randall–

w x ŽSundrum scenarios 1,2 which will used to describe
.the physics near the brane , the single-brane models

w xof Gogberashvili 3,4 , various previous versions of
w xRandall–Sundrum based cosmology 5 , and by a

desire to have a framework that is at least plausibly
connectable to the complex of ideas going under the

w xname of the adSrCFT correspondence 10,11 .
We start the analysis by a discussion of what it

means to apply the Einstein equations to a manifold
with boundary, interpreting this process in terms of
an extension of the Israel–Lanczos–Sen thin shell

w xformalism 12–14 . This permits us to write down an
analog of the usual Friedmann equation of FLRW

6 The distance scale on which gravitons are trapped is generi-
cally set by the Riemann curvature of the higher-dimensional
bulk; in the Randall–Sundrum models the relevant parameter is

< <L s 6r L , defined by the cosmological constant in'graviton 4q1

the higher-dimensional bulk.
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cosmology, and in the next section we discuss how
to make this cosmologically viable. Going beyond
the FLRW cosmological fluid approximation we ver-
ify that the essential portion of the Randall–Sundrum

Žmodel having to do with the weak trapping of
.perturbatively generated gravitons near the brane

continues to work in the present context. Finally we
indicate some possible variants on the present model
and describe areas where the present ideas may lead
to observational tests.

2. D-brane surgery

2.1. Extrinsic and intrinsic geometries

We start by considering a rather general static
Ž .hyper-spherically symmetric geometry in 4q1 di-

Žmensions. This is not the most general such metric,
. 7but quite sufficient for our purposes.

d r 2
2 2 2 2d s syF r d t q qr dV ; 1Ž . Ž .4q1 3F rŽ .

dV 2 'd x 2 qsin2x du 2 qsin2u df 2 . 2Ž .Ž .3

Ž .To build the class of 3q1 -dimensional geometries
we are interested in, we start by simply truncating

Ž .the 4q1 -dimensional geometry at some time-de-
Ž .pendent radius a t , keeping only the interior portion

and discarding the exterior. Kinematically, the sur-
Žface of this truncated geometry which we take to be

. Žthe location of the D-brane is automatically a 3q
. Ž1 -dimensional closed ksq1, positive spatial cur-

.vature FLRW geometry with induced metric
21 da

2 2d s sy F a t y d tŽ .Ž .3q1 ž /F a t d tŽ .Ž .
2 2qa t dV . 3Ž . Ž .3

Now consider radial motion of the D-brane; this is
Ž .radial motion in the embedding 4q1 -dimensional

7 Note that the technical computations closely parallel those for
Ž .spherically symmetric 2q1 -dimensional domain walls symmet-

Ž .rically embedded in a spherically symmetric 3q1 -dimensional
w xspacetime. See, for instance, Refs. 15–17 .

hyperspace. We start the analysis by first parameter-
izing the motion in terms of proper time along a

Žcurve of fixed x , u , and f these are comoving
.coordinates in the FLRW cosmology . That is: the

D-brane sweeps out a world-volume

X m t ,x ,u ,f s t t ,a t ,x ,u ,f . 4Ž . Ž . Ž . Ž .Ž .
Ž .The 5-velocity of the x ,u ,f element of the D-brane

can then be defined as

d t da
mV s , ,0,0,0 . 5Ž .ž /dt dt

Using the normalization condition and the assumed
form of the metric, and defining asdardt ,˙

2(F a qaŽ . ˙
mV s ,a,0,0,0 ;˙ž /F aŽ .

ȧ
2(V s y F a qa , ,0,0,0 . 6Ž . Ž .˙m ž /F aŽ .

Ž .The unit normal vector to the hypersphere a t is

ȧ
m 2(n s y ,y F a qa ,0,0,0 ;Ž . ˙ž /F aŽ .

2(F a qaŽ . ˙
n s qa,y ,0,0,0 . 7Ž .˙m ž /F aŽ .
wWe shall take the unit normal to be inward pointing,

Ž . xinto the bulk of the 5q1 geometry. The extrinsic
curvature can be written in terms of the normal
derivative 8

1 E g 1 E gmn mnsK s s n . 8Ž .mn s2 Eh 2 E x

If we go to an orthonormal basis, the xx componentˆ ˆ
is easily evaluated

K sK sKˆ ˆ ˆ ˆxx uu ffˆ ˆ

1 E gxx2 x x(sy F a qa gŽ . ˙
2 E r

2(F a qaŽ . ˙
sy . 9Ž .

a

The tt component is a little messier, but generaliz-
w x Žing the calculation of 16 which amounts to calcu-

8 Unfortunately sign conventions differ on this point. We fol-
w xlow 15 .
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lating the five-acceleration of the brane, this is ex-
w x.plained in more detail in 15 quickly leads to

1 1 d F rŽ .
K sq q2 ättˆ ˆ ž /22 da(F a qaŽ . ˙

d
2(sq F a qa . 10Ž . Ž .˙ž /da

In contrast to the extrinsic geometry, the intrinsic
geometry of the D-brane is in these coordinates
simply

22 2 2d s sydt qa t dV . 11Ž . Ž .3q1 3

2.2. The D-brane as boundary

Ž .A perhaps unusual and for us very useful feature
of D-brane physics is that the D-brane can be viewed
as an actual physical boundary to spacetime, with the

Ž‘‘other side’’ of the D-brane being empty null and
. 9void . In general relativity, as it is normally formu-

lated, the notion of an actual physical boundary to
Žspacetime that is, an accessible boundary reachable

.at finite distance is complete anathema. The reason
that spacetime boundaries are so thoroughly depre-
cated in general relativity is that they are artificial
special places in the manifold where some sort of
boundary condition has to be placed on the physics.
Without such a postulated boundary condition all
predictability is lost, and the theory is not physically
acceptable. Since without some deeper underlying
theory there is no physically justifiable reason for
picking any one particular type of boundary condi-

Žtion Dirichlet, Neumann, Robin, or something more
.complicated , the attitude in standard general relativ-

ity has been to simply exclude boundaries.
The key difference when a D-brane is used as a

boundary is that now there is a specific and well-de-
fined boundary condition for the physics: D-branes
Ž .remember that ‘‘D is for Dirichlet’’ are defined as
the loci on which the fundamental open strings end

9 Ž .A brief sketch of these ideas, from the 3q1 -dimensional
point of view where one is dealing with holes in spacetime
Ž . w xvoids , was presented in 17 . Here we expand on these ideas in a
more explicit manner.

Ž .and satisfy Dirichlet-type boundary conditions . D-
branes are therefore capable of providing both a
physical boundary for the spacetime and a plausible
boundary condition for the physics residing in the
spacetime 10.

When it comes to specific calculations, this is
however not be the best mental picture to have in
mind – after all, how would you try to calculate the
Riemann tensor for the edge of spacetime? And what
would happen to the Einstein equations at the edge?
There is a specific technical trick that clarifies the
situation: Take the manifold with D-brane boundary

Žand make a second copy including a second D-brane
.boundary , then sew the two manifolds together along

their respective D-brane boundaries, creating a single
manifold without boundary that contains the doubled
D-brane, and exhibits a Z symmetry on reflection2

around the D-brane. Because this new manifold is a
perfectly reasonable no-boundary manifold contain-

Ž .ing a thin shell D-brane, the gravitational field can
be analyzed using a slight generalization of the usual
Israel–Lanczos–Sen thin-shell formalism of general

w x Ž .relativity 12–14 . We now need to consider 3q1
Ž .shells propagating in 4q1 space, but this merely

changes a few integer coefficients. The metric is
continuous, the connection exhibits a step-function
discontinuity, and the Riemann curvature a delta-
function at the D-brane. The dynamics of the D-brane
can then be investigated in this Z -doubled manifold,2

and once the dynamical equations and their solutions
have been investigated the second surplus copy of

Žspacetime can quietly be forgotten effectively halv-
ing the strength of the delta-function contribution to

.the Riemann tensor . That is, as long as one is
working in the Z -doubled manifold the discontinu-2

10 A word of warning: D-branes by definition provide boundary
conditions directly on the fundamental string states, and so, since
all physics in string theory can be viewed in terms of some
combination of string states, D-branes will in principle provide
boundary conditions for all the physics. In practice the route from
string state to low-energy effective field theory may be rather
indirect, and elucidation of the proper boundary condition may be
a little obscure; when in doubt use symmetry as much as possible,
and be prepared to keep at least a few adjustable constants as part
of the low-energy semi-phenomenological theory.
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ity in the extrinsic curvature is twice the extrinsic
curvature as seen from either side

q yk Z s K sK yK s2 K . 12Ž . Ž .ab 2 a b a b a b a b

Consequently the Riemann tensor in the Z -doubled2

manifold is

R Z sy2d h K n n qK n nŽ . Ž .abgd2 ag b d bd a g

yK n n yK n nad b g bg a d

qQ h Rq qQ yh Ry .Ž . Ž .abgd a bgd

13Ž .

We now define the Riemann tensor of the manifold
with boundary by throwing away half of the Z -dou-2

bled manifold, and in view of the manifest symmetry
of the situation, also throwing away half the delta-
function contribution 11.

After doing all this, near the D-brane boundary
the Riemann tensor takes the form

R syd h K n n qK n nŽ .abgd ag b d bd a g

bulkyK n n yK n n qR . 14Ž .ad b g bg a d a bgd

Ž .This is the relevant generalization of Eq. 14.23 of
w x15 to a manifold with boundary; note that there is
only one side to the boundary and that we explicitly
use only the extrinsic curvature of that one side
Žwhich is half the extrinsic curvature discontinuity in

.the Z -doubled manifold . This particular formula is2
Žw x .valid for any n–1 q1 -dimensional boundary to a

Ž .nq1 -dimensional bulk. It does assume that the
normal n is spacelike, though no symmetry assump-
tions are made. If we introduce the general projec-
tion tensor

h sg yn n , 15Ž .mn mn m n

then this projection tensor is the induced metric on
the boundary and in the particular application we
have in mind will be the physical spacetime metric
of our universe. Performing the relevant contrac-

11 If for whatever reason one does not wish to work with the
Z -doubled manifold, there is an alternative construction that leads2

to the same result that we present in Appendix A.

tions, and still working in an arbitrary number of
bulk dimensions

bulkR syd h K qK n n qR ; 16Ž . Ž .mn mn m n mn

Rsy2 K d h qRbulk ; 17Ž . Ž .
bulkG syd h K yK h qG . 18Ž . Ž .mn mn mn mn

Ž . Ž . w xThese formulae generalize 14.25 – 14.27 of 15 to
a manifold with boundary. With hindsight this makes
perfectly good sense since if we now integrate over

Ž .the complete manifold bulk plus boundary

nq1 nq1d x yg Rs d x yg R( (E Hnq1 nq1 bulk
bulk

y2 dw ny1xq1 xH
boundary

= yg K . 19Ž .( w ny1xq1

Which means that we have automatically recovered
the Gibbons–Hawking surface term for the gravita-
tional action, in addition to the Einstein–Hilbert bulk
term.

We also take the total stress-energy tensor to be
given by a combination of surface and bulk compo-
nents

T sd h T surface qT bulk , 20Ž . Ž .mn mn mn

Ž .and normalize our nq1 -dimensional bulk Newton
constant G bynq1

G s8p G T . 21Ž .mn nq1 mn

Then in particular, picking off the surface contribu-
tion to both the Einstein tensor and the stress-energy

surface8p G T sy K yK h . 22Ž .nq1 mn mn mn

Whether or not this surface stress tensor satisfies the
energy conditions depends on the signs of the eigen-
values of the extrinsic curvature. By looking at the

w xZ -doubled geometry it is a general result 15 that a2
Ž .convex boundary when viewed from the bulk vio-

Ž .lates the null energy condition NEC , while a con-
Žcave boundary satisfies it. This is intimately related

to the fact that traversable wormholes violate the null
w x .energy condition, see 15,16,18–21 .

2.3. Cosmology

Ž .Now particularize to the 4q1 -dimensional ver-
sion of the thin-shell formalism, and use the FLRW
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Žsymmetries of the D-brane some of the integer
coefficients and exponents appearing below are di-

.mension dependent :

2(F a qaŽ . ˙
8p G r s3 . 23Ž .4q1 3q1 a

ŽNote that the energy density is positive definite, in
agreement with the fact that this boundary is concave

. 12when viewed from the bulk.

1 d
2 2(8p G p sy a F a qa . 24Ž . Ž .˙ž /4q1 3q1 2 daa

These equations can easily be seen to be compatible
with the conservation of the stress energy localized
on the D-brane 13

d d
3 3r a qp a s0. 25Ž . Ž .Ž .3q1 3q1dt dt

So as usual, two of these three equations are inde-
pendent, and the third is redundant.

The conservation equation is identical to that for
standard cosmology, while the D-brane version of
the Friedmann equation, obtained by rearranging the

12 Because of this feature the D-brane occurring here is guaran-
Žteed to have positive tension, and we do not need to worry at

.least not at the cosmological level about the possibility of
energy-condition-violating negative tension D-branes, and the

w xsomewhat peculiar features traversable wormholes, etc. that neg-
ative tension D-branes can introduce into the low energy effective

w xtheory 17 .
13 There is another potential source of confusion here: Since the

Ž . Ž .3q1 -dimensional D-brane is sweeping through the 4q1 -
dimensional bulk, why is it that the D-brane does not exchange
energy with the bulk? One might at first glance expect violations

Ž . Ž .of 3q1 -dimensional stress-energy conservation due to 4q1 -
dimensional matter entering or leaving the D-brane. In fact, in
general this might happen, and it is potentially an interesting
observational signal to look for – but in the present cosmological

Ž .context this effect is zero: as the D-brane moves through 4q1 -
Ž .space, it is the ‘‘flux’’ of 4q1 -dimensional matter onto the

brane, defined by
ab w xJ s n T g y n n ,m a bm b m

Ž .that determines whether or not 4q1 -dimensional stress-energy
w xconservation holds 15 . In all of the bulk geometries considered

Žin this article, this flux is identically zero in fact the stress-energy
.tensor is diagonal .

equation for the surface energy density that was
given above, is seen to be

2 2a F a 8p G rŽ .˙ 4q1 3q1
sy q . 26Ž .2 ž /ž /a 3a

ŽIn contrast the standard Friedmann equation for a
.ksq1 closed FLRW universe is

2a 1 L 8p G r˙ 3q1
sy q q . 27Ž .2ž /a 3 3a

To get a brane cosmology that is not wildly in
Ž .conflict with observation, we split the 3q1 -

dimensional energy into a constant r determined by0

the brane tension, plus ordinary matter r, with r<

r to suppress the quadratic term in comparison to0
w xthe linear 5 . Then with r sr qr we have3q1 0

2 2a F a 8p G rŽ .˙ 4q1 0
sy q2 ž /ž /a 3a

16p G r 8p G4q1 0 4q1
q ž / ž /3 3

=

21 r
rq . 28Ž .

2 r0

Picking out the term linear in r, this permits us to
identify

16p G r4q1 0
G sG ; that is3q1 4q1 ž /3

3 G3q1
G s . 29Ž .4q1 ( 16p r0

Therefore

2a F aŽ .˙
sy 2ž /a a

28p G 1 1 r3q1
q r qrq . 30Ž .0ž /3 2 2 r0

Since we want r 4r to suppress the quadratic0
Ž .term, this leaves us with a large 3q1 -dimensional

cosmological constant that we will need to eliminate
Ž .by cancelling it either fully or partially with some

Ž . w xterm in F a 5 . This result is in its own way quite
remarkable: up to this point no assumptions had been
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made about the size of the brane tension, or even
whether or not the brane tension was zero. Nor had
any assumption been made up to this point about the
existence or otherwise of any cosmological constant

Ž .in the 4q1 -dimensional bulk. It is observational
cosmology that first forces us to take r large0
welectro-weak scale or higher to avoid major prob-

xlems with nucleosynthesis , and then forces us to
deduce the presence of an almost perfectly counter-

w xvailing cosmological constant in the bulk 5 .
In the next section we shall make use of this still

Ž .relatively general formalism by specializing F r to
the Reissner–Nordstrom–de Sitter form.¨

2.4. Reissner–Nordstrom–de Sitter surgery¨

Ž .For the 4 q 1 -dimensional Reissner–
Nordstrom–de Sitter geometry¨

2 M Q2 L r 2
4q1 4q1 4q1

F r s1y q y . 31Ž . Ž .2 4 6r r

Ž .Here M is a 4q1 -dimensional ‘‘mass’’ param-4q1

eter, corresponding to the mass of the central object
Ž . Ž .in 4q1 -space – it does not have a ready 3q1 -

dimensional interpretation and is best carried along
as an extra free parameter that from the 4-dimen-
sional point of view can be adjusted to taste. Simi-
larly, Q corresponds to an ‘‘electric charge’’ in4q1

Ž .the 4q1 -dimensional sense. Our universe, the
boundary D-brane, must then be viewed as carrying
an equal but opposite charge to allow field lines to

Ž .terminate. From the 3q1 -dimensional view this
may be taken to be a second free parameter. The
Ž .4q1 -dimensional cosmological constant combines
with the term coming from the D-brane tension to

Ž .give an effective 3q1 -dimensional cosmological
constant

L4q1
Ls q4p G r . 32Ž .3q1 02

In the original Randall–Sundrum models these two
terms were fine-tuned by hand to obtain complete
cancellation. In view of the recent observational
evidence for a small cosmological constant in our
observable universe we need merely assert that this
effective cosmological constant is presently rela-

Žtively small LQ8p G r ; this is small by3q1 critical

particle physics standards, but can be quite signifi-
. 14cant by cosmological standards .

Since r is guaranteed positive 15, this implies0

that L should be negative, and so if this model is4q1

correct we are living on the edge of a bulk anti-de
Sitter space. The D-brane dynamical equation now
reads

2 2a 1 2 M Q L˙ 4q1 4q1
sy q y q2 4 6ž /a 3a a a

28p G 1 r3q1
q rq . 33Ž .ž /3 2 r0

It is clear that by tuning these parameters appropri-
ately one can recover standard cosmology to arbi-
trary accuracy. The M parameter can be used to4q1

mimic an arbitrary quantity of what would usually be
Ž .called ‘‘radiation’’ relativistic fluid, rs3 p , while

Ž .the Q parameter mimics ‘‘stiff’’ matter rsp4q1
w x22 , though with an overall minus sign. An observa-
tional astrophysicist or cosmologist could now sim-
ply forget about the underlying string theory and
D-brane physics, take this expression as the D-brane
inspired generalization of the Friedmann equations,
and treat M , Q , L, and r as parameters to4q1 4q1 0

be observationally determined.
Since we actually want to do more than just

reproduce standard cosmology we should seek some
additional constraints on these parameters – and this
is where the phenomenon of weak localization of the
graviton near the brane comes into play.

14 A small effective cosmological constant would indeed imply
deviations from the original Randall–Sundrum scenario, but on a
distance scale determined by this effective cosmological constant
Žand observationally this distance scale would be of order Giga-

.parsecs or larger . So we are not too concerned about this issue in
that the implications for particle phenomenology are negligible.

15 Tricky point: actually it is r that is guaranteed to be3q 1

positive, and this holds because the D-brane universe is taken to
be convex as seen from the bulk. Then the same logic that leads to
energy condition violations for traversable wormholes now applies

Ž .in reverse, and the 3q1 null energy condition is generically
Žsatisfied in this type of cosmological model. Violating the strong

energy condition, which is relevant for cosmological inflation, is
w x .much easier 22 .
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3. Weak localization of perturbative gravity

Suppose that the observable universe is large
Ž .compared to the natural distance scale in the 4q1 -

Ž . < < Ždimensional bulk, that is: a t 4 6r L so( 4q1
.that the universe has ‘‘grown up’’ , and both M4q1

and Q are sufficiently small to allow us to ap-4q1

proximate

< < 2L r4q1
F r f ; for rfa. 34Ž . Ž .

6

Then near the D-brane we can write

< < 2L r4q12 2d s fy d t4q1 6

6
2 2 2q d r qr dV . 35Ž .32< <L r4q1

Ž .In terms of the normal distance proper distance
from the D-brane,

6
hf ln rra , 36Ž . Ž .( < <L4q1

this implies

< <L4q12 2d s fqdh qexp y2 h(4q1 ž /6

=

2< <L a4q1 2 2 2y d t qa dV . 37Ž .36

If we now re-label our time parameter in terms of
Žproper time measured along the D-brane that is, use

the proper time of a cosmologically comoving ob-
.server ,

2< <L a4q1
tf t , 38Ž .(

6

and introduce quasi-Cartesian coordinates to the tan-
gent space at any arbitrary point point of the D-brane
then

< <L4q12 2d s fqdh qexp y2 h(4q1 ž /6

= 2 2 2 2ydt qd x qd y qdz . 39Ž .

Thus in this approximation the near-brane metric is
w xprecisely of the Randall–Sundrum form 1,2 and we

know from their analysis that there is a graviton
bound state attached to the brane with an exponential
falloff controlled by the distance scale parameter 16

6
L s . 40Ž .graviton ( < <L4q1

Now the experimental fact that we do not see short
distance deviations from the inverse square law of
gravity at least down to centimetre scales implies
that L is certainly less than one centimetregraviton
Žand many would argue that it is at most one mil-

.limeter . Numerous experiments designed to tighten
this limit are currently planned and in progress.

Ž .Within the approximation that the 3 q 1 -
dimensional effective cosmological constant is negli-
gible we get

2
G sG . 41Ž .3q1 4q1 Lgraviton

The importance of these results for cosmology is
that, given the observed almost perfect cancellation
of the net cosmological constant,

3 3 L2
Planck

r f s r . 42Ž .0 Planck2 24p4p G L L3q1 graviton graviton

While this number is certainly large on a usual
astrophysics scale, and is rather large even compared
with nuclear densities, it could still be much less
than the Planck scale and yet be compatible with
experiment. Indeed if L is as large as a cen-graviton

timetre then the quadratic terms in the density be-

16 Of course this is little more than the statement that if we are
interested in laboratory physics in the here and now, then a
tangent space approximation to cosmology had better work:
Minkowski space is an excellent approximation for physics here
on Earth and so the D-brane must exhibit at least approximate
Lorentz symmetry if it is to be acceptable as a model of empirical
reality. Moving off the D-brane and into the bulk, the only

w Ž .essential item is that at large enough distances from the 4q1
x Ž . 2 Ž .‘‘centre’’ we must have F r A r . Thus as long as the 4q1

geometry is asymptotically anti-de Sitter space we will recover
ŽRandall–Sundrum phenomenology on small scales. And eventu-

ally, on large enough distance scales, the simple Randall–Sundrum
phenomenology will break down either because of cosmological

Ž .expansion, or because of the small effective 3q1 -dimensional
cosmological constant, or simply because of the positive spatial

w x .curvature ksq1 and a is finite .
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come important once temperatures reach the elec-
Ž .troweak scale about 100 GeV . The good news is

that this implies the model is compatible with stan-
dard cosmology at least back to the electroweak
scale; the better news is that there are possibilities of
seeing deviations from the standard cosmology as we
go further back. The larger L is, the bettergraviton

things are with regard to the hierarchy problem of
w xparticle physics 1,2 and the lower the brane tension

needs to be. On the other hand, the lower L isgraviton

the better the brane is at trapping gravitational per-
turbations and the less risk there is of conflict with
gravity-based experiment.

4. Discussion

w xThe Randall–Sundrum scenarios 1,2 , and earlier
w xtentative steps along these lines 3 , have engendered

a tremendous amount of activity, both in terms of
w xparticle physics and in terms of cosmology 4,5 . In

this paper we have sketched what we feel is perhaps
the simplest most symmetric cosmology that can be
based on these ideas: We have reduced the number
of D-branes to exactly one, and have only one bulk
Ž . Ž4q1 -dimensional region. The D-brane which our

.observable universe lives on is here viewed as an
actual physical boundary to the higher-dimensional
spacetime, and we have demonstrated how to write
down both curvature tensor and field equations for a
manifold with boundary.

We have verified that standard ksq1 FLRW
cosmology can very easily be reproduced, and that
we do not have massive present day violations of
observational constraints. If you absolutely insist on

Ža spatially flat ks0 geometry or even a spatially
.hyperbolic ksy1 geometry that can also be

achieved along the lines of this article, but at some
cost in elegance, and for very little real purpose.

Ž .Remember that for a t large enough a ksq1
spatial slice mimics ks0 to arbitrary accuracy. In
Appendix B and Appendix C we sketch how one
could nevertheless force spatially flat or spatially
hyperbolic FLRW cosmologies into this framework.

w xAs is by now not unexpected 1,2,5 , likely places
to look for observational signatures are in short-dis-

Ž .tance centimetre deviations from the gravitational
inverse square law, and in very early universe cos-

Žmology before densities drop to the electro-weak
scale; this is the region where the quadratic density
term in the generalized Friedmann equation might

. 17come into play .
Because we are viewing the D-brane as an actual

boundary, the conjectured connections between the
Randall–Sundrum models and Maldacena’s
adSrCFT conjecture are perhaps more compelling
w x10,11 – we no longer have to deal with a Z -dou-2

bled version of the adSrCFT conjecture, but can
Ž .work directly on a boundary of the asymptotic

anti-de Sitter space. As the universe evolves in time
the D-brane boundary moves further out into the
asymptotic anti-de Sitter region, and this hints at a
possible connection between cosmological time, the
holographic hypothesis, and renormalization group

w xflow 11 .
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Appendix A. Alternative construction for the Rie-
mann tensor of a manifold with boundary

Take your original manifold MM, with boundary
E MM, and join to the boundary a hyper-tube of topol-

Ž .ogy HHs y`,0 mE MM. Let the metric on this hy-
per-tube be specified in terms of the induced metric
on the boundary and the flat 1-dimensional metric:

g HH sdh 2 [g E MM . A.1Ž . Ž . Ž .
Then by construction Ky s0 and Kq sK , soab a b a b

that in this geometry
q yk MMjHH s K sK yK sK ,Ž .ab a b a b a b a b

A.2Ž .
w xleading to the Riemann tensor 15

17 Ž y4 .In particular, for r 4 r even ordinary radiation r A a0

acts as though it has a ay8 behaviour, and this is enough to drive
Ž . 1r4 w xan epoch of power-law inflation with a t A t 5 .
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R MMjHH syd h K n n qK n nŽ . Ž .abgd ag b d bd a g

yK n n yK n nad b g bg a d

bulkqQ h R MMŽ . Ž . abgd

bulkqQ yh R HH . A.3Ž . Ž . Ž .abgd

Now truncate the geometry by simply throwing away
the hyper-tube HH. The Riemann tensor in the re-
maining manifold MM is, as before

R MM syd h K n n qK n nŽ . Ž .abgd ag b d bd a g

yK n n yK n nad b g bg a d

bulkqR MM . A.4Ž . Ž .abgd

There is now no symmetry to suggest that one
should perform any particular splitting of the delta-
function contribution at the boundary, and in fact the
observation that the extrinsic curvature is by con-
struction zero on the hyper-tube side of the boundary
is an indication that you should assign all the delta-
function contribution to MM, the resulting manifold

Žwith boundary. Either construction hyper-tube addi-
.tion or Z -doubling leads to the same result for the2

Riemann tensor, but some may be happier with one
construction over the other.

Appendix B. Spatially flat FLRW cosmology

By a little guess-work based on hyper-spherically
symmetric Reissner–Nordstrom–de Sitter space one¨
is led to consider the metric

d r 2
2 2d s syF r d t qŽ .4q1 F rŽ .

2 2 2 2qr d x qd y qd z . B.1Ž .
Ž .with note the absence of the leading 1!

2 M Q2 L r 2
4q1 4q1 4q1

F r sy q y . B.2Ž . Ž .2 4 6r r

Ž .This metric still satisfies the 4q1 -dimensional
Einstein–Maxwell equations, but with a hyper-planar
symmetry instead of a hyper-spherical symmetry.
You can now re-do the analysis of this note by

Ž .placing a spatially flat D-brane boundary at rsa t
and will obtain very similar results to those of this
article. The intrinsic geometry of the D-brane will

now be

d s2
3q1

2 2 2 2 2sydt qa t d x qd y qd z . B.3Ž . Ž .
It is not clear to us that the marginal change in the
Friedmann equation is worth the loss of hyper-

Žspherical symmetry. The point rs0 is still for
.M /0 or Q /0 a curvature singularity of the4q1 4q1

Ž .4q1 -dimensional bulk, but whether you really
Žwant to call it the ‘‘center’’ of the bulk as opposed

.to say a ‘‘focal point’’ is somewhat less than clear.

Appendix C. Spatially hyperbolic FLRW cosmol-
ogy

Inspired by the previous guess-work one is led to
Žconsider the metric note the presence of the sinh

.function

d r 2
2 2d s syF r d t qŽ .4q1 F rŽ .

2 2 2 2 2 2qr d x qsinh x du qsin u df .Ž .
C.1Ž .

Ž .with note the presence of the leading minus 1!

2 M Q2 L r 2
4q1 4q1 4q1

F r sy1y q y .Ž . 2 4 6r r
C.2Ž .

Ž .This metric also satisfies the 4q1 -dimensional
Einstein–Maxwell equations, but with a hyperbolic
symmetry instead of either hyper-spherical or
hyper-planar symmetry. You can now re-do the anal-
ysis of this note by placing a spatially hyperbolic

Ž .D-brane boundary at rsa t and will again obtain
very similar results to those of this article. The
intrinsic geometry of the D-brane will now be

d s2 sydt 2 qa2 tŽ .3q1

= 2 2 2 2 2d x qsinh x du qsin u df .Ž .
C.3Ž .

For all three cases, ksq1,0,y1, the formal
w Ž .dynamical equation for the brane motion Eq. 30 ,

Ž .xvalid for arbitrary F r is unchanged, while the
explicit dynamical equation after Reissner–
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ŽNordstrom–de Sitter surgery the generalized Fried-¨
.man equation becomes

2 2a k 2 M Q L˙ 4q1 4q1
sy q y q2 4 6ž /a 3a a a

28p G 1 r3q1
q rq . C.4Ž .ž /3 2 r0
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